科微学术

微生物学通报

典型短链烯烃的微生物降解转化机制研究进展
作者:
基金项目:

国家重点研发计划(2023YFE0122000);国家自然科学基金(42177220,42377133)


Research progress in the microbial degradation and transformation mechanisms of typical short-chain alkenes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [95]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    烯烃是一类含有碳-碳双键的不饱和烃类物质,广泛存在于自然过程和人为活动中。结构的差异导致不同烯烃具有不同的功能和特点。例如,乙烯是植物生长发育的基本调节物质;丙烯是工业制造聚丙烯和丙烯腈的关键原料;1,3-丁二烯主要用于合成橡胶和塑料,是一级致癌物;而异戊二烯是排放产量最大的非甲烷生物源挥发性有机物,对全球气候变化具有重要影响。微生物在烯烃的降解与转化中起着关键作用,研究这些微生物的作用有助于更好地理解烯烃在环境中的寿命、归趋及影响,这对于地球化学循环的研究及污染场地的修复具有重要意义。本文首先总结了5种典型短链烯烃(乙烯、丙烯、丁烯、1,3-丁二烯、异戊二烯)的微生物好氧与厌氧的降解和转化的机制,发现烯烃降解菌株的分布十分广泛,涵盖多个微生物分类,但微生物对不同烯烃的降解具有一定的共性。例如,在有氧条件下,短链烯烃通常首先被烯烃单加氧酶氧化,生成的产物随后与辅酶M或谷胱甘肽结合后,经过一系列酶促转化后最终进入微生物的中心代谢途径。而在无氧条件下,短链烯烃则可被产乙酸菌、产甲烷菌等微生物通过加氢反应进行转化。通过总结微生物对常见短链烯烃的降解和转化机制,旨在强调微生物在烯烃污染场地生物修复中的重要作用,并加深对微生物在地球化学循环和全球气候变化中贡献的理解,以此推动可持续发展和资源的有效利用。

    Abstract:

    Alkenes, unsaturated hydrocarbons with carbon-carbon double bonds, are emitted in large quantities through both natural and anthropogenic processes. These compounds exhibit diverse functions and characteristics due to variations in their structures. Ethylene, for instance, is a crucial regulator of plant growth, while propylene serves as the primary raw material for the industrial production of polypropylene and acrylonitrile. However, some alkenes pose environmental and health risks. 1,3-butadiene, used in the manufacturing of synthetic rubber and plastics, is a known carcinogen. Isoprene, the most abundant non-methane biogenic volatile organic compound, significantly impacts global climate change. Microorganisms play a critical role in the environmental fate of alkenes by mediating their degradation and transformation. Understanding these microbial processes is essential for elucidating the flow of alkenes in the environment and their impacts on geochemical cycles. Furthermore, this knowledge holds great promise for the bioremediation of alkene-contaminated sites. This paper comprehensively reviews the aerobic and anaerobic microbial degradation and transformation mechanisms of five prevalent short-chain alkenes: ethylene, propylene, butene, 1,3-butadiene, and isoprene. Alkene-degrading strains are widely distributed across multiple phyla. Despite the structural differences among alkenes, their microbial degradation pathways share common features. For example, under oxic conditions, short-chain alkenes are typically oxidized by alkene monooxygenases, the products of which are then conjugated with coenzyme M or glutathione. After a series of enzymatic transformations, they ultimately enter the central metabolic pathways of microorganisms. Under anoxic conditions, short-chain alkenes can be transformed by acetogens, methanogens, and other microorganisms via hydrogenation reactions. By elucidating the mechanisms of microbial degradation and transformation of common short-chain alkenes, this study emphasizes the crucial role of microorganisms in bioremediation efforts at alkene-contaminated sites. Moreover, it contributes to a deeper understanding of microbial influences on geochemical cycles and global climate change, ultimately promoting sustainable development and efficient resource utilization.

    参考文献
    [1] SCHÄFER F, MUZICA L, SCHUSTER J, TREUTER N, ROSELL M, HARMS H, MÜLLER RH, ROHWERDER T. Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp.[J]. Applied and Environmental Microbiology, 2011, 77(17): 5981-5987.
    [2] KOTTEGODA WGSS. Alkene and alkane oxidation by the 2-methylpropene-metabolizing strain Mycobacterium sp. ELW1[D]. Raleigh: Doctoral Dissertation of North Carolina State University, 2014.
