科微学术

微生物学通报

耐辐射奇球菌中PprI蛋白的单分子动态作用机制
作者:
基金项目:

国家重点研发计划(2023YFC3402400);国家自然科学基金(32101049,32271271,62205048);四川省自然科学基金(2023NSFSC0638);国家卫生健康委核技术医学转化重点实验室(绵阳中心医院)(2021HYX007)


Single-molecule dynamic mechanism of PprI in Deinococcus radiodurans
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】 在日益严重的环境污染中,越来越多的生物受到核辐射、化学污染、生物污染等危害,严重影响到生态系统的平衡,而耐辐射奇球菌(Deinococcus radiodurans)具有强大的DNA修复能力,使它能在各种极端环境下生存。PprI蛋白作为D. radiodurans中DNA损伤修复过程的开关,异源表达后可以显著提高其他真核和原核生物在极端环境下的生存率。目前对PprI蛋白的研究大多局限于传统生化手段,在活细胞内实时动态观测单个PprI蛋白的反应过程仍然相对滞后。【目的】 探究DNA损伤前后PprI蛋白在单分子水平的动态变化,从单分子角度精准揭示PprI蛋白在DNA损伤修复中的关键作用,为研究耐辐射奇球菌DNA修复机制奠定理论基础。【方法】 利用光转换荧光蛋白mMaple3原位标记的PprI蛋白,通过基于全内反射荧光(total internal reflection fluorescent, TIRF)显微成像的单分子示踪光激活定位显微镜(single-particle tracking photoactivated localization microscopy, sptPALM)技术,持续激活低密度的mMaple3荧光蛋白,实现活细胞内PprI蛋白的单分子定位与示踪,明确PprI蛋白在DNA损伤前后的分子动力学特征。【结果】 通过对PprI蛋白表观扩散系数分布的拟合,将其分为3种运动状态,即固定态(D*=0.07 μm2/s)、缓慢扩散态(D*=0.21 μm2/s)和快速扩散态(D*=0.65μm2/s)。发现在DNA受到损伤后的细胞中,PprI蛋白扩散态分子比例显著上升,而其固定态分子比例显著下降。【结论】 利用单分子示踪技术精确表征了PprI蛋白在DNA受损后大部分蛋白运动速率偏向快速运动,表面DNA损伤释放了较大比例的结合态PprI蛋白。本研究可以深化PprI介导的DNA损伤修复系统的分子机制模型,也可以为利用单分子技术研究其他DNA修复反应提供技术参考。

    Abstract:

    [Background] Amid the aggravating environmental pollution, increasing organisms are endangered by nuclear radiation, chemical pollution, and biological pollution, which seriously disrupts the balance of ecosystems. Deinococcus radiodurans with remarkable performance of DNA repair can survive in various extreme environments. PprI acts as a switch in the DNA repair process in D.radiodurans, and the heterologous expression of this protein can significantly enhance the survival rates of other eukaryotes and prokaryotes in extreme conditions. The available studies on PprI molecules are predominantly conducted with biochemical methods, and the real-time dynamic observation on reactions of single PprI molecules in living cells remains underdeveloped. [Objective] We explored the dynamics of PprI at the single-molecule level before and after DNA damage and revealed the role of PprI in DNA repair, aiming to enhance our understanding of the DNA repair mechanism in D.radiodurans. [Methods] The PprI molecules of D.radiodurans were labeled with the photo-activated fluorescent protein mMaple3. The low-density mMaple3 fluorescent protein was continuously activated by single-particle tracking photoactivated localization microscopy (sptPALM) based on total internal reflection fluorescent (TIRF) microimaging to realize the single-molecule localization and tracking of PprI in living cells, on the basis of which the molecular dynamics of PprI molecules before and after DNA damage was clarified. [Results] By analyzing the distribution of the apparent diffusion coefficients of PprI molecules, we identified three distinct species: immobile molecules (D*=0.07 μm2/s), slow-diffusing molecules (D*=0.21 μm2/s), and fast-diffusing molecules (D*=0.65 μm2/s). After DNA damage, we observed a significant increase in the proportion of diffusing PprI molecules and a significant decrease in the proportion of immobile molecules. [Conclusion] Using the single-molecule tracking technique, we accurately characterized the movement of PprI molecules, finding that most PprI molecules moved fast after DNA damage. Additionally, DNA damage at the surface released a large proportion of immobile PprI molecules. This study improves the molecular mechanism model of the PprI-mediated DNA repair system and paves a way for studying other DNA repair reactions using single-molecule techniques.

