科微学术

微生物学通报

细菌单细胞测序技术研究进展
作者:
基金项目:

国家重点研发计划(2021YFF0600805)


Advances in bacterial single-cell sequencing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • | | | |
  • 文章评论
    摘要:

    细菌群体中细胞间的异质性是决定细菌耐药性和毒力上的关键因素,并在宿主与病原体间的相互作用中起着至关重要的作用,为细菌性感染病的防治带来了重大挑战。单细胞测序是检测细胞异质性的有力工具,但由于细菌独特的生物学特性,如基因组较小、mRNA含量低、半衰期短、无PolyA尾、转录组中rRNA占比高和细胞壁厚等,使得基于真核细胞的单细胞测序方法不能应用于细菌。为了克服这些障碍并促进单细胞技术在细菌研究领域的发展,研究人员成功研发了适用于细菌的单细胞测序方法。本文系统综述了近年来提出的细菌单细胞转录组测序和基因组测序技术,描述了其特点并着重分析了这些技术在揭示细菌耐药性方面的应用,旨在为相关研究提供新的视角。细菌单细胞测序可以深入揭示细菌异质性,提高疾病诊断和治疗的准确性,为细菌学和感染病学的研究提供支持。

    Abstract:

    Intercellular heterogeneity in bacterial populations is a crucial factor determining bacterial antibiotic resistance and virulence and plays a key role in host-pathogen interactions, posing a major challenge to the control of bacterial infections. Single-cell sequencing is a powerful tool for detecting cellular heterogeneity. However, bacteria have unique biological characteristics such as small genomes, low cellular mRNA contents, and high proportion of rRNAs in the transcriptome, short half-life, polyA tail-lacking mRNA transcripts, and thick cell walls, making the eukaryote-based single-cell sequencing methods impossible to be applied in bacteria. To overcome these obstacles and promote the development of single-cell technology in bacterial research, researchers have successfully developed the single-cell sequencing methods applicable to bacteria. This review systematically summarizes the bacterial single-cell transcriptome sequencing and genome sequencing technologies proposed in recent years, describes their characteristics, and discusses the application prospects of bacterial single-cell sequencing in revealing bacterial drug resistance, aiming to shed light on the subsequent the related research. Bacterial single-cell can deeply reveal bacterial heterogeneity, improve the accuracy of disease diagnosis and treatment, and support microbiological and infectious disease research.

