科微学术

微生物学通报

班公湖水体细菌多样性和群落分布格局
作者:
基金项目:

国家自然科学基金(31960024);西藏大学人才激励计划


Diversity and distribution patterns of bacteria in Bangong Lake
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】 细菌是湖泊生态系统中的主要驱动者,其群落结构会对湖泊的环境变化产生高度响应。班公湖地区特殊的地理位置和高海拔环境造就了其独特的微生物生态系统,目前鲜见对班公湖细菌的研究。【目的】 探究班公湖水体细菌多样性和群落分布格局,于2023年9月对阿里地区班公湖东岸、西岸、湖心、湖底4个区域共计20个样点进行采样。【方法】 基于16S rRNA基因高通量测序技术进行样品分析,通过α多样性分析认识细菌群落之间的差异,利用Spearman相关系数衡量班公湖水体理化因子与α多样性指数之间的相关性。【结果】 共得到14 886条OTU,已注释的OTU分别属于47门470属。班公湖水体细菌群落主要由变形菌门(Proteobacteria)、放线菌门(Actinomycetota)、拟杆菌门(Bacteroidota)和疣微菌门(Verrucomicrobiota)组成。α多样性指数分析显示,班公湖水体细菌群落多样性和丰富度均较高,群落结构较为复杂。Spearman相关系数表明,总磷(total phosphorus, TP)与电导率(electric conductivity, EC)是影响班公湖水体细菌的主要环境因子。【结论】 阐明了班公湖水体细菌群落多样性和分布格局,并揭示了水体理化因子对细菌群落的影响,为未来班公湖的收缩或扩张变化后的水体细菌群落动态研究提供参考依据。

    Abstract:

    [Background] Bacteria are the main drivers in lake ecosystems, and their community structure is highly responsive to the environmental changes in the lake. The special geographical location and high altitude environment of Bangong Lake have shaped a unique microbial ecosystem. However, little is known about the bacteria in this lake. [Objective] To explore the bacterial diversity and distribution pattern in Bangong Lake in the Ali region, we collected samples at 20 sites in the east bank, west bank, center, and bottom of this lake in September 2023. [Methods] The 16S rDNA high-throughput sequencing was performed for the samples, and the α diversity of the microorganisms was measured. The Spearman’s correlation analysis was conducted between the physicochemical properties of water and the α diversity of microorganisms. [Results] A total of 14 886 operational taxonomic units (OTUs) were yielded, indicating 470 genera of 47 phyla. The bacterial community in Bangong Lake was mainly composed of Proteobacteria, Actinomycetota, Bacteroidota, and Verrucomicrobiota. The community had high diversity and richness, with a complex structure. The Spearman correlation coefficient indicated that total phosphorus and electrical conductivity were the main environmental factors affecting the bacteria in Bangong Lake. [Conclusion] This paper clarifies the diversity and distribution pattern of bacteria in Bangong Lake and reveals the water physicochemical factors influencing the bacterial community. The findings provide a reference for studying the dynamics of bacteria after the narrowing or expansion of Bangong Lake in the future.

    参考文献
    [1] 陈辉, 赵丽萍, 陈犇, 王雨萌, 牛伟玲, 孙红艳. 青藏高原物候研究的热点和趋势: 基于CiteSpace可视化分析[J]. 河北师范大学学报(自然科学版), 2023, 47(1): 1-10. CHEN H, ZHAO LP, CHEN B, WANG YM, NIU WL, SUN HY. Hotspots and trends of phenology studies in Qinghai-Xizang Plateau: visual analysis based on citespace[J]. Journal of Hebei Normal University (Natural Science), 2023, 47(1): 1-10(in Chinese).
