科微学术

微生物学通报

芒萁根际复合微生物菌剂对绿豆幼苗生长及根际微生物群落的影响
作者:
基金项目:

江西省教育厅科技项目(GJJ2201328);江西科技师范大学博士科研启动基金(2020BSQD025)


Rhizosphere complex microbial agent of Dicranopteris dichotoma regulates the growth and rhizosphere microbial community of mung bean seedlings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】 在农业可持续发展背景下,复合微生物菌剂因其多种微生物间的互补作用成为促进植物生长的有效策略。【目的】 研究芒萁(Dicranopteris dichotoma)根际复合微生物菌剂对绿豆幼苗的促生效果,以及对根际微生物群落结构变化的影响。【方法】 以前期分离自芒萁根际土壤的4株根际促生菌为供试菌株,组合配制成2种复合微生物菌剂BFF和BBF接种至绿豆幼苗根际,测定绿豆幼苗培养36 d后的生理指标及土壤理化性质,并利用16S rRNA基因和ITS扩增子测序技术分析根际微生物结构组成和多样性。【结果】 BFF组显著提高了绿豆幼苗的株高、地上部分鲜重和干重以及地下部分干重,分别比对照组提高了29.38%、81.47%、175.73%和936.49%;BBF组则显著增加了绿豆幼苗的地上部分鲜重和干重,分别提高了92.64%和179.67%。高通量测序结果显示,接种复合微生物菌剂BFF和BBF均显著提高了细菌群落的多样性和丰富度,同时降低了真菌群落的多样性。在门水平上,显著增加了黏球菌门(Myxococcota)的相对丰度,降低了接合菌门(Zygomycota)的相对丰度。在细菌属水平上,显著减少了罗河杆菌属(Rhodanobacter)的相对丰度,增加了黏液杆菌属(Mucilaginibacter)和慢生根瘤菌属(Bradyrhizobium)的相对丰度;在真菌属水平上,显著增加了隐球菌属(Cryptococcus)的相对丰度,同时降低了被孢霉属(Mortierella)和Gliocladiopsis的相对丰度。功能预测结果表明,接种复合微生物菌剂显著提高了根际细菌中的固氮作用,同时增加了致病-腐生-共生型真菌的相对丰度,降低了腐生型和腐生-共生型真菌的相对丰度。【结论】 接种复合微生物菌剂可以提升土壤养分,调节根际微生物群落的结构和多样性,增加有益菌的数量,减少病原菌的存在,从而为绿豆幼苗创造更有利的根系生长环境,促进它们的生长发育。研究结果不仅为绿豆幼苗的生长提供了新的理论支持,也为复合微生物菌剂在农业生产中的应用提供了理论基础。

    Abstract:

    [Background] In the context of sustainable agricultural development, complex microbial agents have emerged as a potent means for enhancing plant growth, attributed to the synergistic effects of diverse microorganisms. [Objective] To investigate the rhizosphere complex microbial agent of Dicranopteris dichotoma regarding the effects on the growth and rhizosphere microbial community structure of mung bean seedlings. [Methods] Four plant growth-promoting strains isolated from the rhizosphere soil of D.dichotoma were used to formulate two complex microbial agents: BBF and BFF. The agents were inoculated into the rhizosphere of mung bean seedlings, and the physiological parameters and soil physicochemical characteristics of the mung bean seedlings were evaluated after 36 days of cultivation. The community structure and diversity of rhizosphere microorganisms were assessed by 16S rRNA gene and ITS amplicon sequencing. [Results] BFF increased the plant height, aboveground fresh and dry weights, and underground dry weight of mung bean seedlings by 29.38%, 81.47%, 175.73%, and 936.49%, respectively. BBF increased the aboveground fresh weight and dry weight of mung bean seedlings by 92.64% and 179.67%, respectively. High-throughput sequencing results revealed that both BFF and BBF significantly boosted the bacterial diversity and richness, while reducing the fungal diversity. At the phylum level, the two agents increased the relative abundance of Myxococcota while decreasing that of Zygomycota. At the bacterial genus level, the two agents decreased the relative abundance of Rhodanobacter while increasing that of Mucilaginibacter and Bradyrhizobium; at the fungal genus level, the two agents increased the relative abundance of Cryptococcus while decreasing that of Mortierella and Gliocladiopsis. Functional prediction indicated that the application of complex microbial agents notably enhanced bacterial nitrogen fixation in the rhizosphere, increased the relative abundance of pathogenic-saprophytic-symbiotic fungi, and decreased the relative abundance of saprophytic and saprophytic-symbiotic fungi. [Conclusion] Inoculating complex microbial agents increases soil nutrients, regulates rhizosphere microbial community structure and diversity, boosts beneficial bacterial count, and suppresses pathogen presence, thus creating a favorable environment for the root growth and promoting the growth and development of mung bean seedlings. These findings offer new theoretical support for the growth of mung bean seedlings and establish a basis for applying complex microbial agents in agricultural production.