    参考文献
    [1] HUGHES D, ANDERSSON DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance[J]. FEMS Microbiology Reviews, 2017, 41(3): 374-391.
    [2] 王言吉, 容丹, 王佳平, 王海立, 高建义, 韩延平, 杨瑞馥, 李勇枝. 模拟失重环境对大肠杆菌K12表型异质性亚群菌株的影响[J]. 微生物学通报, 2018, 45(10): 2112-2120. WANG YJ, RONG D, WANG JP, WANG HL, GAO JY, HAN YP, YANG RF, LI YZ. Effect of simulated weightlessness on Escherichia coli K12 phenotypic heterogeneous strains[J]. Microbiology China, 2018, 45(10): 2112-2120(in Chinese).
    [3] ANDERSSON DI, NICOLOFF H, HJORT K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nature Reviews Microbiology, 2019, 17: 479-496.
    [4] LI PY, HUANG Y, YU L, LIU YN, NIU WK, ZOU DY, LIU HY, ZHENG J, YIN XY, YUAN J, YUAN X, BAI CQ. Isolation and whole-genome sequence analysis of the imipenem heteroresistant Acinetobacter baumannii clinical isolate HRAB-85[J]. International Journal of Infectious Diseases, 2017, 62: 94-101.
    [5] 王丹蕊, 沈文丽, 魏子艳, 王尚, 邓晔. 单细胞测序技术在微生物生态领域中的应用[J]. 生物技术通报, 2020, 36(10): 237-246. WANG DR, SHEN WL, WEI ZY, WANG S, DENG Y. Applications of single-cell sequencing technology in microbial ecology[J]. Biotechnology Bulletin, 2020, 36(10): 237-246(in Chinese).
    [6] PASSMORE LA, COLLER J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 93-106.
    [7] BRENNAN MA, ROSENTHAL AZ. Single-cell RNA sequencing elucidates the structure and organization of microbial communities[J]. Frontiers in Microbiology, 2021, 12: 713128.
    [8] 陈碧清, 刘细细, 朱学军. 单细胞测序技术在传染病及微生物领域的应用研究进展[J]. 微生物学通报, 2022, 49(11): 4886-4892. CHEN BQ, LIU XX, ZHU XJ. Application of single-cell sequencing in infectious diseases and microbiology: a review[J]. Microbiology China, 2022, 49(11): 4886-4892(in Chinese).
    [9] 夏凯, 刘芳美, 陈雨晴, 陈珊珊, 黄春莹, 赵学群, 沙如意, 黄俊. 基于比较基因组学的解脂亚罗酵母CA20高产赤藓糖醇机理及进化分析[J]. 遗传, 2023, 45(10): 904-921. XIA K, LIU FM, CHEN YQ, CHEN SS, HUANG CY, ZHAO XQ, SHA RY, HUANG J. Mechanism and evolutionary analysis of Yarrowia lipolytica CA20 capable of producing erythritol with a high yield based on comparative genomics[J]. Hereditas (Beijing), 2023, 45(10): 904-921(in Chinese).
    [10] 刘芳美, 夏凯, 彭艳婷, 赵学群, 沙如意, 黄俊. 复合诱变选育高产赤藓糖醇解脂亚罗酵母及其发酵工艺优化[J]. 核农学报, 2023, 37(5): 907-916. LIU FM, XIA K, PENG YT, ZHAO XQ, SHA RY, HUANG J. Breeding of Yarrowia lipolytica strains with improved erythritol production by combined mutation and optimization of fermentation process[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(5): 907-916(in Chinese).
    [11] FAN FF, LIU CY, CAO JR, LYU CJ, QIU S, HU S, SUN TT, MEI JQ, WANG HP, LI Y, ZHAO WR, MEI LH, HUANG J. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling[J]. Journal of Biotechnology, 2023, 364: 66-74.
    [12] XIA K, CHEN YQ, LIU FM, ZHAO XQ, SHA RY, HUANG J. Adaptive responses of erythritol-producing Yarrowia lipolytica to thermal stress after evolution[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 263.
    [13] CAO JR, FAN FF, LYU CJ, HU S, ZHAO WR, MEI JQ, QIU S, MEI LH, HUANG J. Pocket modification of ω-amine transaminase AtATA for overcoming the trade-off between activity and stability toward 1-acetonaphthone[J]. Engineering, 2023, 30: 203-214.
    [14] RONG YW, HASSAN MM, WU JZ, CHEN S, YANG WC, LI YH, ZHU JJ, HUANG J, CHEN QS. Enhanced detection of acrylamide using a versatile solid-state upconversion sensor through spectral and visual analysis[J]. Journal of Hazardous Materials, 2024, 466: 133369.
    [15] RONG YW, HASSAN MM, OUYANG Q, ZHANG YL, WANG L, CHEN QS. An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide[J]. Biosensors & Bioelectronics, 2022, 215: 114581.
    [16] RONG YW, LI HH, OUYANG Q, ALI S, CHEN QS. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2020, 239: 118500.
    [17] RONG YW, ALI S, OUYANG Q, WANG L, LI HH, CHEN QS. Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food[J]. Journal of Food Composition and Analysis, 2021, 100: 103929.
    [18] LI HH, AHMAD W, RONG YW, CHEN QS, ZUO M, OUYANG Q, GUO ZM. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food[J]. Food Control, 2020, 107: 106761.
    [19] WESTERMANN AJ, VOGEL J. Cross-species RNA-seq for deciphering host–microbe interactions[J]. Nature Reviews Genetics, 2021, 22: 361-378.