    [2] 万宏滨, 周娟, 罗端, 杨浩, 黄昌春, 黄涛. 长江中游湖泊表层沉积物多环芳烃的分布、来源特征及其生态风险评价[J]. 湖泊科学, 2020, 32(6): 1632-1645. WAN HB, ZHOU J, LUO D, YANG H, HUANG CC, HUANG T. Distribution, source characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments of lakes along the middle reaches of the Yangtze River[J]. Journal of Lake Sciences, 2020, 32(6): 1632-1645(in Chinese).
    [3] 高继宗. 破解“世界屋脊” 的救灾难题[J]. 中国减灾, 2012(4): 56-58.
    [4] 马荣华, 杨桂山, 段洪涛, 姜加虎, 王苏民, 冯学智, 李爱农, 孔繁翔, 薛滨, 吴敬禄, 李世杰. 中国湖泊的数量、面积与空间分布[J]. 中国科学(地球科学), 2011, 41(3): 394-401.
    [5] 杨桂山, 马荣华, 张路, 姜加虎, 姚书春, 张民, 曾海鳌. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810. YANG GS, MA RH, ZHANG L, JIANG JH, YAO SC, ZHANG M, ZENG HA. Lake status, major problems and protection strategy in China[J]. Journal of Lake Sciences, 2010, 22(6): 799-810(in Chinese).
    [6] 周章金, 樊瑶. 西藏构建国家高原产业科技创新中心的思路及对策研究[J]. 西藏民族大学学报(哲学社会科学版), 2019, 40(4): 138-143. ZHOU ZJ, FAN Y. Construction of national industrial science and technology innovation center in Xizang[J]. Journal of Xizang Minzu University (Philosophy and Social Sciences Edition), 2019, 40(4): 138-143(in Chinese).
    [7] 中国五大咸水湖[J]. 中国水能及电气化, 2019(7): 69-70. Five Great Salt Water Lakes in China[J]. China Water Power & Electrification, 2019(7): 69-70(in Chinese).
    [8] 王有兵, 姜健发, 杨建军, 刘起斌, 代万, 罗燕彬, 李子光. 高山微水体空间分布格局研究: 以白马雪山国家级自然保护区为例[J]. 人民长江, 2020, 51(7): 71-74. WANG YB, JIANG JF, YANG JJ, LIU QB, DAI W, LUO YB, LI ZG. Study on spatial distribution pattern of high mountain micro-waterbodies: case study of Baima Snow Mountain National Nature Reserve[J]. Yangtze River, 2020, 51(7): 71-74(in Chinese).
    [9] 罗燕彬, 王有兵, 杨建军, 李春叶. 滇西北地表水体空间分布多样性研究[J]. 防护林科技, 2020(11): 46-49. LUO YB, WANG YB, YANG JJ, LI CY. Spatial distribution diversity of surface water body in northwestern Yunnan Province[J]. Protection Forest Science and Technology, 2020(11): 46-49(in Chinese).
    [10] 张洪源, 吴艳红, 刘衍君, 郭立男. 近20年青海湖水量变化遥感分析[J]. 地理科学进展, 2018, 37(6): 823-832. ZHANG HY, WU YH, LIU YJ, GUO LN. Water storage variation of the Qinghai Lake in recent decades based on satellite observation[J]. Progress in Geography, 2018, 37(6): 823-832(in Chinese).
    [11] 万玮, 肖鹏峰, 冯学智, 李晖, 马荣华, 段洪涛, 赵利民. 卫星遥感监测近30年来青藏高原湖泊变化[J]. 科学通报, 2014, 59(8): 701-714. WAN W, XIAO PF, FENG XZ, LI H, MA RH, DUAN HT, ZHAO LM. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 2014, 59(8): 701-714(in Chinese).
    [12] 尼玛扎西, 扎西南美, 申奋飞, 贡觉巴桑. 班公湖水位变化模拟及影响因素分析[J]. 水利水电技术(中英文), 2022, 53(S2): 95-99. NIMA ZX, ZHAXI NM, SHEN FF, GONGJUE BS. Simulation of water level change in Bangong Lake and analysis of influencing factors[J]. Water Resources and Hydropower Engineering, 2022, 53(S2): 95-99(in Chinese).
