科微学术

微生物学通报

脱氮硫杆菌改良的耐热诱变及其诱变特性
作者:
基金项目:

高校产学研联合创新项目(JDYT-rfhg-2022-JS-1872)


Improved mutagenesis and mutagenic characteristics of thermotolerant strains of Thiobacillus denitrificans
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】菌种诱变尤其是化学诱变已有诸多报道,应用十分广泛,但大多都为常规诱变。这样的诱变通常不对细胞做任何特殊处理,诱变过程随机、诱变不可控,导致诱变效率低下。【目的】筛选出耐热的同步脱硫脱氮菌株,对菌种进行改良的耐热诱变,同时对诱变剂进入细胞内外的情况进行较为详细的探讨。【方法】以脱氮硫杆菌(Thiobacillus denitrificans)为研究对象,对其同时进行常规诱变和改良的耐热诱变。在改良的诱变中,诱变之前需先采用哌嗪-1,4-二乙磺酸(piperazine-1,4-diethylsulfonic acid, PESA)法将对数生长期的细胞处理成易感态,以此改变细胞膜的透过性,然后分别加入不同体积(0.5‰−3.0‰)的诱变剂硫酸二乙酯(diethyl sulfate, DES),在设定温度45 ℃诱变20 min。在突变株的筛选上采用升温培养的方式在47 ℃测试其耐热能力和脱硫脱氮性能,以得到真正的耐热突变株。另一方面,在菌株诱变的同时,利用S2O32−可终止DES诱变的特性对诱变剂在细胞内外的分布状况进行分析,对不同方案下的实验结果进行较为深入的探讨。【结果】在得到耐热的同步脱硫脱氮高性能突变株的同时,通过两种方案的对比实验,证实了改变细胞膜透过性对诱变剂进入细胞内有明显的促进作用。达到同样的诱变效果所需诱变剂的剂量中,改良的耐热诱变约为常规诱变的1/10−1/9;诱变剂进入胞内的比率中,前者约占DES加入总量的41.8%−40.4%左右,而后者仅占5.6%−4.4%;细菌的正突变率可能与进入胞内的诱变剂剂量密切相关,改良的诱变中进入胞内的DES剂量更适合于得到较高的正突变率,但诱变剂剂量不能决定单个突变如突变株的耐热性、硫化物高去除率等在哪种情况下或何时发生;证实了诱变剂进入胞内的最大剂量取决于细胞自身的承载能力,与诱变方案无关。产物分析实验表明,S2O32−可用于终止DES诱变。【结论】对细胞先进行易感态处理后诱变,再通过升温复筛,最终得到7株耐热能力提高的脱硫脱氮高性能突变株,为菌种诱变的相关研究提供新思路。

    Abstract:

    [Background] Extensive studies have been carried out on strain mutagenesis, especially chemical mutagenesis, in strain breeding. However, most of these studies employ conventional mutagenesis, which usually does not involve any special treatment of target cells and has low mutagenic efficiency due to random and uncontrollable mutagenic process. [Objective] To screen thermotolerant strains for simultaneous sulfide and nitrate removal, we improved the mutagenic scheme on the target strain and studied the entry of mutagen into the cells. [Methods] Both conventional mutagenesis and improved mutagenesis were carried out for Thiobacillus denitrificans. In the improved mutagenesis, piperazine-1,4-diethylsulfonic acid (PESA) was used to treat the exponential-phase cells into a susceptible state before mutagenesis to change the permeability of cytoplasmic membrane, and then different volumes (0.5‰–3.0‰) of the mutagen diethyl sulfate (DES) were separately added into the cell suspension for mutagenesis at a set temperature of 45 ℃ for 20 min. The thermotolerance and sulfide and nitrate removal performance were tested at 47 ℃ to obtain the thermotolerant mutants. During the process of strain mutagenesis, we used S2O32−, which could terminate DES mutagenesis, to observe the distribution of mutagen inside and outside the cells and compared the experimental results under different mutagenic schemes. [Results] We obtained the thermotolerant mutants capable of simultaneously removing sulfide and nitrate. The comparison of the two mutagenic schemes proved that changing the permeability of cytoplasmic membrane promoted the entry of mutagen into the cells. To achieve the same mutagenic effect, the improved mutagenesis only needed 1/10–1/9 of mutagen required by conventional mutagenesis. The percentage of mutagen entering the cells was 41.8%–40.4% of the total DES added in the improved mutagenesis and only 5.6%–4.4% in the conventional mutagenesis. The forward mutation efficiency might be closely related to the dosage of mutagen entering the cells, and the dosage in the improved mutagenesis was more suitable for achieving higher forward mutation efficiency. However, the dosage of mutagen did not determine under which circumstance or when individual mutation, such as thermotolerance or higher sulfide removal efficiency of mutants, probably occurred. The maximum dosage of mutagen entering cells depended on cell’s loading capacity and was independent of mutagenic schemes. The product analysis showed that S2O32− could be used to terminate the mutagenesis triggered by DES. [Conclusion] After treating the cells into a susceptible state, mutagenesis was carried out. And then through temperature-rise screening, 7 thermotolerant mutants with high-performance for sulfide and nitrate removal were obtained, providing new ideas for research on strain mutagenesis.