    [3] SCHRLAU JE. Transformation of phenanthrene by Mycobacterium sp. ELW1 and the formation of toxic metabolites[D]. Corvallis: Doctoral Dissertation of Oregon State University, 2016.
    [4] PISARENKO EV, PONOMAREV AB, SMIRNOV AV, PISARENKO VN, SHEVCHENKO AA. Prospects for progress in developing production processes for the synthesis of olefins based on light alkanes[J]. Theoretical Foundations of Chemical Engineering, 2022, 56(5): 687-722.
    [5] KOSKINEN M, PLNÁ K. Specific DNA adducts induced by some mono-substitued epoxides in vitro and in vivo[J]. Chemico-Biological Interactions, 2000, 129(3): 209-229.
    [6] WORLD HEALTH ORGANIZATION, INTERNATIONAL AGENCY FOR RESEARCH ON CANCER[R]. 2020. https://www.iarc.who.int/featured-news/new-world-cancer-report/.
    [7] KOMATSU T, MOMONOI K, MATSUO T, HANAKI K. Biotransformation of Cis-1,2-dichloroethylene to ethylene and ethane under anaerobic conditions[J]. Water Science and Technology, 1994, 30(7): 75-84.
    [8] BOLT HM. The carcinogenic risk of ethene (ethylene)[J]. Toxicologic Pathology, 1998, 26(3): 454-456.
    [9] WALKER VE, WU KY, UPTON PB, RANASINGHE A, SCHELLER N, CHO MH, VERGNES JS, SKOPEK TR, SWENBERG JA. Biomarkers of exposure and effect as indicators of potential carcinogenic risk arising from in vivo metabolism of ethylene to ethylene oxide[J]. Carcinogenesis, 2000, 21(9): 1661-1669.
    [10] LI L, ZHANG D, HU W, YANG Y, ZHANG SD, YUAN R, LV PJ, ZHANG WD, ZHANG Y, ZHANG YH. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: a case study through atmospheric measurement and emission inventory[J]. Science of the Total Environment, 2023, 865: 161235.
    [11] CHERNYAK SA, CORDA M, DATH JP, ORDOMSKY VV, KHODAKOV AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook[J]. Chemical Society Reviews, 2022, 51(18): 7994-8044.
    [12] GHANTA M, FAHEY D, SUBRAMANIAM B. Environmental impacts of ethylene production from diverse feedstocks and energy sources[J]. Applied Petrochemical Research, 2014, 4(2): 167-179.
    [13] HARTMANS S, de BONT JAM, HARDER W. Microbial metabolism of short-chain unsaturated hydrocarbons[J]. FEMS Microbiology Letters, 1989, 63(3): 235-264.
    [14] MATTES TE, ALEXANDER AK, COLEMAN NV. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution[J]. FEMS Microbiology Reviews, 2010, 34(4): 445-475.
    [15] ADRIAN L, LOEFFLER FE. Organohalide respiring bacteria[M]. Berlin: Springer, 2016.
    [16] DEPAEPE T, van der STRAETEN D. Tools of the ethylene trade: a chemical kit to influence ethylene responses in plants and its use in agriculture[J]. Small Methods, 2020, 4(8): 1900267.
    [17] XU JX, YUAN Y, WU XF. Ethylene as a synthon in carbonylative synthesis[J]. Coordination Chemistry Reviews, 2023, 477: 214947.
    [18] 沈家涛, 金雅芳, 李金灵, 胡仲远, 徐强, 陈学好, 齐晓花. 植物激素调控植物耐涝响应机理研究进展[J]. 植物生理学报, 2022, 58(4): 643-653. SHEN JT, JIN YF, LI JL, HU ZY, XU Q, CHEN XH, QI XH. The role of plant hormone in plant waterlogging tolerance[J]. Plant Physiology Journal, 2022, 58(4): 643-653(in Chinese).
    [19] JONES B. Ethylene as a plant hormone: applications and mechanisms[J]. Journal of Plant Growth Regulation, 2021, 40: 543-556.
    [20] FRANCO B, CLARISSE L, van DAMME M, HADJI-LAZARO J, CLERBAUX C, COHEUR PF. Ethylene industrial emitters seen from space[J]. Nature Communications, 2022, 13(1): 6452.
    [21] XUAN LC, MA YN, XING YF, MENG QQ, SONG J, CHEN TH, WANG H, WANG PJ, ZHANG YF, GAO P. Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in Harbin, China[J]. Environmental Pollution, 2021, 270: 116074.