    [13] 黄峻川, 严步青, 刘沛. 班公湖流域水化学特征及主控因素分析[J]. 地质与资源, 2023, 32(4): 453-461, 479. HUANG JC, YAN BQ, LIU P. Hydrochemical characteristics and main controlling factors in bangong lake basin[J]. Geology and Resources, 2023, 32(4): 453-461, 479(in Chinese).
    [14] 王丽. 与天堂偶遇: 班公湖, 地球上海拔最高的“鸟岛”[J]. 劳动保障世界, 2020(22): 70-71.
    [15] 李忠东, 向文军. 天上的阿里四条重量级山脉汇聚下的斑斓大地[J]. 资源与人居环境, 2019(5): 22-29.
    [16] 卢志. 聚合氯化铝和聚合硫酸铁处理水效果的研究[D]. 贵阳: 贵州大学硕士学位论文, 2009.
    [17] 常亚茹, 张继贤, 韩文立, 丁夏萌, 张越. 利用Sentinel-1A数据的纳木错湖面月际变化监测[J]. 遥感信息, 2022, 37(2): 45-52. CHANG YR, ZHANG JX, HAN WL, DING XM, ZHANG Y. Monitoring inter-monthly change of namtso lake surface using sentinel-1A data[J]. Remote Sensing Information, 2022, 37(2): 45-52(in Chinese).
    [18] 张佩莲, 张含笑, 霍守亮, 李怡, 张靖天, 翁南燕. 青藏高原不同盐度湖泊细菌群落多样性及DOM分布特征[J]. 环境科学学报, 2024, 44(5): 158-168. ZHANG PL, ZHANG HX, HUO SL, LI Y, ZHANG JT, WENG NY. Bacterial diversity and DOM composition distribution in lakes with different salinity levels on Qinghai-Tibetan Plateau[J]. Acta Scientiae Circumstantiae, 2024, 44(5): 158-168(in Chinese).
    [19] 王丹丹, 黄跃飞, 杨海娇. 青藏高原东北部湖泊细菌群落结构特征季节性差异及驱动机制[J]. 湖泊科学, 2023, 35(1): 267-278. WANG DD, HUANG YF, YANG HJ. Seasonal differences of lake bacterial community structures and their driving mechanisms in the northeastern of the Qinghai-Xizang Plateau[J]. Journal of Lake Sciences, 2023, 35(1): 267-278(in Chinese).
    [20] 孟华旦尚, 薛曌, 郭小芳, 德吉. 西藏纳木错沿岸表层水体浮游细菌群落结构及生态功能预测[J]. 冰川冻土, 2023, 45(1): 254-266. MENG H, XUE Z, GUO XF, DE J. Structure of bacterioplanktonic community and ecological function prediction in coastal surface water of Nam Co lake, Xizang[J]. Journal of Glaciology and Geocryology, 2023, 45(1): 254-266(in Chinese).
    [21] 沈丽新, 王思鹏, 梁春玲, 张化俊, 王凯, 彭欣, 刘俊峰, 张德民. 三门湾微型浮游生物丰度的时空变化特征[J]. 海洋学报, 2018, 40(2): 117-126. SHEN LX, WANG SP, LIANG CL, ZHANG HJ, WANG K, PENG X, LIU JF, ZHANG DM. The temporal and spatial variation of microplankton abundance in Sanmen Bay[J]. Haiyang Xuebao, 2018, 40(2): 117-126(in Chinese).
    [22] 陆洋, 郁二蒙, 谢骏, 王广军, 张凯, 李志斐. 添加芽孢杆菌对池塘中理化因子和细菌群落结构的影响分析[J]. 水产学报, 2020, 44(1): 130-141. LU Y, YU EM, XIE J, WANG GJ, ZHANG K, LI ZF. Analysis of the effect of adding Bacillus on the physicochemical factors and bacterial community structure in ponds[J]. Journal of Fisheries of China, 2020, 44(1): 130-141(in Chinese).