    参考文献
    [1] 谭燕, 程杰成, 屈睿, 吴晓磊. 油井采出液中硝酸盐还原菌的分离培养及对硫酸盐还原的抑制[J]. 应用与环境生物学报, 2007, 13(3): 390-394. TAN Y, CHENG JC, QU R, WU XL. Isolation of Nitrate reducing bacteria from oilfield produced water and their inhibition to sulfate production[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13(3): 390-394(in Chinese).
    [2] 李乐卓, 王三反, 吴楠, 周键, 陈霞. 采用化学非均相催化工艺处理油田含硫废水[J]. 中国给水排水, 2015, 31(4): 102-104. LI LZ, WANG SF, WU N, ZHOU J, CHEN X. Chemical heterogeneous catalysis process for treatment of sulfur containing wastewater from oilfield[J]. China Water & Wastewater, 2015, 31(4): 102-104(in Chinese).
    [3] D’AQUINO A, KALINAINEN N, AUVINEN H, ANDREOTTOLA G, PUHAKKA JA, PALMROTH MRT. Effects of inorganic ions on autotrophic denitrification by Thiobacillus denitrificans and on heterotrophic denitrification by an enrichment culture[J]. The Science of the Total Environment, 2023, 901: 165940.
    [4] 徐金兰, 薛淑君, 曹泽壮, 巩丽霞, 曹芬. 富硫废水中稳定生物单质硫效果与机制研究[J]. 工业水处理, 2024, 44(9): 67-74. XU JL, XUE SJ, CAO ZZ, GONG LX, CAO F. Mechanism and effect insight on stabilizing biological S0 in sulfur-rich wastewater[J]. Industrial Water Treatment, 2024, 44(9): 67-74(in Chinese).
    [5] RAMÍREZ M, GÓMEZ JM, AROCA G, CANTERO D. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology, 2009, 100(21): 4989-4995.
    [6] CHEN HR, ZHANG DR, NIE ZY, XIA JL, LI Q, ZHANG RY, YIN HH, PAKOSTOVA E. Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2022, 212: 105908.
    [7] 周德庆. 微生物学教程[M]. 4版. 北京: 高等教育出版社, 2020. ZHOU DQ. Microbiology Tutorial[M]. 4th ed. Beijing: Higher Education Press, 2020(in Chinese).
    [8] 周永璋, 曾建民, 张坚. 油井采出液成分与温度对Q235钢腐蚀行为的影响[J]. 机械工程材料, 2008, 32(12): 25-28. ZHOU YZ, ZENG JM, ZHANG J. Effect of component and temperature of the oil-well produced water on corrosion behavior of Q235 steel[J]. Materials for Mechanical Engineering, 2008, 32(12): 25-28(in Chinese).
    [9] 沈萍, 陈向东. 微生物学[M]. 8版. 北京: 高等教育出版社, 2016. SHEN P, CHEN XD. Microbiology[M]. 8th ed. Beijing: Higher Education Press, 2016(in Chinese).
    [10] WANG JL, CHEN PZ, LI SP, ZHENG XQ, ZHANG CX, ZHAO WJ. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24[J]. Bioresource Technology, 2022, 361: 127692.
    [11] HUANG YT, WANG LY, ZHANG X, SU N, LI HP, ODA Y, XING XH. Quantitative evaluation of DNA damage caused by atmospheric and room-temperature plasma (ARTP) and other mutagenesis methods using a rapid umu-microplate test protocol for microbial mutation breeding[J]. Chinese Journal of Chemical Engineering, 2021, 39: 205-210.
    [12] 王筱. 紫外-NTG复合诱变获得四霉素高产菌株及其高产机制研究[D]. 长春: 吉林化工学院硕士学位论文, 2024. WANG X. Study on the high yield of tetramycin by UV-NTG combined mutagenesis and its mechanism[D]. Changchun: Master’s Thesis of Jilin Institute of Chemical Technology, 2024(in Chinese).
    [13] 丁明孝, 王喜忠, 张传茂, 陈建国. 细胞生物学[M]. 5版. 北京: 高等教育出版社, 2020. DING MX, WANG XZ, ZHANG CM, CHEN JG. Cell Biology[M]. 5th ed. Beijing: Higher Education Press, 2020(in Chinese).