    参考文献
    [1] BAILEY-SERRES J, PARKER JE, AINSWORTH EA, OLDROYD GED, SCHROEDER JI. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118.
    [2] LIU X, XU YY, SUN SK, ZHAO XN, WU PT, WANG YB. What is the potential to improve food security by restructuring crops in Northwest China?[J]. Journal of Cleaner Production, 2022, 378: 134620.
    [3] NONTHAKAEW N, PANBANGRED W, SONGNUAN W, INTRA B. Plant growth-promoting properties of Streptomyces spp. isolates and their impact on mung bean plantlets’ rhizosphere microbiome[J]. Frontiers in Microbiology, 2022, 13: 967415.
    [4] SINGH DP. Breeding for resistance to diseases in greengram and blackgram[J]. Theoretical and Applied Genetics, 1981, 59(1): 1-10.
    [5] YIN ZC, GUO WY, XIAO HY, LIANG J, HAO XY, DONG NY, LENG TR, WANG YJ, WANG QY, YIN FX. Nitrogen, phosphorus, and potassium fertilization to achieve expected yield and improve yield components of mung bean[J]. PLoS One, 2018, 13(10): e0206285.
    [6] ZHU YS, SUN S, FitzGERALD R. Mung bean proteins and peptides: nutritional, functional and bioactive properties[J]. Food & Nutrition Research, 2018, 62: 62.
    [7] LI Y, ABALOS D, ARTHUR E, FENG H, SIDDIQUE KHM, CHEN J. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties[J]. Soil and Tillage Research, 2024, 238: 105992.
    [8] PAHALVI HN, RAFIYA L, RASHID S, NISAR B, KAMILI AN. Chemical fertilizers and their impact on soil health[M]//Microbiota and Biofertilizers, Vol 2. Cham: Springer International Publishing, 2021: 1-20.
    [9] AJMAL M, ALI HI, SAEED R, AKHTAR A, TAHIR M, MEHBOOB M, AYUB A. Biofertilizer as an alternative for chemical fertilizers[J]. Research and Reviews, 2018, 7(1): 1-7.
    [10] SONG Q, DENG X, SONG RQ, SONG XS. Plant growth-promoting rhizobacteria promote growth of seedlings, regulate soil microbial community, and alleviate Damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var. mongolica[J]. Plant Disease, 2022, 106(10): 2730-2740.
    [11] AHSAN T, TIAN PC, GAO J, WANG C, LIU C, HUANG YQ. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system[J]. Journal of Advanced Research, 2024, 64: 1-13.
    [12] DAS PP, SINGH KR, NAGPURE G, MANSOORI A, SINGH RP, AHMAD GHAZI I, KUMAR A, SINGH J. Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices[J]. Environmental Research, 2022, 214: 113821.
    [13] REN TB, FENG HL, XU CS, XU Q, FU B, AZWAR E, WEI YW, LAM SS, LIU GS. Exogenous application and interaction of biochar with environmental factors for improving functional diversity of rhizosphere’s microbial community and health[J]. Chemosphere, 2022, 294: 133710.
    [14] SHI HM, LU LX, YE JR, SHI LN. Effects of two Bacillus velezensis microbial inoculants on the growth and rhizosphere soil environment of Prunus davidiana[J]. International Journal of Molecular Sciences, 2022, 23(21): 13639.
    [15] GOHIL RB, RAVAL VH, PANCHAL RR, RAJPUT KN. Plant growth promoting activities and effect of fermented panchagavya isolate Klebsiella sp. PG-64 on Vigna radiata[J]. World Journal of Microbiology & Biotechnology, 2022, 39(2): 41.
    [16] SUMAN A, GOVINDASAMY V, RAMAKRISHNAN B, ASWINI K, SaiPRASAD J, SHARMA P, PATHAK D, ANNAPURNA K. Microbial community and function-based synthetic bioinoculants: a perspective for sustainable agriculture[J]. Frontiers in Microbiology, 2022, 12: 805498.
    [17] ZHAO SC, WANG HR, WANG JH. Synthesis and application of a compound microbial inoculant for effective soil remediation[J]. Environmental Science and Pollution Research International, 2023, 30(57): 120915-120929.
    [18] PENG XY, JIA TJ, BAI QX, LANG DY, ZHANG XH. Development of a composite microbial agent beneficial to improve drought and salt tolerance of Glycyrrhiza uralensis Fisch[J]. Industrial Crops and Products, 2024, 211: 118280.