    [23] 王艳红, 郝兆, 薛文凯, 孟华旦尚, 德吉, 郭小芳. 纳木措不同水文期水体酵母菌影响因素分析[J]. 中国环境科学, 2023, 43(4): 2028-2038. WANG YH, HAO Z, XUE WK, MENG H, DE J, GUO XF. Environmental factors affecting yeast community structure during different hydrological periods in Nam Co Lake[J]. China Environmental Science, 2023, 43(4): 2028-2038(in Chinese).
    [24] 刘晓辉, 王健鑫, 王帅兵, 樊英萍, 俞凯成, 蒋然, 刘明华. 长江口及邻近海域表层海水细菌多样性及群落结构[J]. 海洋与湖沼, 2015, 46(6): 1531-1541. LIU XH, WANG JX, WANG SB, FAN YP, YU KC, JIANG R, LIU MH. Bacterial diversity and community structure in surface seawater of Changjiang river estuary and adjacent areas[J]. Oceanologia et Limnologia Sinica, 2015, 46(6): 1531-1541(in Chinese).
    [25] 张秋卓, 毛映丹, 杨洁, 徐亚同, 朱文杰. 利用ATP生物发光法快速检测丽娃河中细菌总数[J]. 环境科学与技术, 2011, 34(7): 152-155. ZHANG QZ, MAO YD, YANG J, XU YT, ZHU WJ. Fast examination of total bacteria count in liwa creek by ATP bioluminescence method[J]. Environmental Science & Technology, 2011, 34(7): 152-155(in Chinese).
    [26] 真翎, 谢蓉蓉, 石成春, 刘继辉, 江华, 李家兵, 陈锦, 田开迪. 夏季水口水库近坝段水质变化及其影响因素分析[J]. 生态与农村环境学报, 2023, 39(7): 943-953. ZHEN L, XIE RR, SHI CC, LIU JH, JIANG H, LI JB, CHEN J, TIAN KD. Study on water quality variation and the influencing factors of near-dam section of Shuikou Reservoir in summer[J]. Journal of Ecology and Rural Environment, 2023, 39(7): 943-953(in Chinese).
    [27] 顾颖, 伏光辉, 王亚东, 叶仁智, 卢璐, 孙苗苗. 基于高通量测序的海州湾沉积物中微生物多样性分析[J]. 南方农业, 2024, 18(3): 1-5, 26, 293. GU Y, FU GH, WANG YD, YE RZ, LU L, SUN MM. Analysis of microbial diversity in the sediments of Haizhou Bay based on high-throughput sequencing[J]. South China Agriculture, 2024, 18(3): 1-5, 26, 293(in Chinese).
    [28] BOKULICH NA, SUBRAMANIAN S, FAITH JJ, GEVERS D, GORDON JI, KNIGHT R, MILLS DA, GREGORY CAPORASO J. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1): 57-59.
    [29] EDGAR RC, HAAS BJ, CLEMENTE JC, QUINCE C, KNIGHT R. UCHIME improves sensitivity and speed of Chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
    [30] EDGAR RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
    [31] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [32] HERR JR, OPIK M, HIBBETT DS. Towards the unification of sequence-based classification and sequence-based identification of host-associated microorganisms[J]. New Phytologist, 2015, 205(1): 27-31.
    [33] MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [34] 陆作海, 杨国宁, 姜伟昌, 袁佳丽, 赵全胜. 基于模糊逻辑的地表水水质分析[J]. 水利技术监督, 2023, 31(5): 25-28. LU ZH, YANG GN, JIANG WC, YUAN JL, ZHAO QS. Analysis of surface water quality based on fuzzy logic[J]. Technical Supervision in Water Resources, 2023, 31(5): 25-28(in Chinese).
