科微学术

微生物学通报

禾谷炭疽菌G蛋白α亚基CgrGa3调控营养生长、胁迫响应、孢子产生和致病性
作者:
基金项目:

国家自然科学基金(32160041)


G protein α subunit CgrGa3 regulates vegetative growth, stress responses, conidial production, and pathogenicity of Colletotrichum graminicola
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 禾谷炭疽菌(Colletotrichum graminicola)是危害玉米(Zea mays)等作物的一种重要病原真菌。异源三聚体G蛋白在丝状真菌信号转导中发挥关键作用,其中Gα亚基是G蛋白的主要组成成分。【目的】 鉴定禾谷炭疽菌中的G蛋白III型Gα亚基CgrGa3,探讨其在该菌生长和发育中的功能。【方法】 通过基因敲除构建其敲除突变体,开展多层次的表型分析,包括菌丝生长、应激响应、孢子产生与萌发及致病性等方面的实验。【结果】 CgrGa3编码一个含有355个氨基酸的蛋白,包含一个G_alpha结构域。CgrGa3缺失突变体表现出菌落生长缓慢,对NaCl、KCl和H2O2更加敏感,卵圆形和镰刀形孢子的产量和萌发率均显著下降,致病力明显减弱;而互补菌株能够恢复以上表型缺陷【结论】 CgrGa3在调控禾谷炭疽菌的营养生长、胁迫响应、无性发育和致病过程中发挥了重要作用。

    Abstract:

    [Background] Colletotrichum graminicola is a pathogenic fungus that poses threats to crops such as Zea mays. Heterotrimeric guanine nucleotide-binding proteins (G proteins) play a crucial role in signal transduction of filamentous fungi, with the G protein α subunit being a major component. [Objective] This study identified the G protein α subunit (group III) CgrGa3 in C. graminicola and investigate its role in the growth and development of this pathogen. [Methods] CgrGa3-deleted mutants were constructed by gene knockout. The phenotypes of the mutants were characterized, including the hyphal growth, stress responses, conidial production, conidial germination, and pathogenicity. [Results] CgrGa3 encoded a protein composed of 355 residues and containing a G_alpha domain. The CgrGa3-deleted mutants exhibited inhibited growth, increased sensitivity to NaCl, KCl and H2O2, and reduced production and germination rates of oval and falcate conidia. Additionally, the pathogenicity of the mutants was markedly weakened. The complementation of this gene restored these phenotypic defects. [Conclusion] CgrGa3 plays a critical role in regulating the vegetative growth, stress responses, asexual development, and pathogenicity of C. graminicola.