    [19] YU WW, WU TY, CHANG R, YUAN YJ, WANG YH. The effect of Bacillus velezensis LJ02 compounded with different fungi on the growth of watermelon seedlings and microbial community structure[J]. Horticulturae, 2024, 10(3): 236.
    [20] WANG JJ, ZHAO SQ, XU S, ZHAO W, ZHANG XX, LEI Y, ZHAI HH, HUANG ZY. Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome[J]. Frontiers in Microbiology, 2023, 14: 1101773.
    [21] ZHANG WT, MAO GH, ZHUANG JY, YANG H. The co-inoculation of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 promoted soybean [Glycine max (L.) Merrill] growth and increased the relative abundance of beneficial microorganisms in rhizosphere and root[J]. Frontiers in Microbiology, 2023, 13: 1079348.
    [22] WU LX, WANG Y, LYU H, CHEN XD. Effects of a compound Trichoderma agent on Coptis chinensis growth, nutrients, enzyme activity, and microbial community of rhizosphere soil[J]. PeerJ, 2023, 11: e15652.
    [23] XING PF, ZHAO YB, GUAN DW, LI L, ZHAO BS, MA MC, JIANG X, TIAN CF, CAO FM, LI J. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922.
    [24] SHEN YY, YANG H, LIN Z, CHU LL, PAN X, WANG Y, LIU WB, JIN PF, MIAO WG. Screening of compound-formulated Bacillus and its effect on plant growth promotion[J]. Frontiers in Plant Science, 2023, 14: 1174583.
    [25] LI QY, ZHU CL, YU JB, WU XY, HUANG SQ, YANG F, TIGABU M, HOU XL. Response of soil bacteria of Dicranopteris dichotoma populations to vegetation restoration in red soil region of China[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(1): 456-468.
    [26] ZHAO R, HE F, ZHOU YF, HE ZQ, XU HN, WANG JC, HOU J, XIA LF, HUANG WF, WANG Y. The rhizosphere of the pioneer plant Dicranopteris dichotoma (Thunb.) Bernh. contains powerful and robust rhizosphere growth-promoting bacteria[J]. Biotechnology & Biotechnological Equipment, 2024, 38(1): 2374506.
    [27] ZHAO R, HE F, HUANG WF, ZHOU YF, ZHOU JL, CHEN QY, WANG FQ, CONG X, HE B, WANG Y. Dicranopteris dichotoma rhizosphere-derived Bacillus sp. MQB12 acts as an enhancer of plant growth via increasing phosphorus utilization, hormone synthesis, and rhizosphere microbial abundance[J]. Chemical and Biological Technologies in Agriculture, 2024, 11(1): 116.
    [28] LIU Y, TENG K, WANG T, DONG E, ZHANG M, TAO Y, ZHONG J. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize[J]. Journal of Applied Microbiology, 2020, 128(1): 242-254.
    [29] AFSHARMANESH H, AHMADZADEH M, JAVAN-NIKKHAH M, BEHBOUDI K. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation[J]. Crop Protection, 2014, 60: 83-92.
    [30] 国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015. State Forestry Administration of the People’s Republic of China. Nitrogen determination methods of forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
    [31] 国家林业局. 森林土壤磷的测定: LY/T 1232—2015[S]. 北京: 中国标准出版社, 2016. State Forestry Administration of the People’s Republic of China. Determination of total phosphorus in forest soil: LY/T 1232—2015[S]. Beijing: Standards Press of China, 2016(in Chinese).
    [32] 国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2016. State Forestry Administration of the People’s Republic of China. Potassium determination methods of forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2016(in Chinese).
    [33] PARK YG, MUN BG, KANG SM, HUSSAIN A, SHAHZAD R, SEO CW, KIM AY, LEE SU, OH KY, LEE DY, LEE IJ, YUN BW. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones[J]. PLoS One, 2017, 12(3): e0173203.
    [34] CHEN YF, YE JR, KONG QQ. Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L.[J]. Forests, 2020, 11(12): 1348.