    [35] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002. State Environmental Protection Administration of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press, 2002(in Chinese).
    [36] 孟华旦尚, 薛文凯, 薛曌, 王艳红, 郑艳艳, 德吉, 郭小芳. 纳木措湖沿岸表层水细菌群落特征及影响因素[J]. 生物资源, 2022, 44(5): 432-444. MENG H, XUE WK, XUE Z, WANG YH, ZHENG YY, DEJI, GUO XF. Characteristics and effective factors of bacterial community in surface water along the coast of Namtso lake[J]. Biotic Resources, 2022, 44(5): 432-444(in Chinese).
    [37] 张炜, 周欣雅, 马凯丽, 李华, 虞功亮, 敖鸿毅, 霍达. 青海湖主湖区与湖水淹没区的细菌群落结构差异分析[J]. 水生生物学报, 2022, 46(12): 1807-1815. ZHANG W, ZHOU XY, MA KL, LI H, YU GL, AO HY, HUO D. The difference in bacterial community structure between the main stream area and the lake inundation area of Qinghai lake[J]. Acta Hydrobiologica Sinica, 2022, 46(12): 1807-1815(in Chinese).
    [38] 徐超群, 薛俊增, 王琼, 吴惠仙. 内蒙古岱海湖的细菌多样性分析[J]. 海洋湖沼通报, 2023, 45(6): 75-82. XU CQ, XUE JZ, WANG Q, WU HX. Study on microbial diversity in Daihai Lake, Inner Mongolia[J]. Transactions of Oceanology and Limnology, 2023, 45(6): 75-82(in Chinese).
    [39] VAZ-MOREIRA I, NUNES OC, MANAIA CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome[J]. FEMS Microbiology Reviews, 2014, 38(4): 761-778.
    [40] 朱秀秀, 彭成林, 侣国涵, 沙爱华, 袁家富, 赵书军, 徐大兵. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响[J]. 土壤通报, 2021, 52(5): 1121-1128. ZHU XX, PENG CL, LÜ GH, SHA AH, YUAN JF, ZHAO SJ, XU DB. Effect of rice-crayfish integrated system on soil bacterial community structure and diversity in paddy field[J]. Chinese Journal of Soil Science, 2021, 52(5): 1121-1128(in Chinese).
    [41] 冯胜, 秦伯强, 高光. 细菌群落结构对水体富营养化的响应[J]. 环境科学学报, 2007, 27(11): 1823-1829. FENG S, QIN BQ, GAO G. Response of bacterial communities to eutrophic water in Lake Taihu[J]. Acta Scientiae Circumstantiae, 2007, 27(11): 1823-1829(in Chinese).
    [42] 刘静, 张欣, 沈国平, 封希媛, 龙启福, 朱德锐. 青藏高原小柴旦盐湖微生物群落结构及多样性[J]. 水生态学杂志, 2017, 38(5): 55-64. LIU J, ZHANG X, SHEN GP, FENG XY, LONG QF, ZHU DR. Microbial community structure and diversity of Xiaochaidan salt lake on the Tibetan Plateau[J]. Journal of Hydroecology, 2017, 38(5): 55-64(in Chinese).
    [43] XIA PH, YAN DB, SUN RG, SONG X, LIN T, YI Y. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China[J]. Science of the Total Environment, 2020, 727: 138398.
    [44] LIU KS, LIU YQ, HAN BP, XU BQ, ZHU LP, JU JT, JIAO NZ, XIONG JB. Bacterial community changes in a glacial-fed Tibetan lake are correlated with glacial melting[J]. Science of the Total Environment, 2019, 651(Pt 2): 2059-2067.
    [45] PINHASSI J, GÓMEZ-CONSARNAU L, ALONSO- SÁEZ L, SALA MM, VIDAL M, PEDRÓS-ALIÓ C, GASOL JM. Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea[J]. Aquatic Microbial Ecology, 2006, 44: 241-252.
