科微学术

微生物学通报

人兽共患细菌病的流行现状及其病原耐药性的应对策略
作者:
基金项目:

国家重点研发计划(2022YFD1800905)


Epidemic situation of zoonotic bacterial diseases and strategies for combating antibiotic-resistant bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • | | | |
  • 文章评论
    摘要:

    人兽共患病是由同一病原引起、在人和脊椎动物之间自然传播的疾病,已成为全球共同面临并亟待解决的重大问题。当前人兽共患传染病在人类新发和现有传染病中占比达60%,其中布鲁氏菌(Brucella)、牛分枝杆菌(Mycobacterium bovis)、炭疽芽胞杆菌(Bacillus anthracis)、猪链球菌2型(Streptococcus suis serotype 2, SS2)、沙门氏菌(Salmonella)及肺炎克雷伯氏菌(Klebsiella pneumoniae, KP)等引起的人兽共患细菌病严重威胁畜牧业健康发展、公共卫生安全和国家生物安全,其防控形势日益严峻。本文就上述6种重要人兽共患细菌病的流行现状及其相关耐药机制和抗菌新策略进行综述,为科学防控人兽共患细菌病提供参考。

    Abstract:

    Zoonotic diseases, caused by the same pathogen and naturally transmitted between humans and vertebrate animals, have become a major global issue that urgently needs to be addressed. Currently, zoonotic diseases account for 60% of globally emerging and existing infectious diseases. The zoonotic diseases caused by Brucella, Mycobacterium bovis, Bacillus anthracis, Streptococcus suis serotype 2, Salmonella, and Klebsiella pneumoniae pose serious threats to the healthy development of animal husbandry, public health, and national biosafety. The situation for prevention and management of these diseases is getting increasingly severe. This article reviews the current prevalence of zoonotic bacterial diseases caused by the six pathogens mentioned above, as well as their antibiotic resistance mechanisms and novel antibacterial strategies, serving as a reference for the prevention and control of these diseases.

    参考文献
    [1] World Health Organization. Zoonoses[Z]. 2020.
    [2] Centers For Disease Control And Prevention. About Zoonotic Diseases[Z]. 2024.
    [3] PAPPAS G, PAPADIMITRIOU P, AKRITIDIS N, CHRISTOU L, TSIANOS EV. The new global map of human brucellosis[J]. The Lancet Infectious Diseases, 2006, 6(2): 91-99.
    [4] 郭珂宇, 关鹏, 单连峰, 沈鹏, 井丽, 陈晓霞, 黄德生. 2013–2021年我国人布鲁氏菌病发病重心轨迹特征分析[J]. 中国医科大学学报, 2023, 52(8): 680-683. GUO KY, GUAN P, SHAN LF, SHEN P, JING L, CHEN XX, HUANG DS. Gravity center shifts in human brucellosis incidence across China: a 2013–2021 analysis[J]. Journal of China Medical University, 2023, 52(8): 680-683(in Chinese).
    [5] JERGEFA T, KELAY B, BEKANA M, TESHALE S, GUSTAFSON H, KINDAHL H. Epidemiological study of bovine brucellosis in three agro-ecological areas of central Oromiya, Ethiopia[J]. Revue Scientifique et Technique (International Office of Epizootics), 2009, 28(3): 933-943.
    [6] RAN XH, CHEN XH, WANG MM, CHENG JJ, NI HB, ZHANG XX, WEN XB. Brucellosis seroprevalence in ovine and caprine flocks in China during 2000–2018: a systematic review and meta-analysis[J]. BMC Veterinary Research, 2018, 14(1): 393.
    [7] 潘家良. 牛分枝杆菌融合蛋白Rv3403c-CFP10-ESAT6的原核表达、免疫反应性分析及其检测应用[D]. 南京: 南京农业大学硕士学位论文, 2022. PAN JL. Construction of Mycobacterium bovis fusion protein Rv3403c-CFP10-ESAT6, immunoreactivity analysis and its detection application[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2022(in Chinese).
    [8] CHAKAYA J, KHAN M, NTOUMI F, AKLILLU E, FATIMA R, MWABA P, KAPATA N, MFINANGA S, HASNAIN SE, KATOTO PDMC, BULABULA ANH, SAM-AGUDU NA, NACHEGA JB, TIBERI S, McHUGH TD, ABUBAKAR I, ZUMLA A. Global tuberculosis report 2020: reflections on the global TB burden, treatment and prevention efforts[J]. International Journal of Infectious Diseases, 2021, 113: S7-S12.