    [22] LV Z, LIU XY, BAI HH, NIE L, LI GH. Process-specific volatile organic compounds emission characteristics, environmental impact and health risk assessments of the petrochemical industry in the Beijing-Tianjin-Hebei region[J]. Environmental Science and Pollution Research, 2024, 31(3): 3938-3950.
    [23] MORGOTT DA. Anthropogenic and biogenic sources of ethylene and the potential for human exposure: a literature review[J]. Chemico-Biological Interactions, 2015, 241: 10-22.
    [24] LANG V, SCHNEIDER V, PUHLMANN H, SCHENGEL A, SEITZ S, SCHACK-KIRCHNER H, SCHÄFFER J, MAIER M. Spotting ethylene in forest soils: what influences the occurrence of the phytohormone?[J]. Biology and Fertility of Soils, 2023, 59(8): 953-972.
    [25] SMITH A. Ethylene production and applications[J]. Industrial Chemistry, 2022, 45: 134-145.
    [26] ERRAGUNTLA NK, GRANT RL. Health- and vegetative-based effect screening values for ethylene[J]. Chemico-Biological Interactions, 2015, 241: 87-93.
    [27] HEBERT RM, JACKOVITZ AM. Wildlife toxicity assessment for ethylene[M]//Wildlife Toxicity Assessments for Chemicals of Military Concern. Amsterdam: Elsevier, 2015: 465-471.
    [28] KIRMAN CR, ALBERTINI RJ, SWEENEY LM, GARGAS ML. 1,3-butadiene: I. Review of metabolism and the implications to human health risk assessment[J]. Critical Reviews in Toxicology, 2010, 40(Suppl 1): 1-11.
    [29] FINDLAY M, SMOLER DF, FOGEL S, MATTES TE. Aerobic vinyl chloride metabolism in groundwater microcosms by methanotrophic and etheneotrophic bacteria[J]. Environmental Science & Technology, 2016, 50(7): 3617-3625.
    [30] BROWN C. Aerobic degradation of ethylene and its environmental implications[J]. Environmental Science and Technology, 2023, 5(8): 45-58.
    [31] SHENNAN JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(3): 237-256.
    [32] HARTMANS S, WEBER FJ, SOMHORST DPM, de BONT JAM. Alkene monooxygenase from Mycobacterium: a multicomponent enzyme[J]. Journal of General Microbiology, 1991, 137(11): 2555-2560.
    [33] de BONT JAM, ATTWOOD MM, PRIMROSE SB, HARDER W. Epoxidation of short chain alkenes in Mycobacterium E20: the involvement of a specific mono-oxygenase[J]. FEMS Microbiology Letters, 1979, 6(3): 183-188.
    [34] WOODLAND MP, MATTHEWS CS, LEAK DJ. Properties of a soluble propene monooxygenase from Mycobacterium sp. (strain M156)[J]. Archives of Microbiology, 1995, 163(3): 231-234.
    [35] WEBER FJ, van BERKEL WJ, HARTMANS S, de BONT JA. Purification and properties of the NADH reductase component of alkene monooxygenase from Mycobacterium strain E3[J]. Journal of Bacteriology, 1992, 174(10): 3275-3281.
    [36] CHUANG AS, JIN YO, SCHMIDT LS, LI YL, FOGEL S, SMOLER D, MATTES TE. Proteomic analysis of ethene-enriched groundwater microcosms from a vinyl chloride-contaminated site[J]. Environmental Science & Technology, 2010, 44(5): 1594-1601.
    [37] LEE D. Microbial ethylene degradation in contaminated sites[J]. Applied Microbiology and Biotechnology, 2022, 107: 1701-1712.
    [38] ZHANG H. Development of EtnABCDE as a functional gene biomarker for ethylene degradation[J]. Bioremediation Journal, 2024, 33: 205-220.
    [39] WHELAN JK, HUNT JM, BERMAN J. Volatile C1–C7 organic compounds in surface sediments from Walvis Bay[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1767-1785.
    [40] de BRUIN WP, KOTTERMAN MJ, POSTHUMUS MA, SCHRAA G, ZEHNDER AJ. Complete biological reductive transformation of tetrachloroethene to ethane[J]. Applied and Environmental Microbiology, 1992, 58(6): 1996-2000.
    [41] KOMATSU T, SHINMYO J, MOMONOI K. Reductive transformation of tetrachloroethylene to ethylene and ethane by an anaerobic filter[J]. Water Science and Technology, 1997, 36(6/7): 125-132.
