科微学术

微生物学通报

大肠杆菌LG101生物合成L-丙氨酸特征及作为细胞增殖调控节点的研究
作者:
基金项目:

天津市杰出人才计划(JC20200309);国家重点研发计划政府间国际科技创新合作重点专项项目(2018YFE0100400)


Biosynthetic pathways of l-alanine and their role in the regulation of cell proliferation in Escherichia coli LG101
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】 细胞增殖可控是实现发酵自动控制的重要策略之一,通过对关键营养物可控供给可方便实施细胞增殖调控。【目的】 以l-乳酸单体生产菌株大肠杆菌(Escherichia coli) LG101为起始菌株,系统解析其l-丙氨酸生物合成的特征及作为细胞增殖调控节点的可行性。【方法】 在全面分析菌株l-丙氨酸生物合成途径组成特征的基础上,采用基因重组技术敲除l-丙氨酸合成途径基因(avtAalaAalaC)获得系列突变株,通过摇瓶和发酵罐发酵检验菌体代谢与生理变化。【结果】 大肠杆菌基因组中同时存在至少3条l-丙氨酸生物合成途径,其中2条合成途径以同样是乳酸单体合成前体的丙酮酸为前体物。对相关编码基因进行删除突变,获得了突变株LG101A (LG101 ΔavtA)、LG102 (LG101 ΔalaA ΔalaC)和LG103 (LG101 ΔalaA ΔalaC ΔavtA)。摇瓶培养下,突变株LG101A和LG102的细胞增殖特征与出发菌株无明显差异,突变株LG103则表现为l-丙氨酸营养缺陷型,并且其细胞增殖与l-丙氨酸补加量间呈现剂量依赖性正相关关系。进一步在5 L发酵罐评估菌株LG103的生理与代谢性能。菌株LG103可在补加l-丙氨酸后恢复细胞增殖,并且发酵结束时的发酵液中l-丙氨酸水平(0.12 g/L)显著低于出发菌株(0.92 g/L)。【结论】 大肠杆菌LG101过量合成和积累l-丙氨酸,主要通过以谷氨酸和缬氨酸为氨基供体的还原反应进行生物合成,相应合成途径去除后的突变菌株,呈现l-丙氨酸营养缺陷型并呈现剂量依赖关系,可作为大肠杆菌发酵生产主要化合物如乳酸单体时高效控制细胞增殖的营养开关。

    Abstract:

    [Background] Controllable cell proliferation is one of the important strategies for achieving automatic control of fermentation. It can be easily implemented by the controlled supply of key nutrients. [Objective] To analyze the characteristics of l-alanine biosynthesis in the l-lactic acid-producing strain Escherichia coli LG101 and explore the feasibility of taking l-alanine biosynthesis as a node to regulate cell proliferation. [Methods] We employed site-specific recombination to obtain mutants by deleting the corresponding genes (avtA, alaA, alaC) of the l-alanine biosynthesis pathway on the basis of comprehensively analyzing the l-alanine biosynthesis pathway. Shake-flask and bioreactor experiments were carried out to examine the physiological and metabolic differences between the original strain and the mutants. [Results] There were at least three l-alanine biosynthesis pathways in the genome of E.coli, two of which utilized pyruvate (also the precursor for the synthesis of lactic acid) as a precursor. The relevant coding genes were deleted, and mutants LG101A (LG101 DavtA), LG102 (LG101 DalaA DalaC) and LG103 (LG101 DalaA DalaC DavtA) were obtained. In shake-flask culture, the cell proliferation of the mutants LG101A and LG102 was not significantly different from that of the original strain. However, the mutant LG103 was l-alanine auxotrophic, and its proliferation presented a positive dose-dependent correlation with l-alanine supplementation. The physiological and metabolic properties of strain LG103 were further analyzed and evaluated in a 5 L fermenter. The strain LG103 restored cell proliferation after supplementation of l-alanine, and the accumulation of l-alanine (0.12 g/L) in the fermentation broth at the end of fermentation was significantly lower than that (0.92 g/L) of the original strain. [Conclusion] E.coli LG101 over-synthesizes and accumulates l-alanine through the reduction reaction with glutamate and valine as amino donors. The mutants with removal of the corresponding synthetic pathways became l-alanine auxotrophic and their proliferation showcased a dose-dependent relationship with l-alanine supplementation. The findings suggest that l-alanine synthesis can be utilized as a nutrient switch to control cell proliferation during the fermentation of E.coli for production of major compounds such as lactic acid.