    参考文献
    [1] ANDERSON A, NORDON H, CAIN RF, PARRISH G, DUGGAN D, ANDERSON A, NORDAN H, PARISH G, CULLUM-DUGAN D. Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation[J]. Food Technology, 1956, 10: 575-578.
    [2] BLASIUS M, SOMMER S, HÜBSCHER U. Deinococcus radiodurans: what belongs to the survival kit?[J]. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43(3): 221-238.
    [3] SLADE D, RADMAN M. Oxidative stress resistance in Deinococcus radiodurans[J]. Microbiology and Molecular Biology Reviews: MMBR, 2011, 75(1): 133-191.
    [4] MAKAROVA KS, ARAVIND L, WOLF YI, TATUSOV RL, MINTON KW, KOONIN EV, DALY MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1): 44-79.
    [5] DALY MJ. Engineering radiation-resistant bacteria for environmental biotechnology[J]. Current Opinion in Biotechnology, 2000, 11(3): 280-285.
    [6] FLOC’H K, LACROIX F, SERVANT P, WONG YS, KLEMAN JP, BOURGEOIS D, TIMMINS J. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans[J]. Nature Communications, 2019, 10: 3815.
    [7] VENKATESWARAN A, McFARLAN SC, GHOSAL D, MINTON KW, VASILENKO A, MAKAROVA K, WACKETT LP, DALY MJ. Physiologic determinants of radiation resistance in Deinococcus radiodurans[J]. Applied and Environmental Microbiology, 2000, 66(6): 2620-2626.
    [8] BATTISTA JR. Against all odds: the survival strategies of Deinococcus radiodurans[J]. Annual Review of Microbiology, 1997, 51: 203-224.
    [9] HARSOJO H, KITAYAMA S, MATSUYAMA A. Genome multiplicity and radiation resistance in Micrococcus radiodurans[J]. The Journal of Biochemistry, 1981, 90(3): 877-880.
    [10] PASSOT FM, NGUYEN HH, DARD-DASCOT C, THERMES C, SERVANT P, ESPÉLI O, SOMMER S. Nucleoid organization in the radioresistant bacterium Deinococcus radiodurans[J]. Molecular Microbiology, 2015, 97(4): 759-774.
    [11] IRWIN JA. Overview of extremophiles and their food and medical applications[M]//Physiological and Biotechnological Aspects of Extremophiles. Amsterdam: Elsevier, 2020: 65-87.
    [12] WANG YG, XU Q, LU HM, LIN L, WANG LY, XU H, CUI XY, ZHANG H, LI TT, HUA YJ. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction[J]. PLoS One, 2015, 10(3): e0122071.
    [13] EARL AM, MOHUNDRO MM, MIAN IS, BATTISTA JR. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression[J]. Journal of Bacteriology, 2002, 184(22): 6216-6224.
    [14] HUA YJ, NARUMI I, GAO GJ, TIAN B, SATOH K, KITAYAMA S, SHEN BH. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans[J]. Biochemical and Biophysical Research Communications, 2003, 306(2): 354-360.
    [15] GAO GJ. Construction of DNA damage response gene pprI function-deficient and function-com-plementary mutants in Deinococcus radiodurans[J]. Chinese Science Bulletin, 2005, 50(4): 311.
    [16] ZHAI FF, HAO L, CHEN XM, JIANG T, GUO QH, XIE LP, MA Y, DU XB, ZHENG ZQ, CHEN K, FAN J. Single-molecule tracking of PprI in D. radiodurans without interference of autoblinking[J]. Frontiers in Microbiology, 2023, 14: 1256711.
    [17] CHEN TJ, WANG JQ, ZENG LL, LI RZ, LI JC, CHEN YL, LIN ZL. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE[J]. PLoS One, 2012, 7(7): e37126.
    [18] GAO GJ, TIAN B, LIU LL, SHENG DH, SHEN BH, HUA YJ. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli[J]. DNA Repair, 2003, 2(12): 1419-1427.
    [19] RAJAN R, BELL CE. Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance[J]. Journal of Molecular Biology, 2004, 344(4): 951-963.
    [20] 乐东海, 高冠军, 华跃进. 耐辐射球菌pprI在大肠杆菌中表达增强细胞抗氧化能力的研究[J]. 微生物学报, 2004, 44(3): 324-327. YUE DH, GAO GJ, HUA YJ. Study on enhances of the antioxidation in Escherichia coli by expression of Deinococcus radiodurans pprI[J]. Acta Microbiologica Sinica, 2004, 44(3): 324-327(in Chinese).
    [21] LUO P, ZHANG YN, SUO YK, LIAO ZP, MA Y, FU HX, WANG JF. The global regulator IrrE from Deinococcus radiodurans enhances the furfural tolerance of Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2018, 136: 69-77.
    [22] MA RQ, ZHANG Y, HONG HZ, LU W, LIN M, CHEN M, ZHANG W. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans[J]. Current Microbiology, 2011, 62(2): 659-664.