    [9] KHAN MK, ISLAM MN, FERDOUS J, ALAM MM. An overview on epidemiology of tuberculosis[J]. Mymensingh Medical Journal, 2019, 28(1): 259-266.
    [10] Mitchell A Essey, 郝俊峰, 王传武, 赵德明. 美国牛结核病的状况[J]. 中国畜牧兽医, 2003, 30(5): 53-54.
    [11] TULU B, ZEWEDE A, BELAY M, ZELEKE M, GIRMA M, TEGEGN M, IBRAHIM F, JOLLIFFE DA, ABEBE M, BALCHA TT, GUMI B, MARTINEAU HM, MARTINEAU AR, AMENI G. Epidemiology of bovine tuberculosis and its zoonotic implication in Addis Ababa milkshed, central Ethiopia[J]. Frontiers in Veterinary Science, 2021, 8: 595511.
    [12] MUKHOPADHYAY B, GANGULY N K. Tuberculosis research in India[J]. Current Science: A Fortnightly Journal of Research, 2013, 105(5): 594-596.
    [13] 许芳. 我国部分地区牛结核病调查与牛肺外结核病病原分离鉴定及生物学特性研究[D]. 兰州: 甘肃农业大学硕士学位论文, 2020. XU F. Investigation of bovine tuberculosis and isolation, identification and biological characteristics of the pathogen of bovine extrapulmonary tuberculosis in some areas of China[D]. Lanzhou: Master’s Thesis of Gansu Agricultural University, 2020(in Chinese).
    [14] KAMAL SM, RASHID AM, BAKAR MA, AHAD MA. Anthrax: an update[J]. Asian Pacific Journal of Tropical Biomedicine, 2011, 1(6): 496-501.
    [15] JAYAPRAKASAM M, CHATTERJEE N, CHANDA MM, SHAHABUDDIN SM, SINGHAI M, TIWARI S, PANDA S. Human Anthrax in India in recent times: a systematic review & risk mapping[J]. One Health, 2023, 16: 100564.
    [16] TOPLUOGLU S, AKTAS D, CELEBI B, KARA F, DOGANAY M, ALP E. Human Anthrax in Turkey: a ten years’ experience (2009–2018)[J]. Tropical Doctor, 2021, 51(1): 80-83.
    [17] RAILEAN V, SOBOLEWSKI J, JAŚKOWSKI JM. Anthrax in one health in Southern and Southeastern Europe: the effect of climate change?[J]. Veterinary Research Communications, 2024, 48(2): 623-632.
    [18] World Health Ognaization. Anthrax-Zambia[Z]. 2023.
    [19] 张奇. 山东省一起皮肤炭疽疫情暴发调查与病原学分析[D]. 济南: 山东大学硕士学位论文, 2023. ZHANG Q. Investigation and pathogenetic analysis of a cutaneous anthrax outbreak in Shandong Province[D]. Jinan: Master’s Thesis of Shandong University, 2023(in Chinese).
    [20] SUSHMA B, SHEDOLE S, SURESH KP, LEENA G, PATIL SS, SRIKANTHA G. An estimate of global Anthrax prevalence in livestock: a meta-analysis[J]. Veterinary World, 2021, 14(5): 1263-1271.
    [21] ISLAM SS, SARKER MS, AKHTER AHMT, SHANTA IS, RAHMAN AKMA, ABU SUFIAN M. Animal, human, and environmental perspectives on Anthrax in Bangladesh[J]. Heliyon, 2024, 10(1): e23481.
    [22] SEYOUM AF, BITEW AB, NEGUSSIE H. A retrospective study on the epidemiology of Anthrax among livestock from 2011 to 2020 in awi administrative zone, Amhara region, Northwest Ethiopia[J]. Veterinary Medicine, 2022, 13: 313-321.
    [23] Texas A&M Veterinary Medical Diagnostic Laboratory. Historical overview of anthrax in Texas’ livestock population (1974–2022)[Z]. 2024.