    [42] KOENE-COTTAAR FHM, SCHRAA G. Anaerobic reduction of ethene to ethane in an enrichment culture[J]. FEMS Microbiology Ecology, 1998, 25(3): 251-256.
    [43] BRADLEY PM, CHAPELLE FH. Microbial mineralization of ethene under sulfate-reducing conditions[J]. Bioremediation Journal, 2002, 6(1): 1-8.
    [44] FULLERTON H, CRAWFORD M, BAKENNE A, FREEDMAN DL, ZINDER SH. Anaerobic oxidation of ethene coupled to sulfate reduction in microcosms and enrichment cultures[J]. Environmental Science & Technology, 2013, 47(21): 12374-12381.
    [45] PHUNG TK, Le MINH PHAM T, VU KB, BUSCA G. (bio)propylene production processes: a critical review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105673.
    [46] RODRIGUEZ VDF, GUILLEN GG, CHACHUAT B. What is the true cost of producing propylene from methanol? The role of externalities[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3072-3081.
    [47] SHEN Q, GU J, SHANG L. Carbon emissions and low-carbon development in lefin industry[J]. Environmental Research, 2024, 244: 117841.
    [48] van GINKEL CG, de BONT JAM. Isolation and characterization of alkene-utilizing Xanthobacter spp.[J]. Archives of Microbiology, 1986, 145(4): 403-407.
    [49] MIURAN A, DALTON H. Purification and characterization of the alkene monooxygenase from Nocardia corallina B-276[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(5): 853-859.
    [50] GALLAGHER SC, GEORGE A, DALTON H. Sequence-alignment modelling and molecular docking studies of the epoxygenase component of alkene monooxygenase from Nocardia corallina B-276[J]. European Journal of Biochemistry, 1998, 254(3): 480-489.
    [51] ENSIGN SA, HYMAN MR, ARP DJ. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain[J]. Applied and Environmental Microbiology, 1992, 58(9): 3038-3046.
    [52] KOZIOLLEK P, BRYNIOK D, KNACKMUSS HJ. Ethene as an auxiliary substrate for the cooxidation of Cis-1,2-dichloroethene and vinyl chloride[J]. Archives of Microbiology, 1999, 172(4): 240-246.
    [53] MALAKHOVA DV, EGOROVA MA, LEONTIEVA MR, ELCHENINOV AG, PANOVA TV, ALEKSANDROV YD, TSAVKELOVA EA. Anaerobic microbial degradation of polypropylene and polyvinyl chloride samples[J]. Microbiology, 2023, 92(1): 83-93.
    [54] DÍAZ VELÁZQUEZ H, LIKHANOVA N, ALJAMMAL N, VERPOORT F, MARTÍNEZ-PALOU R. New insights into the progress on the isobutane/butene alkylation reaction and related processes for high-quality fuel production. A critical review[J]. Energy & Fuels, 2020, 34(12): 15525-15556.
    [55] van GINKEL CG, WELTEN HGJ, de BONT JAM. Epoxidation of alkenes by alkene-grown Xanthobacter spp.[J]. Applied Microbiology and Biotechnology, 1986, 24(4): 334-337.
    [56] van GINKEL CG, JONG ED, TILANUS JWR, de BONT JAM. Microbial oxidation of isoprene, a biogenic foliage volatile and of 1,3-butadiene, an anthropogenic gas[J]. FEMS Microbiology Letters, 1987, 45(5): 275-279.
    [57] WEIJERS CAGM, van GINKEL CG, de BONT JAM. Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria[J]. Enzyme and Microbial Technology, 1988, 10(4): 214-218.
    [58] KOTTEGODA S, WALIGORA E, HYMAN M. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1[J]. Applied and Environmental Microbiology, 2015, 81(6): 1966-1976.
    [59] YANG Y, JIN HJ, LI XY, YAN J. Biohydrogenation of 1,3-butadiene to 1-butene under acetogenic conditions by Acetobacterium wieringae[J]. Environmental Science & Technology, 2023, 57(4): 1637-1645.
    [60] MELNICK RL, HUFF J. 1, 3-Butadiene: toxicity and carcinogenicity in laboratory animals and in humans[J]. Reviews of Environmental Contamination and Toxicology, 1992, 124: 111-144.
    [61] CHEN WQ, ZHANG XY. 1, 3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases[J]. Genes and Environment, 2022, 44(1): 3.