    [35] 王珍, 曹翠玲, 库永丽, 徐国益, 林雁冰, 柳晓东. 巨大芽胞杆菌WY4的GFP标记及其在小白菜上的定殖[J]. 农业生物技术学报, 2016, 24(12): 1925-1934. WANG Z, CAO CL, KU YL, XU GY, LIN YB, LIU XD. Bacillus megatherium WY4 labeled by GFP and its colonization in Chinese cabbage (Brassica chinensis)[J]. Journal of Agricultural Biotechnology, 2016, 24(12): 1925-1934(in Chinese).
    [36] ROY B, RAGHAVENDRA N, GUPTA N, NIGHOJKAR A. Isolation of plant growth-promoting microorganisms and their impact on growth and yield of durum wheat[J]. Applied Biochemistry and Microbiology, 2024, 60(2): 315-330.
    [37] HUANG YX, LIN YL, ZHANG LP, WU F, ZHANG Y, HUANG SH. Effects of interaction between Claroideogolmus etuicatum and Bacillus aryabhattai on the utilization of organic phosphorus in Camellia oleifera Abel[J]. Journal of Fungi, 2023, 9(10): 977.
    [38] LI N, WEN J, WU RH, HU DN, ZHANG L, ZHANG WY, ZHANG MY. Dual effects of plant growth-promoting rhizobacteria (PGPR) on the Moso bamboo-soil system: Plant growth promotion and microbial community stability[J]. Industrial Crops and Products, 2023, 203: 117151.
    [39] LI Q, YOU P, HU Q, LENG BF, WANG JW, CHEN JL, WAN S, WANG B, YUAN CY, ZHOU R, OUYANG K. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution[J]. Ecotoxicology and Environmental Safety, 2020, 204: 111083.
    [40] 叶静, 陈影, 屈爽, 赵文超. 不同微生物菌肥对滨海盐渍土土壤质量及玉米产量的影响[J]. 环境科学, 2024, 45(7): 4279-4292. YE J, CHEN Y, QU S, ZHAO WC. Effects of different microbial fertilizers on soil quality and maize yield in coastal saline soil[J]. Environmental Science, 2024, 45(7): 4279-4292(in Chinese).
    [41] 魏红青, 宋旭, 徐海娟, 夏光富, 张登录, 傲耐, 李吉鲁, 万翠翠, 刘聪, 王军. EM复合菌对新疆色素辣椒生长及根际细菌群落的影响[J]. 微生物学通报, 2024, 51(1): 225-240. WEI HQ, SONG X, XU HJ, XIA GF, ZHANG DL, AO N, LI JL, WAN CC, LIU C, WANG J. EM biofertilizer affects growth and rhizosphere bacterial community of pigment pepper in Xinjiang of China[J]. Microbiology China, 2024, 51(1): 225-240(in Chinese).
    [42] LI N, WANG YL, ZHOU L, FU DJ, CHEN T, CHEN XM, WANG Q, ZHU WK. The joint action of biochar and plant roots on U-stressed soil remediation: Insights from bacteriomics and metabolomics[J]. Journal of Hazardous Materials, 2024, 461: 132635.
    [43] ZHONG Z, LIANG L, XU RN, XU HY, SUN S, LIAO L. Intercropping tea plantations with soybean and rapeseed enhances nitrogen fixation through shifts in soil microbial communities[J]. Frontiers of Agricultural Science and Engineering, 2022, 9(3): 344-355.
    [44] CARLSON HK, PRICE MN, CALLAGHAN M, AARING A, CHAKRABORTY R, LIU HL, KUEHL JV, ARKIN AP, DEUTSCHBAUER AM. The selective pressures on the microbial community in a metal-contaminated aquifer[J]. The ISME Journal, 2019, 13(4): 937-949.
    [45] MATSUMOTO H, FAN XY, WANG Y, KUSSTATSCHER P, DUAN J, WU SL, CHEN SL, QIAO K, WANG YL, MA B, ZHU GN, HASHIDOKO Y, BERG G, CERNAVA T, WANG MC. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72.
    [46] ONG A, O’BRIAN MR. Bradyrhizobium japonicum (diazoefficiens)[J]. Trends in Microbiology, 2024, 32(6): 614-615.
    [47] LI YP, YOU LX, YANG XJ, YU YS, ZHANG HT, YANG B, CHOROVER J, FENG RW, RENSING C. Extrapolymeric substances (EPS) in Mucilaginibacter rubeus P2 displayed efficient metal(loid) bio-adsorption and production was induced by copper and zinc[J]. Chemosphere, 2022, 291: 132712.
    [48] VÉLEZ ML, MARFETÁN JA, SALGADO SALOMÓN ME, TACCARI LE. Mortierella species from declining Araucaria araucana trees in Patagonia, Argentina[J]. Forest Pathology, 2020, 50(3): e12591.
    [49] RIVETT DW, BELL T. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nature Microbiology, 2018, 3(7): 767-772.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何芬,赵蕊,黄弯凤,张起影,史明涛,吴雅婷,汪涯. 芒萁根际复合微生物菌剂对绿豆幼苗生长及根际微生物群落的影响[J]. 微生物学通报, 2025, 52(3): 1073-1088

复制
分享
文章指标
  • 点击次数:32
  • 下载次数: 44
  • HTML阅读次数: 53
  • 引用次数: 0
历史
  • 收稿日期:2024-07-11
  • 录用日期:2024-08-19
  • 在线发布日期: 2025-03-19
文章二维码