    [24] 李伟. 从俄罗斯炭疽疫情谈我国炭疽防控措施[J]. 疾病监测, 2017, 32(3): 179-183. LI W. Appropriate measures in prevention and control of Anthrax in China: experience learned from Russia[J]. Disease Surveillance, 2017, 32(3): 179-183(in Chinese).
    [25] YE CY, BAI XM, ZHANG J, JING HQ, ZHENG H, DU HM, CUI ZG, ZHANG SY, JIN D, XU YM, XIONG YW, ZHAO AL, LUO X, SUN QZ, GOTTSCHALK M, XU JG. Spread of Streptococcus suis sequence type 7, China[J]. Emerging Infectious Diseases, 2008, 14(5): 787-791.
    [26] KEONAM K, NAM NH, SAKSANGAWONG C, SRINGAM P, SAIPAN P, KONGPECHR S, SUKON P. Prevalence of Streptococcus suis serotype 2 isolated from pigs: a systematic review and meta-analysis[J]. Veterinary World, 2024, 17(2): 233-244.
    [27] NGO TH, TRAN TBC, TRAN TTN, NGUYEN VD, CAMPBELL J, PHAM HA, HUYNH HT, NGUYEN VVC, BRYANT JE, TRAN TH, FARRAR J, SCHULTSZ C. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in Southern Vietnam[J]. PLoS One, 2011, 6(3): e17943.
    [28] LIU P, ZHANG Y, TANG H, WANG YM, SUN XD. Prevalence of Streptococcus suis in pigs in China during 2000–2021: a systematic review and meta-analysis[J]. One Health, 2023, 16: 100513.
    [29] 田国钦, 李丰阳, 杨求磊, 闫广谋, 孙长江, 郭昌明, 李娜, 雷连成. 大肠杆菌、模仿葡萄球菌和猪链球菌混合感染对小鼠致病性的研究[J]. 中国预防兽医学报, 2022, 44(11): 1230-1234, 1239. TIAN GQ, LI FY, YANG QL, YAN GM, SUN CJ, GUO CM, LI N, LEI LC. Study on the pathogenicity of mixed infection of Escherichia coli, Staphylococcus simulans and Streptococcus suis in mice[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(11): 1230-1234, 1239(in Chinese).
    [30] WANG BX, BUTLER DS, HAMBLIN M, MONACK DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections[J]. Current Opinion in Microbiology, 2023, 72: 102262.
    [31] AUTHORITY EFS, European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016[J]. EFSA Journal European Food Safety Authority, 2017, 15(12): e05077.
    [32] SCALLAN E, HOEKSTRA RM, ANGULO FJ, TAUXE RV, WIDDOWSON MA, ROY SL, JONES JL, GRIFFIN PM. Foodborne illness acquired in the United States: major pathogens[J]. Emerging Infectious Diseases, 2011, 17(1): 7-15.
    [33] 张晶, 李薇薇, 杨淑香, 郭云昌, 付萍. 中国2010–2016年家庭食源性疾病暴发事件流行特征分析[J]. 中国公共卫生, 2019, 35(10): 1379-1382. ZHANG J, LI WW, YANG SX, GUO YC, FU P. Epidemic characteristics of household outbreaks of foodborne diseases in China, 2010–2016[J]. Chinese Journal of Public Health, 2019, 35(10): 1379-1382(in Chinese).
    [34] LI WW, PIRES SM, LIU ZT, MA XC, LIANG JJ, JIANG YY, CHEN J, LIANG JH, WANG ST, WANG LS, WANG YF, MENG C, HUO X, LAN Z, LAI SR, LIU CW, HAN HH, LIU JK, FU P, GUO YC. Surveillance of foodborne disease outbreaks in China, 2003–2017[J]. Food Control, 2020, 118: 107359.
    [35] SMITH RP, ANDRES V, CHENEY TE, MARTELLI F, GOSLING R, MARIER E, RABIE A, GILSON D, DAVIES RH. How do pig farms maintain low Salmonella prevalence: a case-control study[J]. Epidemiology and Infection, 2018, 146(15): 1909-1915.
    [36] AUTHORITY EFS, European Centre for Disease Prevention and Control. The European union one health 2020 zoonoses report[J]. EFSA Journal, 2021, 19(12): e06971.