    [20] IMDAHL F, VAFADARNEJAD E, HOMBERGER C, SALIBA AE, VOGEL J. Single-cell RNA-sequencing reports growth-condition-specific global transcripK, TAKAHASHI K, IDE K, YURA K, BEHZAD H, GOJOBORI T, TAKEYAMA H. Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater[J]. ISME Communications, 2022, 2: 92.
    [40] HOSOKAWA M, ENDOH T, KAMATA K, ARIKAWA K, NISHIKAWA Y, KOGAWA M, SAEKI T, YODA T, TAKEYAMA H. Strain-level profiling of viable microbial community by selective single-cell genome sequencing[J]. Scientific Reports, 2022, 12: 4443.
    [41] KOGAWA M, NISHIKAWA Y, SAEKI T, YODA T, ARIKAWA K, TAKEYAMA H, HOSOKAWA M. Revealing within-species diversity in uncultured human gut bacteria with single-cell long-read sequencing[J]. Frontiers in Microbiology, 2023, 14: 1133917.IV ZHEJIANG, HANGZHOU YUEZHEN BIOTECHNOLOGY CO LTD. High-throughput single-cell transcriptome sequencing method and use thereof: CN, WO2023221842A1[P]. 2023.11.23.
    [25] MCNULTY R, SRITHARAN D, PAHNG SH, MEISCH JP, LIU SC, BRENNAN MA, SAXER G, HORMOZ S, ROSENTHAL AZ. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation[J]. Nature Microbiology, 2023, 8: 934-945.
    [26] WANG B, LIN AE, YUAN JY, NOVAK KE, KOCH MD, WINGREEN NS, ADAMSON B, GITAI Z. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection[J]. Nature Microbiology, 2023, 8: 1846-1862.
    [27] XU ZY, WANG YT, SHENG KW, ROSENTHAL R, LIU N, HUA XT, ZHANG TY, CHEN JY, SONG MD, LV YX, ZHANG SJ, HUANG YJ, WANG ZL, CAO T, SHEN YF, JIANG Y, YU YS, CHEN Y, GUO GJ, YIN P, WEITZ DA, WANG YC. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq[J]. Nature Communications, 2023, 14: 5130.
    [28] SHENG KW, CAO WJ, NIU YC, DENG Q, ZONG CH. Effective detection of variation in single-cell transcriptomes using MATQ-seq[J]. Nature Methods, 2017, 14: 267-270.
    [29] IMDAHL F, SALIBA AE. Advances and challenges in single-cell RNA-seq of microbial communities[J]. Current Opinion in Microbiology, 2020, 57: 102-110.
    [30] HOMBERGER C, HAYWARD RJ, BARQUIST L, VOGEL J. Improved bacterial single-cell RNA-seq through automated MATQ-seq and Cas9-based removal of rRNA reads[J]. mBio, 2023, 14(2): e0355722.
    [31] ROSENBERG AB, ROCO CM, MUSCAT RA, KUCHINA A, SAMPLE P, YAO ZZ, GRAYBUCK LT, PEELER DJ, MUKHERJEE S, CHEN W, PUN SH, SELLERS DL, TASIC B, SEELIG G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018, 360(6385): 176-182.
    [32] SHAH S, LUBECK E, ZHOU W, CAI L. seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus[J]. Neuron, 2017, 94(4): 752-758.e1.
    [33] HOMBERGER C, BARQUIST L, VOGEL J. Ushering in a new era of single-cell transcriptomics in bacteria[J]. microLife, 2022, 3: uqac020.
    [34] 马素芳, 严景华. 单细胞测序技术及其在传染病研究领域中的应用[J]. 生物产业技术, 2018(2): 85-90. MA SF, YAN JH. Single-cell sequencing technology and its application in infectious disease[J]. Biotechnology & Business, 2018(2): 85-90(in Chinese).
    [35] BAWN M, HERNÁNDEZ J, TRAMPARI E, THILLIEZ G, Quince C, Webber MA, KINGSLEY RA, HALL N, MACAULAY IC. Single-cell genomics reveals population structures from in vitro evolutionary studies of Salmonella[J]. Microbial Genomics, 2022, 8(9): mgen000871.
    [36] 邢磊, 赵圣国, 郑楠, 李松励, 王加启. 未培养微生物分离培养技术研究进展[J]. 微生物学通报, 2017, 44(12): 3053-3066. XING L, ZHAO SG, ZHENG N, LI SL, WANG JQ. Advance in isolation and culture techniques of uncultured microbes: a review[J]. Microbiology China, 2017, 44(12): 3053-3066(in Chinese).
    [37] ZHENG WS, ZHAO SJ, YIN YH, ZHANG HD, NEEDHAM DM, EVANS ED, DAI CL, LU PJ, ALM EJ, WEITZ DA. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome[J]. Science, 2022, 376(6597): eabm1483.
    [38] CHIJIIWA R, HOSOKAWA M, KOGAWA M, NISHIKAWA Y, IDE K, SAKANASHI C, TAKAHASHI K, TAKEYAMA H. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota[J]. Microbiome, 2020, 8(1): 5.
    [39] NISHIKAWA Y, KOGAWA M, HOSOKAWA M, WAGATSUMA R, MINETA
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘毛毛,陈欢,高原,赵蓓蓓,荣雅文,黄俊. 细菌单细胞测序技术研究进展[J]. 微生物学通报, 2025, 52(1): 101-113

复制
分享
文章指标
  • 点击次数:56
  • 下载次数: 90
  • HTML阅读次数: 77
  • 引用次数: 0
历史
  • 收稿日期:2024-04-08
  • 录用日期:2024-05-30
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码