    [62] HIMMELSTEIN MW, ACQUAVELLA JF, RECIO L, MEDINSKY MA, BOND JA. Toxicology and epidemiology of 1,3-butadiene[J]. Critical Reviews in Toxicology, 1997, 27(1): 1-108.
    [63] McGRAW KE, RIGGS DW, RAI S, NAVAS-ACIEN A, XIE ZZ, LORKIEWICZ P, LYNCH J, ZAFAR N, KRISHNASAMY S, TAYLOR KC, CONKLIN DJ, DeFILIPPIS AP, SRIVASTAVA S, BHATNAGAR A. Exposure to volatile organic compounds–acrolein, 1, 3-butadiene, and crotonaldehyde–is associated with vascular dysfunction[J]. Environmental Research, 2021, 196: 110903.
    [64] NELLIS M, CAPERTON CO, LIU K, TRAN V, GO YM, HALLBERG LM, AMEREDES BT, JONES DP, BOYSEN G. Lung metabolome of 1,3-butadiene exposed Collaborative Cross mice reflects metabolic phenotype of human lung cancer[J]. Toxicology, 2021, 463: 152987.
    [65] 金慧娟, 杨毅, 李秀颖, 宋玉芳, 严俊. 六氯-1,3-丁二烯的微生物降解研究进展[J]. 微生物学通报, 2020, 47(10): 3407-3418. JIN HJ, YANG Y, LI XY, SONG YF, YAN J. Progress in microbial degradation of hexachlorobutadiene[J]. Microbiology China, 2020, 47(10): 3407-3418(in Chinese).
    [66] Toxicological profile for 1,3-butadiene[R]. EUA. Department of health and human services. Agency for Toxic Substances Disease Registry, 2009. https://stacks. cdc.gov/view/cdc/12389.
    [67] WATKINSON RJ, SOMMERVILLE H. The microbial utilization of butadiene[J]. Proceedings of the 3rd International Biodegradation Symposium, 1976: 35-42.
    [68] HIGGINS IJ, HAMMOND RC, SARIASLANI FS, BEST D, DAVIES MM, TRYHORN SE, TAYLOR F. Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB 3b[J]. Biochemical and Biophysical Research Communications, 1979, 89(2): 671-677.
    [69] HOU CT, PATEL R, LASKIN AI, BARNABE N, BARIST I. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria[J]. Applied and Environmental Microbiology, 1983, 46(1): 171-177.
    [70] BOYD DR, CLARKE D, CLEIJ MC, HAMILTON JTG, SHELDRAKE GN. Bacterial biotransformation of isoprene and related dienes[J]. Monatshefte Für Chemie/Chemical Monthly, 2000, 131(6): 673-685.
    [71] GUENTHER A, ZIMMERMAN P, WILDERMUTH M. Natural volatile organic compound emission rate estimates for U.S. woodland landscapes[J]. Atmospheric Environment, 1994, 28(6): 1197-1210.
    [72] PACIFICO F, HARRISON SP, JONES CD, SITCH S. Isoprene emissions and climate[J]. Atmospheric Environment, 2009, 43(39): 6121-6135.
    [73] McGENITY TJ, CROMBIE AT, MURRELL JC. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth[J]. The ISME Journal, 2018, 12(4): 931-941.
    [74] MURRELL JC, McGENITY TJ, CROMBIE AT. Microbial metabolism of isoprene: a much-neglected climate-active gas[J]. Microbiology, 2020, 166(7): 600-613.
    [75] CARRIÓN O, McGENITY TJ, MURRELL JC. Molecular ecology of isoprene-degrading bacteria[J]. Microorganisms, 2020, 8(7): 967.
    [76] ROSENKOETTER KE, KENNEDY CR, CHIRIK PJ, HARVEY BG. [4+4]-cycloaddition of isoprene for the production of high-performance bio-based jet fuel[J]. Green Chemistry, 2019, 21(20): 5616-5623.
    [77] ANDERSON D. Genetic and reproductive toxicity of butadiene and isoprene[J]. Chemico-Biological Interactions, 2001, 135: 65-80.
    [78] KING J, KOC H, UNTERKOFLER K, MOCHALSKI P, KUPFERTHALER A, TESCHL G, TESCHL S, HINTERHUBER H, AMANN A. Physiological modeling of isoprene dynamics in exhaled breath[J]. Journal of Theoretical Biology, 2010, 267(4): 626-637.