    [37] YANG XJ, HUANG JH, ZHANG YX, LIU SR, CHEN L, XIAO C, ZENG HY, WEI XH, GU QH, LI Y, WANG J, DING Y, ZHANG JM, WU QP. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China[J]. Science of the Total Environment, 2020, 713: 136385.
    [38] SHEN WW, CHEN H, GENG JW, WU RA, WANG X, DING T. Prevalence, serovar distribution, and antibiotic resistance of Salmonella spp. isolated from pork in China: a systematic review and meta-analysis[J]. International Journal of Food Microbiology, 2022, 361: 109473.
    [39] LIU BG, XIE M, GONG YT, DONG Y, ZHENG GM, WU H, HU GZ, BAI M, XU EP. Prevalence, resistance phenotypes, and fluoroquinolone resistance genes of Salmonella isolates from raw milk of healthy dairy cows in Henan province, China[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(18): 6837-6844.
    [40] FOUNOU LL, FOUNOU RC, ALLAM M, ISMAIL A, DJOKO CF, ESSACK SY. Genome sequencing of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from pigs and abattoir workers in Cameroon[J]. Frontiers in Microbiology, 2018, 9: 188.
    [41] LEANGAPICHART T, LUNHA K, JIWAKANON J, ANGKITITRAKUL S, JÄRHULT JD, MAGNUSSON U, SUNDE M. Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: population genomic structure, antibiotic resistance and virulence genes[J]. Journal of Antimicrobial Chemotherapy, 2021, 76(8): 2012-2016.
    [42] CHANG D, SHARMA L, DELA CRUZ CS, ZHANG D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection[J]. Frontiers in Microbiology, 2021, 12: 750662.
    [43] 张聪, 肖亦辰, 陈怀君, 袁敬知, 韦德源, 王晓晔. 伴侣动物源肺炎克雷伯氏菌的分离鉴定及毒力和耐药性分析[J]. 中国畜牧兽医, 2020, 47(5): 1583-1592. ZHANG C, XIAO YC, CHEN HJ, YUAN JZ, WEI DY, WANG XY. Isolation, identification and analysis of virulence and drug resistance of Klebsiella pneumoniae from companion animals[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(5): 1583-1592(in Chinese).
    [44] WILLIAMSON S, BIDEWELL C, ABUOUN M. Update on Klebsiella pneumoniae septicaemia outbreaks in preweaned pigs[J]. Veterinary Record,. Advanced Healthcare Materials, 2021, 10(14): e2100453.
    [78] TORRES MDT, PEDRON CN, HIGASHIKUNI Y, KRAMER RM, CARDOSO MH, OSHIRO KGN, FRANCO OL, SILVA JUNIOR PI, SILVA FD, OLIVEIRA JUNIOR VX, LU TK, deLa FUENTE-NUNEZ C. Structure-function-guided exploration of the antimicrobial peptide Polybia-CP identifies activity determinants and generates synthetic?therapeutic candidates[J]. Communications Biology, 2018, 1: 221.
    [79] ZHANG HH, ZHANG XY, LIANG SY, WANG J, ZHU Y, ZHANG WJ, LIU S杇阬崠SC呈杗睁獒湚耠灓儬阠佘汉荅瘠剆礮鈠孂卡衣湴浥衲畩季豩杤al sy镮晥rg呩杳六丠奢孥硴塷孥佥譮攠phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms[J]. NPJ Biofilms and Microbiomes, 2023,?9(1): 16.
    [80] SUGRUE I, PAUL ROSS R, HILL C. Bacteriocin diversit杹娬焠fu艮乣葴io乮弬匠di驳晣幯ve彲歹怠an嵤丠扡pp乬桩聣牡湴腩畯聮瀠兡陳传污荮癴剩祭鉩季robia乬即兛乊奝嬮嬠扎a腴煵祲孥 Reviews Microbiology, 2024, 22(9): 556-571.
    [81] COTTER PD, ROSS RP, HILL C. Bacteriocins: a viable alternative to antibiotics?[J]. Nature Reviews Microbiology, 2013, 11: 95-105.
    [82] DIEP DB, SKAUGEN M, SALEHIAN Z, HOLO H, NES IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2384-2389.
    [83] SASSONE-CORSI M, NUCCIO SP, LIU H, HERNANDEZ D, VU CT, TAKAHASHI AA, EDWARDS RA, RAFFATELLU M. Microcins mediate compe呴艩乴io卮映慡mo孮彧删
    [84] McCALLIN S, SACHER JC, ZHENG J, CHAN BK. Current state of compassionate phage therapy[J]. Viruses, 2019, 11(4): 343.