    参考文献
    [1] 王正祥. 我国聚乳酸产业发展现状与对策研究[J]. 中国工程科学, 2021, 23(6): 155-166. WANG ZX. China’s polylactic acid industry: current status and development strategies[J]. Strategic Study of CAE, 2021, 23(6): 155-166(in Chinese).
    [2] TIAN KM, NIU DD, LIU XG, PRIOR BA, ZHOU L, LU FP, SINGH S, WANG ZX. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient d-lactate formation[J]. Biotechnology and Bioengineering, 2016, 113(1): 182-188.
    [3] YAN CX, GAO N, CAO X, YAO L, ZHOU YJ, GAO JQ. Auxotrophs compromise cell growth and fatty acid production in Saccharomyces cerevisiae[J]. Biotechnology Journal, 2023, 18(4): e2200510.
    [4] ZHU JJ, THOMPSON CB. Metabolic regulation of cell growth and proliferation[J]. Nature Reviews Molecular Cell Biology, 2019, 20: 436-450.
    [5] 孟帅帅, 黄钦耿, 吴松刚, 刘峰. 丙氨酸转氨酶修饰对大肠杆菌l-色氨酸合成的影响[J]. 生物技术通报, 2020, 36(1): 66-72. MENG SS, HUANG QG, WU SG, LIU F. Effects of modification of alanine aminotransferase on synthesis of l-tryptophan in Escherichia coli[J]. Biotechnology Bulletin, 2020, 36(1): 66-72(in Chinese).
    [6] PEÑA-SOLER E, FERNANDEZ FJ, LÓPEZ-ESTEPA M, GARCES F, RICHARDSON AJ, QUINTANA JF, RUDD KE, COLL M, VEGA MC. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major l-alanine transaminases of Escherichia coli[J]. PLoS One, 2014, 9(7): e102139.
    [7] REITZER L. Biosynthesis of glutamate, aspartate, asparagine, l-alanine, and d-alanine[J]. EcoSal Plus, 2004. DOI: 10.1128/ecosalplus.3.6.1.3.
    [8] MISHIMA H, WATANABE H, UCHIGASAKI K, SHIMODA S, SEKI S, KUMAGAI T, NOCHI T, ANDO T, YONEYAMA H. l-alanine prototrophic suppressors emerge from l-alanine auxotroph through stress-induced mutagenesis in Escherichia coli[J]. Microorganisms, 2021, 9(3): 472.
    [9] FALKINHAM JO 3rd. Identification of a mutation affecting an alanine-alpha-ketoisovalerate transaminase activity in Escherichia coli K-12[J]. Molecular & General Genetics, 1979, 176(1): 147-149.
    [10] WANG MD, LIU L, WANG BM, BERG CM. Cloning and characterization of the Escherichia coli K-12 alanine-valine transaminase (avtA) gene[J]. Journal of Bacteriology, 1987, 169(9): 4228-4234.
    [11] KIM SH, SCHNEIDER BL, REITZER L. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli[J]. Journal of Bacteriology, 2010, 192(20): 5304-5311.
    [12] YONEYAMA H, HORI H, LIM SJ, MURATA T, ANDO T, ISOGAI E, KATSUMATA R. Isolation of a mutant auxotrophic for l-alanine and identification of three major aminotransferases that synthesize l-alanine in Escherichia coli[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(5): 930-938.
    [13] MIHARA H, ESAKI N. Bacterial cysteine desulfurases: their function and mechanisms[J]. Applied Microbiology and Biotechnology, 2002, 60(1): 12-23.
    [14] 周丽, 田康明, 左志锐, 陈献忠, 石贵阳, Suren Singh, 王正祥. 大肠杆菌琥珀酸和乙酸合成途径的删除及其重组菌株的d-乳酸发酵[J]. 生物工程学报, 2011, 27(1): 31-40. ZHOU L, TIAN KM, ZUO ZR, CHEN XZ, SHI GY, SINGH S, WANG ZX. Elimination of succinate and acetate synthesis in recombinant Escherichia coli for d-lactate production[J]. Chinese Journal of Biotechnology, 2011, 27(1): 31-40(in Chinese).
    [15] NIU DD, TIAN KM, PRIOR BA, WANG M, WANG ZX, LU FP, SINGH S. Highly efficient l-lactate production using engineered Escherichia coli with dissimilar temperature optima for l-lactate formation and cell growth[J]. Microbial Cell Factories, 2014, 13: 78.
    [16] ZHOU L, NIU DD, TIAN KM, CHEN XZ, PRIOR BA, SHEN W, SHI GY, SINGH S, WANG ZX. Genetically switched d-lactate production in Escherichia coli[J]. Metabolic Engineering, 2012, 14(5): 560-568.
    [17] 周丽, 牛丹丹, 李宁, 陈献忠, 石贵阳, 王正祥. 基于Red重组系统和Xer重组系统的大肠杆菌多基因删除方法[J]. 微生物学通报, 2010, 37(6): 923-928. ZHOU L, NIU DD, LI N, CHEN XZ, SHI GY, WANG ZX. Multiple gene inactivation approach in Escherichia coli mediated by a combination of Red recombination and Xer recombination[J]. Microbiology China, 2010, 37(6): 923-928(in Chinese).
    [18] 王正祥. 微生物遗传育种[M]. 北京: 高等教育出版社, 2020: 168. WANG ZX. Genetic Breeding of Microorganisms[M]. Beijing: Higher Education Press, 2020: 168(in Chinese).
    [19] 诸葛健, 王正祥. 工业微生物实验技术手册[M]. 北京: 中国轻工业出版社, 1994. ZHU GJ, WANG ZX. Technical manual of industrial microbiology experiment[M]. Beijing: China Light Industry Press, 1994(in Chinese).
    [20] SZERMER-OLEARNIK B, SOCHOCKA M, ZWOLIŃSKA K, CIEKOT J, CZARNY A, SZYDZIK J, KOWALSKI K, BORATYŃSKI J. Comparison of microbiological and physicochemical methods for enumeration of microorganisms[J]. Advances in Hygiene and Experimental Medicine, 2014, 68: 1392-1396.
    相似文献
    引证文献
引用本文

韩梦圆,王萌,高明亮,张濛,牛丹丹,王正祥. 大肠杆菌LG101生物合成L-丙氨酸特征及作为细胞增殖调控节点的研究[J]. 微生物学通报, 2025, 52(3): 980-991

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-06
  • 录用日期:2024-06-02
  • 在线发布日期: 2025-03-19
文章二维码