科微学术

微生物学通报

牛分枝杆菌分子标识物的筛选及在豚鼠体内的评价
作者:
基金项目:

国家重点研发计划(2022YFD1800703)


Screening of molecular markers of Mycobacterium bovis and preliminary evaluation in guinea pigs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    【背景】牛结核病(bovine tuberculosis, BTB)是一种由结核分枝杆菌(Mycobacterium tuberculosis)复合体中的牛分枝杆菌(Mycobacterium bovis)引起的慢性传染性疾病,对牛群健康、畜牧业经济和公共卫生构成了重大威胁。【目的】筛选牛分枝杆菌新型诊断分子标识物,以期建立牛结核病新型诊断方法。【方法】利用同位素标记的相对与绝对定量技术并结合文献报道筛选出Mpb70、GroEL2、HspX、DnaK、Mpb83、EsxW、BfrB、Hrp1、EsxL、AtpD和EsxN这11种蛋白质进行制备,并通过豚鼠模型评价其致敏效果。【结果】当重组蛋白量为100 μg时,Mpb70、HspX、Mpb83和EsxN可引起明显的迟发型过敏反应,并且出现破溃。当使用量为50 μg时,Mpb70、HspX、Mpb83、EsxW、EsxL和EsxN可引起明显的迟发型过敏反应。当使用量低至12.5 μg时,则无法引起豚鼠的迟发型过敏反应。对不同蛋白进行组合使用,EsxW/EsxL/EsxN组合的活性最好,可刺激豚鼠产生明显的迟发型过敏反应;EsxW/EsxL、EsxW/EsxN、EsxL/EsxN组合也可引起迟发型过敏反应,但其反应程度不如EsxW/EsxL/EsxN组合。【结论】重组蛋白Mpb70、HspX、Mpb83、EsxW、EsxL和EsxN可引起较好的迟发型过敏反应,具有可替代结核菌素的应用前景。

    Abstract:

    [Background] Bovine tuberculosis (BTB) is a chronic infectious disease caused by Mycobacterium bovis, a part of the Mycobacterium tuberculosis complex, posing threats to cattle health, livestock economies, and public health. [Objective] In order to screen new diagnostic molecular markers of Mycobacterium bovis and establish new diagnostic method for bovine tuberculosis. [Methods] Using isotopic labeling-based relative and absolute quantification techniques and article screening, we identified 11 proteins (Mpb70, GroEL2, HspX, DnaK, Mpb83, EsxW, BfrB, Hrp1, EsxL, AtpD, and EsxN) for further evaluation. These recombinant proteins were then assessed for sensitization effects in a guinea pig model. [Results] At a dose of 100 μg, Mpb70, HspX, Mpb83, and EsxN induced marked delayed-type hypersensitivity (DTH) and rupture. At a dose of 50 μg, Mpb70, HspX, Mpb83, EsxW, EsxL, and EsxN provoked significant DTH. At a dose of 12.5 μg, the proteins did not induce DTH. Among the protein combinations, EsxW/EsxL/EsxN showed the highest activity, triggering robust DTH in guinea pigs. Other combinations such as EsxW/EsxL, EsxW/EsxN, and EsxL/EsxN also induced DTH, though to a lesser extent than EsxW/EsxL/EsxN. [Conclusion] Recombinant proteins Mpb70, HspX, Mpb83, EsxW, EsxL, and EsxN elicited notable DTH, demonstrating the potential as tuberculin substitutes.