    [85] No authors listed. The promise of phages[J]. Nature Biotechnology, 2023, 41(5): 583.
    [86] NAKONIECZNA A, RUTYNA P, FEDOROWICZ M, KWIATEK M, MIZAK L, ŁOBOCKA M. Three novel bacteriophages, J5a, F16Ba, and z1a, specific for Bacillus anthracis, define a new clade of historical wbeta phage relati赶幥桳[J杝朮匠Vi彲靵靳es贬栠20猲娲, 刱娴(2鸩示栠21猳吮猼br显彛娸7] NAKONIECZNA A,帠扁噂遒剁坍协祗湉汃镚氠荋洬蠠牋兗卉聁荔剅杋 M, K乏噗剁牌桃畚YK E. Lysins as a powerful alternative to combat Bacillus anthracis[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 366.
    [88] DEDRICK RM, GUERRERO-BUSTAMANTE CA, GARLENA RA, RUSSELL DA, FORD K, HARRIS K, GILMOUR KC, SOOTHILL J, JACOBS-SERA D, SCHOOLEY RT, HATFULL GF, SPENCER H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5): 730-733.
    [89] JOHNSON B. Microbiome-friendly phages join the campaign for better antimicrobials[J]. Nature Biotechnology, 2023, 41(4): 438-440.
    [90] MELO LDR, OLIVEIRA H, PIRES DP, DABROWSKA K, AZEREDO J. Phage therapy efficacy: a review of the last 10 years of preclinical studies[J]. Critical Reviews in Microbiology, 2020, 46(1): 78-99.
    [91] WANG S, YIN B, YU L, DANG M, GUO ZM, YAN GM, HU DL, GU JM, DU CT, FENG X, HAN WY, ADAM YY, SUN CJ, BOSSÉ JT, LEI LC. Overexpression of AmpC promotes bacteriophage lysis of ampicillin-resistant Escherichia coli[J]. Frontiers in Microbiology, 2020, 10: 2973.
    [92] NAGY E, NAGY G, POWER CA, BADARAU A, SZIJÁRTÓ V. Anti-bacterial monoclonal antibodies[J]. Advances in Experimental Medicine and Biology, 2017, 1053: 119-153.
    [93] CHASTRE J, FRANÇOIS B, BOURGEOIS M, KOMNOS A, FERRER R, RAHAV G, de SCHRYVER N, LEPAPE A, KOKSAL I, LUYT CE, SÁNCHEZ-GARCÍA M, TORRES A, EGGIMANN P, KOULENTI D, HOLLAND TL, ALI O, SHOEMAKER K, REN P, SAUSER J, RUZIN A, et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial[J]. Critical Care, 2022, 26(1): 355.
    [94] MacNAIR CR, RUTHERFORD ST, TAN MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens[J]. Natur? Reviews Microbi?logy, 2024, 22(5): 262-275.
    [95] JIA W, LI HK, ZHAO LP, NICHOLSON JK. Gut microbiota: a potential new territory for drug targeting[J]. Nature Reviews Drug Discovery, 2008, 7(2): 123-129.
    [96] GUT AM, VASILJEVIC T, YEAGER T, DONKOR ON. Salmonella infection-prevention and treatment by antibiotics and probiotic yeasts: a review[J]. Microbiology, 2018, 164(11): 1327-1344.
    [97] GHOSH C, SARKAR P, ISSA R, HALDAR J. Alternatives to conventional antibiotics in the era of antimicrobial resistance[J]. Trends in Microbiology, 2019, 27(4): 323-338.
    [98] ÖZÇAM M, LYNCH SV. The gut-airway microbiome axis in health and respiratory diseases[J]. Nature Reviews Microbiology, 2024, 22(8): 492-506.
    [99] ZHU JL, LIANG ZJ, YAO HC, WU ZF. Identifying cell-penetrating peptides for effectively delivering antimicrobial molecules into Streptococcus suis[J]. Antibiotics, 2024, 13(8): 725.