    [46] 郑艳艳, 郭小芳, 四郎玉珍, 德吉. 青藏高原纳木错夏季沿岸水体可培养细菌多样性及其与理化因子的相关性[J]. 冰川冻土, 2023, 45(1): 243-253. ZHENG YY, GUO XF, SI L, Deji. Diversity of culturable bacteria and its correlation with physicochemical factors in summer coastal waters of Nam Co, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2023, 45(1): 243-253(in Chinese).
    [47] 赵华, 张先智, 肖娴. 氮磷营养盐控制与湖泊蓝藻水华治理研究进展[J]. 环境科学导刊, 2021, 40(3): 12-15. ZHAO H, ZHANG XZ, XIAO X. Progress on treatment of cyanobacterial bloom and nutrient control[J]. Environmental Science Survey, 2021, 40(3): 12-15(in Chinese).
    [48] HALEMEJKO GZ, CHRÓST R. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms[J]. Archiv Fur Hydrobiologie, 1984, 101: 489-502.
    [49] HUDSON JJ, TAYLOR WD. Measuring regeneration of dissolved phosphorus in planktonic communities[J]. Limnology and Oceanography, 1996, 41(7): 1560-1565.
    [50] SIMON M, GROSSART HP, SCHWEITZER B, PLOUG H. Microbial ecology of organic aggregates in aquatic ecosystems[J]. Aquatic Microbial Ecology, 2002, 28: 175-211.
    [51] 万永鹏, 邱小琮, 尹娟, 赵睿智, 赵增峰, 李霖. 阅海湖浮游细菌群落结构特征及其驱动因子[J]. 环境监测管理与技术, 2023, 35(6): 42-48. WAN YP, QIU XC, YIN J, ZHAO RZ, ZHAO ZF, LI L. Characteristics and driving factors of bacterioplankton community structure in Yuehai Lake[J]. The Administration and Technique of Environmental Monitoring, 2023, 35(6): 42-48(in Chinese).
    [52] 杜蕾, 李畅游, 李文宝, 史小红, 杨旭, 刘晶晶. 夏季达里诺尔湖浮游细菌群落表、底层结构特征及其关键驱动因子[J]. 生态科学, 2021, 40(6): 13-20. DU L, LI CY, LI WB, SHI XH, YANG X, LIU JJ. Surface and bottom characteristics of bacterioplankton community in summer Dali-nor Lake and its key driving factors[J]. Ecological Science, 2021, 40(6): 13-20(in Chinese).
    [53] 邹沈娟, 尹立强, 赵博礼, 肖思进, 陈培培, 魏蒲生, 马徐发. 大冶湖浮游细菌群落结构及其环境影响因子研究[J]. 长江流域资源与环境, 2020, 29(2): 360-368. ZOU SJ, YIN LQ, ZHAO BL, XIAO SJ, CHEN PP, WEI PS, MA XF. Study on bacterioplankton communities composition and the related environmental factors in the Daye Lake[J]. Resources and Environment in the Yangtze Basin, 2020, 29(2): 360-368(in Chinese).
    [54] 程豹, 望雪, 徐雅倩, 杨正健, 刘德富, 马骏. 澜沧江流域浮游细菌群落结构特征及驱动因子分析[J]. 环境科学, 2018, 39(8): 3649-3659. CHENG B, WANG X, XU YQ, YANG ZJ, LIU DF, MA J. Bacterioplankton community structure in the Lancang River Basin and the analysis of its driving environmental factors[J]. Environmental Science, 2018, 39(8): 3649-3659(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王东旭,周迪,陈康,熊仁康,陈博,罗央措姆,德吉,郭小芳. 班公湖水体细菌多样性和群落分布格局[J]. 微生物学通报, 2025, 52(3): 992-1012

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-17
  • 录用日期:2024-07-27
  • 在线发布日期: 2025-03-19
文章二维码