    [14] 李冰, 齐欢, 张成宏, 张绍勇, 张立钦, 向文胜, 王继栋. 乙基伊维菌素高产菌株选育及其发酵工艺优化[J]. 农药学学报, 2022, 24(6): 1434-1445. LI B, QI H, ZHANG CH, ZHANG SY, ZHANG LQ, XIANG WS, WANG JD. Breeding of high-yield strains for producing ethyl ivermectin and the optimization of the fermentation process[J]. Chinese Journal of Pesticide Science, 2022, 24(6): 1434-1445(in Chinese).
    [15] 章魁普. 盐霉素高产菌种诱变育种和双组份系统RspA1/A2全局调控机理研究[D]. 上海: 华东理工大学博士学位论文, 2020. ZHANG KP. Study on mutagenesis screening of high-yield salinomycin mutant and the global regulation mechanism of two-component system RspA1/A2 in Streptomyces albus[D]. Shanghai: Doctoral Dissertation of East China University of Science and Technology, 2020(in Chinese).
    [16] 吴新世, 冯澳, 曹韩源. 一种用无机质固体培养基筛选脱硫反硝化自养型菌株的方法: CN113444667B[P]. 2022-11-01. WU XS, FENG A, CAO HY. Method for screening desulfurization and denitrification autotrophic strain by using inorganic substance solid culture medium: CN113444667B[P]. 2022-11-01(in Chinese).
    [17] 郭姣洁, 薛永常, 徐书景, 马书娜, 鞠建松. 热激后冰浴时间与复苏时间对化学转化法转化效率的影响[J]. 安徽农业科学, 2011, 39(9): 5041-5042. GUO JJ, XUE YC, XU SJ, MA SN, JU JS. Effects of the ice bath time after heat shock and the recovery time on the transformation efficiency of chemical transformation[J]. Journal of Anhui Agricultural Sciences, 2011, 39(9): 5041-5042(in Chinese).
    [18] 刘俊梅, 王庆, 王丹, 杨盼盼, 丁伟, 朴春红, 王玉华, 于寒松. 紫外线和硫酸二乙酯复合诱变选育PHB高产菌株[J]. 微生物学通报, 2016, 43(10): 2242-2248. LIU JM, WANG Q, WANG D, YANG PP, DING W, PIAO CH, WANG YH, YU HS. Mutagenesis of poly-β-hydroxybutyric acid producing strain by UV and diethyl sulfate[J]. Microbiology China, 2016, 43(10): 2242-2248(in Chinese).
    [19] 熊建华. 紫外分光光度法测定溶液中硫代硫酸钠含量[J]. 医药导报, 2004, 23(11): 866. XIONG JH. Determination of sodium thiosulfate in solution by ultraviolet spectrophotometry[J]. Herald of Medicine, 2004, 23(11): 866(in Chinese).
    [20] NOZARI-ASBEMARZ M, ABBASI-AHD A, SHOKOUFI N. Headspace single-drop microextraction combined with nanodrop spectrophotometry for ultra-trace detection of ethanethiol using a suspended drop of AuNPs as a plasmonic sensor[J]. Journal of Sulfur Chemistry, 2023, 44(5): 588-601.
    [21] 中华人民共和国生态环境部. 水质硫化物的测定亚甲基蓝分光光度法: HJ 1226—2021[S]. 北京: 中国环境科学出版社, 2022. Ministry of Ecology and Environment of P. R. C. Water quality—Determination of sulfide—Methylene blue spectrophotometric method: HJ 1226—2021[S]. Beijing: China Environmental Science Press, 2022(in Chinese).
    [22] XIA MW, YANG Y, XU R, LI CW, CUI CB. A new polyketide purpurogenic acid: the activated production of polyketides by the diethyl sulphate mutagenesis of marine-derived Penicillium purpurogenum G59[J]. Natural Product Research, 2019, 33(1): 89-94.
    [23] 褚帅北, 胡文婷, 惠丰立. ARTP-DES复合诱变结合前体耐受性选育达托霉素高产菌株[J]. 精细化工, 2023, 40(9): 1969-1975, 2002. CHU SB, HU WT, HUI FL. Selective breeding of high daptomycin-producing strain by ARTP-DES complex mutagenesis combined with precursor tolerance[J]. Fine Chemicals, 2023, 40(9): 1969-1975, 2002(in Chinese).
    [24] 李雅华, 张启航, 王姣, 安东, 刘新. 产IAA菌株的UV和DES诱变筛选及培养条件优化[J]. 核农学报, 2020, 34(9): 1873-1880. LI YH, ZHANG QH, WANG J, AN D, LIU X. Screening of IAA-producing strains by UV and DES mutagenesis and optimization of culture conditions[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(9): 1873-1880(in Chinese).