    参考文献
    [1] OLEA-POPELKA F, MUWONGE A, PERERA A, DEAN AS, MUMFORD E, ERLACHER-VINDEL E, FORCELLA S, SILK BJ, DITIU L, EL IDRISSI A, RAVIGLIONE M, COSIVI O, LoBUE P, FUJIWARA PI. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis: a call for action[J]. The Lancet Infectious Diseases, 2017, 17(1): e21-e25.
    [2] NTIVUGURUZWA JB, MICHEL AL, KOLO FB, MWIKARAGO IE, NGABONZIZA JCS, van HEERDEN H. Prevalence of bovine tuberculosis and characterization of the members of the Mycobacterium tuberculosis complex from slaughtered cattle in Rwanda[J]. PLoS Neglected Tropical Diseases, 2022, 16(8): e0009964.
    [3] PALITTAPONGARNPIM P, TANTIVITAYAKUL P, AIEWSAKUN P, MAHASIRIMONGKOL S, JAEMSAI B. Genomic interactions between Mycobacterium tuberculosis and humans[J]. Annual Review of Genomics and Human Genetics, 2024, 25(1): 183-209.
    [4] NACHIAPPAN AC, RAHBAR K, SHI X, GUY ES, MORTANI BARBOSA EJ Jr, SHROFF GS, OCAZIONEZ D, SCHLESINGER AE, KATZ SI, HAMMER MM. Pulmonary tuberculosis: role of radiology in diagnosis and management[J]. Radiographics, 2017, 37(1): 52-72.
    [5] JUHONG J, PONGSACHAREONNONT PF, SOMKIJRUNGROJ T, MAVICHAK A, VARADISAI A, CHARIYAVILASKUL P, CHATSUWAN T, SUTTICHET TB, KULVICHIT K. The sterility, stability and efficacy of repackaged ziv-aflibercept for intravitreal administration[J]. Scientific Reports, 2022, 12(1): 2971.
    [6] WANG YZ, QU MJ, LIU YD, WANG HR, DONG YH, ZHOU XM. KLK12 regulates MMP-1 and MMP-9via bradykinin receptors: biomarkers for differentiating latent and active bovine tuberculosis[J]. International Journal of Molecular Sciences, 2022, 23(20): 12257.
    [7] 刘媛, 顾芮嘉, 邱衍伦, 李星龙, 李迎丽, 高洁莹, 肖虹. 基于同位素标记相对和绝对定量技术研究耐铬(Ⅵ)菌株CM01的蛋白定量组学[J]. 微生物学通报, 2020, 47(10): 3183-3195. LIU Y, GU RJ, QIU YL, LI XL, LI YL, GAO JY, XIAO H. Quantitative proteomic in hexavalent chromium resistance CM01 by isobaric tags for relative and absolute quantitation techniques (iTRAQ)[J]. Microbiology China, 2020, 47(10): 3183-3195(in Chinese).
    [8] 冯宇, 胡莉萍, 朱良全, 丁家波. 蛋白质组学技术在布鲁氏菌病研究中的应用及发展[J]. 微生物学通报, 2018, 45(1): 191-196. FENG Y, HU LP, ZHU LQ, DING JB. Advance in proteomic research and application for brucellosis[J]. Microbiology China, 2018, 45(1): 191-196(in Chinese).
    [9] 冯爽, 张立, 张丽霞. 蛋白质组学在结核病诊断中的研究进展[J]. 现代预防医学, 2014, 41(17): 3206-3207, 3210. FENG S, ZHANG L, ZHANG LX. Research progress on proteomics in diagnosis of tuberculosis[J]. Modern Preventive Medicine, 2014, 41(17): 3206-3207, 3210(in Chinese).
    [10] CLARK S, LANNI FY, MARINOVA D, RAYNER E, MARTIN C, WILLIAMS A. Revaccination of guinea pigs with the live attenuated Mycobacterium tuberculosis vaccine MTBVAC improves BCG’s protection against tuberculosis[J]. The Journal of Infectious Diseases, 2017, 216(5): 525-533.
    [11] ECKHARDT E, SCHINKÖTHE J, GISCHKE M, SEHL-EWERT J, CORLEIS B, DORHOI A, TEIFKE J, ALBRECHT D, GELUK A, GILLERON M, BASTIAN M. Phosphatidylinositol mannoside vaccination induces lipid-specific Th1-responses and partially protects guinea pigs from Mycobacterium tuberculosis challenge[J]. Scientific Reports, 2023, 13(1): 18613.
    [12] STOSMAN KI, ALEKSANDROV AG, SIVAK KV, BUZITSKAYA ZV, STUKOVA MA. Evaluation of the immunotoxicity and allergenicity of a new intranasal influenza vector vaccine against tuberculosis carrying TB10.4 and HspX antigens[J]. Iranian Journal of Basic Medical Sciences, 2023, 26(5): 558-563.
    [13] 高新桃, 贾红, 侯绍华, 杨宏军, 郭晓宇, 袁维峰, 姜一曈, 朱鸿飞, 鑫婷, 丁家波. 11种牛分枝杆菌抗原在牛结核病诊断中的初步评价[J]. 中国畜牧兽医, 2018, 45(8): 2282-2292. GAO XT, JIA H, HOU SH, YANG HJ, GUO XY, YUAN WF, JIANG YT, ZHU HF, XIN T, DING JB. Preliminary evaluation of eleven Mycobacterium bovis antigens in the diagnostic methods of bovine tuberculosis[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(8): 2282-2292(in Chinese).
    [14] ENCINAS M, MARFIL MJ, GARBACCIO S, BARANDIARAN S, HUERTAS P, MORSELLA C, MACÍAS A, MAGNANO G, ZAPATA L, BIGI F, CATALDI A, PAOLICCHI F, ZUMÁRRAGA M, EIRIN ME. Mycobacterium bovis ESAT-6, CFP-10 and EspC antigens show high conservation among field isolates[J]. Tuberculosis, 2018, 111: 143-146.