    [23] DONG XR, TIAN B, DAI S, LI T, GUO LN, TAN ZF, JIAO Z, JIN QS, WANG YP, HUA YJ. Expression of PprI from Deinococcus radiodurans improves lactic acid production and stress tolerance in Lactococcus lactis[J]. PLoS One, 2015, 10(11): e0142918.
    [24] PAN J, WANG J, ZHOU ZF, YAN YL, ZHANG W, LU W, PING SZ, DAI QL, YUAN ML, FENG B, HOU XG, ZHANG Y, MA RQ, LIU TT, FENG L, WANG L, CHEN M, LIN M. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus[J]. PLoS One, 2009, 4(2): e4422.
    [25] WEN L, YUE L, SHI Y, REN LL, CHEN TT, LI N, ZHANG SY, YANG W, YANG ZS. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes[J]. Oncotarget, 2016, 7(13): 15339-15355.
    [26] SHI Y, WU W, QIAO HP, YUE L, REN LL, ZHANG SY, YANG W, YANG ZS. The protein PprI provides protection against radiation injury in human and mouse cells[J]. Scientific Reports, 2016, 6: 26664.
    [27] VUJICIĆ-ZAGAR A, DULERMO R, Le GORREC M, VANNIER F, SERVANT P, SOMMER S, de GROOT A, SERRE L. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae[J]. Journal of Molecular Biology, 2009, 386(3): 704-716.
    [28] LUDANYI M, BLANCHARD L, DULERMO R, BRANDELET G, BELLANGER L, PIGNOL D, LEMAIRE D, de GROOT A. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO[J]. Molecular Microbiology, 2014, 94(2): 434-449.
    [29] LU HZ, CHEN ZJ, XIE T, ZHONG ST, SUO SS, SONG S, WANG LY, XU H, TIAN B, ZHAO Y, ZHOU RH, HUA YJ. The Deinococcus protease PprI senses DNA damage by directly interacting with single-stranded DNA[J]. Nature Communications, 2024, 15: 1892.
    [30] LIU YQ, ZHOU JZ, OMELCHENKO MV, BELIAEV AS, VENKATESWARAN A, STAIR J, WU LY, THOMPSON DK, XU D, ROGOZIN IB, GAIDAMAKOVA EK, ZHAI M, MAKAROVA KS, KOONIN EV, DALY MJ. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7): 4191-4196.
    [31] MANLEY S, GILLETTE JM, PATTERSON GH, SHROFF H, HESS HF, BETZIG E, LIPPINCOTT- SCHWARTZ J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy[J]. Nature Methods, 2008, 5: 155-157.
    [32] PATTERSON GH, LIPPINCOTT-SCHWARTZ J. A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297(5588): 1873-1877.
    [33] LEE SH, SHIN JY, LEE A, BUSTAMANTE C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17436-17441.
    [34] STRACY M, UPHOFF S, de LEON FG, KAPANIDIS AN. In vivo single-molecule imaging of bacterial DNA replication, transcription, and repair[J]. FEBS Letters, 2014, 588(19): 3585-3594.
    [35] 江婷, 翟帆帆, 钟珊珊, 樊军. DNA损伤修复的单分子水平研究进展[J]. 自然杂志, 2023, 45(1): 22-32. JIANG T, ZHAI FF, ZHONG SS, FAN J. Advances in single-molecule investigation on DNA damage repair[J]. Chinese Journal of Nature, 2023, 45(1): 22-32(in Chinese).
    [36] WANG SY, MOFFITT JR, DEMPSEY GT, XIE XS, ZHUANG XW. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(23): 8452-8457.
    [37] PAIGE MF, BJERNELD EJ, MOERNER WE. A comparison of through-the-objective total internal reflection microscopy and epifluorescence microscopy for single-molecule fluorescence imaging[J]. Single Molecules, 2001, 2(3): 191-201.
    [38] STRACY M, LESTERLIN C, de LEON FG, UPHOFF S, ZAWADZKI P, KAPANIDIS AN. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): E4390-E4399.
    [39] STRACY M, SCHWEIZER J, SHERRATT DJ, KAPANIDIS AN, UPHOFF S, LESTERLIN C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins[J]. Molecular Cell, 2021, 81(7): 1499-1514.e6.
    [40] LU HM, CHEN H, XU GZ, SHAH AMUH, HUA YJ. DNA binding is essential for PprI function in response to radiation damage in Deinococcus radiodurans[J]. DNA Repair, 2012, 11(2): 139-145.
    [41] LU HM, GAO GJ, XU GZ, FAN L, YIN LF, SHEN BH, HUA YJ. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage[J]. Molecular & Cellular Proteomics: MCP, 2009, 8(3): 481-494.
    [42] LIU SH, WANG F, CHEN HY, YANG ZX, NING YF, CHANG C, YANG D. New insights into radio- resistance mechanism revealed by (phospho)proteome analysis of Deinococcus radiodurans after heavy ion irradiation[J]. International Journal of Molecular Sciences, 2023, 24(19): 14817.
    相似文献
    引证文献
引用本文

谢李平,陈晓敏,陈琨,郭芊宏,翟帆帆,郑志勤,樊军. 耐辐射奇球菌中PprI蛋白的单分子动态作用机制[J]. 微生物学通报, 2025, 52(3): 1046-1061

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-17
  • 录用日期:2024-07-03
  • 在线发布日期: 2025-03-19
文章二维码