    [79] SRIVASTVA N, SINGH A, BHARDWAJ Y, DUBEY SK. Biotechnological potential for degradation of isoprene: a review[J]. Critical Reviews in Biotechnology, 2018, 38(4): 587-599.
    [80] BROADGATE WJ, MALIN G, KÜPPER FC, THOMPSON A, LISS PS. Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere[J]. Marine Chemistry, 2004, 88(1/2): 61-73.
    [81] ZHAN ZC, SEAGER S, PETKOWSKI JJ, SOUSA-SILVA C, RANJAN S, HUANG JC, BAINS W. Assessment of isoprene as a possible biosignature gas in exoplanets with anoxic atmospheres[J]. Astrobiology, 2021, 21(7): 765-792.
    [82] EWERS J, FREIER-SCHRÖDER D, KNACKMUSS HJ. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE[J]. Archives of Microbiology, 1990, 154(4): 410-413.
    [83] CLEVELAND CC, YAVITT JB. Microbial consumption of atmospheric isoprene in a temperate forest soil[J]. Applied and Environmental Microbiology, 1998, 64(1): 172-177.
    [84] ALVAREZ LA, EXTON DA, TIMMIS KN, SUGGETT DJ, McGENITY TJ. Characterization of marine isoprene-degrading communities[J]. Environmental Microbiology, 2009, 11(12): 3280-3291.
    [85] JOHNSTON A, CROMBIE AT, EL KHAWAND M, SIMS L, WHITED GM, McGENITY TJ, COLIN MURRELL J. Identification and characterisation of isoprene-degrading bacteria in an estuarine environment[J]. Environmental Microbiology, 2017, 19(9): 3526-3537.
    [86] LARKE-MEJÍA NL, CROMBIE AT, PRATSCHER J, McGENITY TJ, MURRELL JC. Novel isoprene- degrading proteobacteria from soil and leaves identified by cultivation and metagenomics analysis of stable isotope probing experiments[J]. Frontiers in Microbiology, 2019, 10: 2700.
    [87] SINGH A, SRIVASTAVA N, DUBEY SK. Molecular characterization and kinetics of isoprene degrading bacteria[J]. Bioresource Technology, 2019, 278: 51-56.
    [88] GRAY CM, HELMIG D, FIERER N. Bacteria and fungi associated with isoprene consumption in soil[J]. Elementa: Science of the Anthropocene, 2015, 3: 000053.
    [89] van HYLCKAMA VLIEG JE, KINGMA J, van den WIJNGAARD AJ, JANSSEN DB. A glutathione S-transferase with activity towards Cis-1, 2-dichloroepoxyethane is involved in isoprene utilization by Rhodococcus sp. strain AD45[J]. Applied and Environmental Microbiology, 1998, 64(8): 2800-2805.
    [90] van GINKEL CG, WELTEN HGJ, HARTMANS S, de BONT JAM. Metabolism of trans-2-butene and butane in Nocardia TB1[J]. Microbiology, 1987, 133(7): 1713-1720.
    [91] van HYLCKAMA VLIEG JE, LEEMHUIS H, SPELBERG JH, JANSSEN DB. Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45[J]. Journal of Bacteriology, 2000, 182(7): 1956-1963.
    [92] LEAHY JG, BATCHELOR PJ, MORCOMB SM. Evolution of the soluble diiron monooxygenases[J]. FEMS Microbiology Reviews, 2003, 27(4): 449-479.
    [93] SCHINK B. Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures[J]. FEMS Microbiology Letters, 1985, 31(2): 69-77.
    [94] KRONEN M, LEE M, JONES ZL, MANEFIELD MJ. Reductive metabolism of the important atmospheric gas isoprene by homoacetogens[J]. The ISME Journal, 2019, 13(5): 1168-1182.
    [95] JIN HJ, LI XY, WANG HY, CÁPIRO NL, LI XC, LÖFFLER FE, YAN J, YANG Y. Anaerobic biohydrogenation of isoprene by Acetobacterium wieringae strain Y[J]. mBio, 2022, 13(6): e0208622.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王旭昊,廖恒毅,侯贺磊,张曼曼,杨淑晶,张艺籍,王晶晶,李秀颖,金慧娟,杨毅. 典型短链烯烃的微生物降解转化机制研究进展[J]. 微生物学通报, 2024, 51(12): 4949-4966

复制
分享
文章指标
  • 点击次数:111
  • 下载次数: 94
  • HTML阅读次数: 131
  • 引用次数: 0
历史
  • 收稿日期:2024-06-30
  • 录用日期:2024-11-18
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码