    [15] KANABALAN RD, LEE LJ, LEE TY, CHONG PP, HASSAN L, ISMAIL R, CHIN VK. Human tuberculosis and Mycobacterium tuberculosis complex: a review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery[J]. Microbiological Research, 2021, 246: 126674.
    [16] WELDINGH K, ROSENKRANDS I, OKKELS LM, DOHERTY TM, ANDERSEN P. Assessing the serodiagnostic potential of 35Mycobacterium tuberculosis proteins and identification of four novel serological antigens[J]. Journal of Clinical Microbiology, 2005, 43(1): 57-65.
    [17] BORSUK S, NEWCOMBE J, MENDUM TA, DELLAGOSTIN OA, McFADDEN J. Identification of proteins from tuberculin purified protein derivative (PPD) by LC-MS/MS[J]. Tuberculosis, 2009, 89(6): 423-430.
    [18] MEHAFFY C, HESS A, PRENNI JE, MATHEMA B, KREISWIRTH B, DOBOS KM. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis[J]. Proteomics, 2010, 10(10): 1966-1984.
    [19] ROPERTO S, VARANO M, RUSSO V, LUCÀ R, CAGIOLA M, GASPARI M, CECCARELLI DM, CUDA G, ROPERTO F. Proteomic analysis of protein purified derivative of Mycobacterium bovis[J]. Journal of Translational Medicine, 2017, 15(1): 68.
    [20] INFANTES-LORENZO JA, MORENO I, RISALDE MLÁ, ROY Á, VILLAR M, ROMERO B, IBARROLA N, deLa FUENTE J, PUENTES E, de JUAN L, GORTÁZAR C, BEZOS J, DOMÍNGUEZ L, DOMÍNGUEZ M. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis[J]. Clinical Proteomics, 2017, 14: 36.
    [21] TAZERART F, SAAD J, NIAR A, SAHRAOUI N, DRANCOURT M. Mycobacterium bovis pulmonary tuberculosis, Algeria[J]. Emerging Infectious Diseases, 2021, 27(3): 972-974.
    [22] WIKER HG, LYASHCHENKO KP, AKSOY AM, LIGHTBODY KA, POLLOCK JM, KOMISSARENKO SV, BOBROVNIK SO, KOLESNIKOVA IN, MYKHALSKY LO, GENNARO ML, HARBOE M. Immunochemical characterization of the MPB70/80 and MPB83 proteins of Mycobacterium bovis[J]. Infection and Immunity, 1998, 66(4): 1445-1452.
    [23] SARKAR S, SWAMI S, SONI SK, HOLIEN JK, KHAN A, KORWAR AM, LIKHITE AP, JOSHI RA, JOSHI RR, SARKAR D. Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols[J]. Molecular Diversity, 2022, 26(5): 2535-2548.
    [24] VALIZADEH A, IMANI FOOLADI AA, SEDIGHIAN H, MAHBOOBI M, GHOLAMI PARIZAD E, BEHZADI E, KHOSRAVI A. Evaluating the performance of PPE44, HSPX, ESAT-6 and CFP-10 factors in tuberculosis subunit vaccines[J]. Current Microbiology, 2022, 79(9): 260.
    [25] CARROLL MV, SIM RB, BIGI F, JÄKEL A, ANTROBUS R, MITCHELL DA. Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG[J]. Protein & Cell, 2010, 1(9): 859-870.
    [26] SENGUPTA S, NAZ S, DAS I, AHAD A, PADHI A, NAIK SK, GANGULI G, PATTANAIK KP, RAGHAV SK, NANDICOORI VK, SONAWANE A. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages[J]. Journal of Biological Chemistry, 2017, 292(17): 6855-6868.
    [27] WANG YC, TANG YT, LIN C, ZHANG JL, MAI JT, JIANG J, GAO XX, LI Y, ZHAO GP, ZHANG L, LIU J. Crosstalk between the ancestral type VII secretion system ESX-4 and other T7SS in Mycobacterium marinum[J]. iScience, 2022, 25(1): 103585.
    [28] SHAHZAD MI, SHAHID N, SIAL N, HASANAT A, KHALID M, YOUSAF M, HYDER Z, ASHFAQ M, RIVERA G, KHANUM A. Evaluation of DNA vaccines encoding M. Tb gene Bfrb and Mpt32 in mice model[J]. Pakistan Journal of Pharmaceutical Sciences, 2017, 30, 5(Suppl): 2025-2029.
    [29] OBOZOVA TA, ARTEM’EV MI, BARANOVSKIĬ PM, SMETANINA SE, KISELEV VI. Correlation between the expression of Rv3286c, Rv2626c, Rv2031c, AND Rv3133c and the tolerance of Mycobacterium bovis BCG to rifampicin and metronidazole in different physiological conditions[J]. Problemy Tuberkuleza i Boleznei Legkikh, 2005(2): 34-36.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

辛凌翔,孙伟峰,王楠,李俊平,朱良全,王豪杰,徐磊,郭鑫. 牛分枝杆菌分子标识物的筛选及在豚鼠体内的评价[J]. 微生物学通报, 2025, 52(2): 623-631

复制
分享
文章指标
  • 点击次数:45
  • 下载次数: 56
  • HTML阅读次数: 53
  • 引用次数: 0
历史
  • 收稿日期:2024-08-31
  • 录用日期:2024-12-31
  • 在线发布日期: 2025-02-22
  • 出版日期: 2025-02-20
文章二维码