    [100] ZHANG Y, LAI LG, LIU YJ, CHEN BN, YAO J, ZHENG PW, PAN QS, ZHU WF. Biomineralized cascade enzyme-encapsulated ZIF-8 nanoparticles combined with antisense oligonucleotides for drug-resistant bacteria treatment[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 6453-6464.LAN A, deLa CAMPA AG, RIVERO E, LOPEZ G, DOMINGUEZ L, MORENO MA, GONZALEZ-ZORN B. First characterization of fluoroquinolone resistance in Streptococcus suis[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(2): 777-782.
    [66] WILSON DN, HAURYLIUK V, ATKINSON GC, O’NEILL AJ. Target protection as a key antibiotic resistance mechanism[J]. Nature Reviews Microbiology, 2020, 18(11): 637-648.
    [67] YANG X, PENG W, WANG NN, DOU BB, YANG FM, CHEN HC, YUAN FY, BEI WC. Role of the two-component system CiaRH in the regulation of efflux pump SatAB and its correlation with fluoroquinolone susceptibility[J]. Microbiology Spectrum, 2022, 10(3): e0041722.
    [68] ZHANG ZM, MORGAN CE, BONOMO RA, YU EW. Cryo-EM structures of the Klebsiella pneumoniae AcrB multidrug efflux pump[J]. mBio, 2023, 14(3): e0065923.
    [69] ALEKSANDROWICZ A, CAROLAK E, DUTKIEWICZ A, BŁACHUT A, WASZCZUK W, GRZYMAJLO K. Better together: Salmonella biofilm-associated antibiotic resistance[J]. Gut Microbes, 2023, 15(1): 2229937.
    [70] WONG JLC, ROMANO M, KERRY LE, KWONG HS, LOW WW, BRETT SJ, CLEMENTS A, BEIS K, FRANKEL G. OmpK36-mediated carbapenem resistance attenuates ST258Klebsiella pneumoniae in vivo[J]. Nature Communications, 2019, 10(1): 3957.
    [71] TANG TS, XU Y, WANG JF, TAN X, ZHAO XN, ZHOU P, KONG FD, ZHU CQ, LU CP, LIN HX. Evaluation of the differences between biofilm and planktonic Brucella abortus via metabolomics and proteomics[J]. Functional & Integrative Genomics, 2021, 21(3/4): 421-433.
    [72] CANTILLON D, WROBLEWSKA J, COOPER I, NEWPORT MJ, WADDELL SJ. Three-dimensional low shear culture of Mycobacterium bovis BCG induces biofilm formation and antimicrobial drug tolerance[J]. NPJ Biofilms and Microbiomes, 2021, 7(1): 12.
    [73] YI L, JIN MY, LI JP, GRENIER D, WANG Y. Antibiotic resistance related to biofilm formation in Streptococcus suis[J]. Applied Microbiology and Biotechnology, 2020, 104(20): 8649-8660.
    [74] HALL CW, MAH TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria[J]. FEMS Microbiology Reviews, 2017, 41(3): 276-301.
    [75] LEI J, SUN LC, HUANG SY, ZHU CH, LI P, HE J, MACKEY V, COY DH, HE QY. The antimicrobial peptides and their potential clinical applications[J]. American Journal of Translational Research, 2019, 11(7): 3919-3931.
    [76] XIE F, ZAN YN, ZHANG XY, ZHANG HH, JIN MJ, ZHANG WJ, ZHANG YL, LIU SG. Differential abilities of mammalian cathelicidins to inhibit bacterial biofilm formation and promote multifaceted immune functions of neutrophils[J]. International Journal of Molecular Sciences, 2020, 21(5): 1871.
    [77] BEITZINGER B, GERBL F, VOMHOF T, SCHMID R, NOSCHKA R, RODRIGUEZ A, WIESE S, WEIDINGER G, STÄNDKER L, WALTHER P, MICHAELIS J, LINDÉN M, STENGER S. Delivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosis[J]
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢芳,夏小静,雷连成. 人兽共患细菌病的流行现状及其病原耐药性的应对策略[J]. 微生物学通报, 2025, 52(2): 571-586

复制
分享
文章指标
  • 点击次数:48
  • 下载次数: 65
  • HTML阅读次数: 83
  • 引用次数: 0
历史
  • 收稿日期:2024-10-17
  • 录用日期:2025-01-15
  • 在线发布日期: 2025-02-22
  • 出版日期: 2025-02-20
文章二维码