    [25] KIM AH, SHIN C, CRIDDLE CS. Membrane-aerated biofilm reactor enabling simultaneous removal of ammonium and sulfide from a simulated anaerobic secondary effluent[J]. International Biodeterioration & Biodegradation, 2024, 188: 105747.
    [26] MA YL, YANG BL, ZHAO JL. Removal of H2S by Thiobacillus denitrificans immobilized on different matrices[J]. Bioresource Technology, 2006, 97(16): 2041-2046.
    [27] 李庆伟, 徐静, 李瑶. 热休克蛋白进化及生物学功能研究进展[J]. 辽宁师范大学学报(自然科学版), 2024, 47(1): 78-85. LI QW, XU J, LI Y. Research progress on function and evolution of heat shock protein[J]. Journal of Liaoning Normal University (Natural Science Edition), 2024, 47(1): 78-85(in Chinese).
    [28] 盛祖嘉. 微生物遗传学[M]. 3版. 北京: 科学出版社, 2007. SHENG ZJ. Microbial genetics[M]. 3rd ed. Beijing: Science Press, 2007(in Chinese).
    [29] 孙月, 陈柯序, 王凯权, 楼菊青, 王如意, 李强标, 蔡靖. 亚硝酸盐型同步脱氮除硫工艺单质硫产率及特性[J]. 中国环境科学, 2021, 41(3): 1228-1233. SUN Y, CHEN KX, WANG KQ, LOU JQ, WANG RY, LI QB, CAI J. Yield and characteristics of elemental sulfur in the process of simultaneous nitrite and sulfide removal[J]. China Environmental Science, 2021, 41(3): 1228-1233(in Chinese).
    [30] 刘怀珠, 于慧艳, 胡彬彬, 赵亮, 赵康宁, 朱广斌, 吴新世. 分段递进式除硫工艺对油井采出含硫废水的处理研究[J]. 工业水处理, 2024, 44(7): 171-178. LIU HZ, YU HY, HU BB, ZHAO L, ZHAO KN, ZHU GB, WU XS. Research on the treatment of sulfide-containing wastewater from oilwell production using segmented progressive sulfide removal process[J]. Industrial Water Treatment, 2024, 44(7): 171-178(in Chinese).
    [31] 王兵, 王丹, 李永涛, 任宏洋, 岳丞, 罗东宁, 林奇. 基于单质硫回收的高含硫废水氧化[J]. 环境工程学报, 2015, 9(11): 5408-5414. WANG B, WANG D, LI YT, REN HY, YUE C, LUO DN, LIN Q. Oxidation of high concentration sulfide wastewater based on elemental sulfur recovery[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5408-5414(in Chinese).
    [32] JANSSEN A, DE KEIZER A, van AELST A, FOKKINK R, YANGLING H, LETTINGA G. Surface characteristics and aggregation of microbiologically produced sulphur particles in relation to the process conditions[J]. Colloids and Surfaces B: Biointerfaces, 1996, 6(2): 115-129.
    [33] 王凯权. 基于高单质硫产率的亚硝酸盐型同步脱氮除硫工艺研究[D]. 杭州: 浙江工商大学, 2022. WANG KQ. Performance of simultaneous nitrite and sulfide removal process based on high elemental sulfur yield[D]. Hangzhou: Zhejiang Gongshang University, 2022(in Chinese).
    [34] 张克旭, 陈宁, 张蓓, 赵桂仙. 代谢控制发酵[M]. 北京: 中国轻工业出版社, 2010. ZHANG KX, CHEN N, ZHANG B, ZHAO GX. Metabolic Control Fermentation[M]. Beijing: China Light Industry Press, 2010(in Chinese).
    [35] LIU CS, ZHAO DF, YAN LH, WANG AJ, GU YY, LEE DJ. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria[J]. Bioresource Technology, 2015, 191: 332-336.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘怀珠,于慧艳,胡彬彬,姚永红,张洋,赵亮,朱广斌,吴新世. 脱氮硫杆菌改良的耐热诱变及其诱变特性[J]. 微生物学通报, 2025, 52(1): 168-185

复制
分享
文章指标
  • 点击次数:56
  • 下载次数: 79
  • HTML阅读次数: 73
  • 引用次数: 0
历史
  • 收稿日期:2024-04-07
  • 录用日期:2024-05-16
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码