    参考文献
    [1] DEAN R, van KAN JAL, PRETORIUS ZA, HAMMOND-KOSACK KE, Di PIETRO A, SPANU PD, RUDD JJ, DICKMAN M, KAHMANN R, ELLIS J, FOSTER GD. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
    [2] De JESUS MIRANDA V, PORTO WF, Da ROCHA FERNANDES G, POGUE R, NOLASCO DO, ARAUJO ACG, COTA LV, de FREITAS CG, DIAS SC, FRANCO OL. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize[J]. Scientific Reports, 2017, 7(1): 2483.
    [3] BERGSTROM GC, NICHOLSON RL. The biology of corn anthracnose: knowledge to exploit for improved management[J]. Plant Disease, 1999, 83(7): 596-608.
    [4] WANG CL, SHIM WB, SHAW BD. The Colletotrichum graminicola striatin orthologue Str1 is necessary for anastomosis and is a virulence factor[J]. Molecular Plant Pathology, 2016, 17(6): 931-942.
    [5] PANACCIONE DG, VAILLANCOURT LJ, HANAU RM. Conidial dimorphism in Colletotrichum graminicola[J]. Mycologia, 1989, 81(6): 876-883.
    [6] De OLIVEIRA SILVA A, FERNANDO DEVASAHAYAM BR, ALIYEVA-SCHNORR L, GLIENKE C, DEISING HB. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola[J]. Fungal Genetics and Biology, 2024, 171: 103876.
    [7] DOU DL, ZHOU JM. Phytopathogen effectors subverting host immunity: different foes, similar battleground[J]. Cell Host & Microbe, 2012, 12(4): 484-495.
    [8] KISHI-KABOSHI M, OKADA K, KURIMOTO L, MURAKAMI S, UMEZAWA T, SHIBUYA N, YAMANE H, MIYAO A, TAKATSUJI H, TAKAHASHI A, HIROCHIKA H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis[J]. The Plant Journal, 2010, 63(4): 599-612.
    [9] MILLIGAN G, KOSTENIS E. Heterotrimeric G-proteins: a short history[J]. British Journal of Pharmacology, 2006, 147(S1): S46-S55.
    [10] NEVES SR, RAM PT, IYENGAR R. G protein pathways[J]. Science, 2002, 296(5573): 1636-1639.
    [11] HAMM HE. The many faces of G protein signaling[J]. Journal of Biological Chemistry, 1998, 273(2): 669-672.
    [12] de VRIES L, ZHENG B, FISCHER T, ELENKO E, FARQUHAR MG. The regulator of G protein signaling family[J]. Annual Review of Pharmacology and Toxicology, 2000, 40: 235-271.
    [13] LI LD, WRIGHT SJ, KRYSTOFOVA S, PARK G, BORKOVICH KA. Heterotrimeric G protein signaling in filamentous fungi[J]. Annual Review of Microbiology, 2007, 61: 423-452.
    [14] GUO LJ, YANG YH, YANG LY, WANG FY, WANG GF, HUANG JS. Functional analysis of the G-protein α subunits FGA1 and FGA3 in the banana pathogen Fusarium oxysporum f. sp. cubense[J]. Physiological and Molecular Plant Pathology, 2016, 94: 75-82.
    [15] STATECZNY D, OPPENHEIMER J, BOMMERT P. G protein signaling in plants: minus times minus equals plus[J]. Current Opinion in Plant Biology, 2016, 34: 127-135.
    [16] 朱攀攀. 桑实杯盘菌异三聚体G蛋白相关基因功能研究及抗病材料创制[D]. 重庆: 重庆大学博士学位论文, 2022. ZHU PP. Functional analyses of heterotrimer G protein related genes in Ciboria shiraiana and their application in resistance breeding[D]. Chongqing: Doctoral Dissertation of Chongqing University, 2022 (in Chinese).
    [17] LIU YH, YANG KL, QIN QP, LIN GN, HU TR, XU ZL, WANG SH. G protein α subunit GpaB is required for asexual development, aflatoxin biosynthesis and pathogenicity by regulating cAMP signaling in Aspergillus flavus[J]. Toxins, 2018, 10(3): 117.
    [18] LIU S, DEAN RA. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 1997, 10(9): 1075-1086.
    [19] DING J, MEI J, HUANG P, TIAN Y, LIANG Y, JIANG XL, LI M. Gα3 subunit Thga3 positively regulates conidiation, mycoparasitism, chitinase activity, and hydrophobicity of Trichoderma harzianum[J]. AMB Express, 2020, 10(1): 221.
    [20] SONG N, DAI QQ, ZHU BT, WU YX, XU M, VOEGELE RT, GAO XN, KANG ZS, HUANG LL. Gα proteins Gvm2 and Gvm3 regulate vegetative growth, asexual development, and pathogenicityon apple in Valsa mali[J]. PLoS One, 2017, 12(3): e0173141.
    [21] 张莹, 周双针, 王利亚, 韦涵文, 谢俊, 柳志强, 李晓宇. 禾谷炭疽菌转录因子CgrStuA调控营养生长、孢子产生、萌发及附着枝形成[J]. 微生物学通报, 2024, 51(8): 3020-3031. ZHANG Y, ZHOU SZ, WANG LY, WEI HW, XIE J, LIU ZQ, LI XY. A transcription factor CgrStuA regulates vegetative growth, conidial production, germination, and hyphopodium formation of Colletotrichum graminicola[J]. Microbiology China, 2024, 51(8): 3020-3031 (in Chinese).
    [22] 吴曼莉, 胡坚, 张楠, 柯智健, 柳志强, 李晓宇. CgRGS7调控胶孢炭疽菌分生孢子产量、附着胞形成及致病性[J]. 西南农业学报, 2017, 30(8): 1802-1807. WU ML, HU J, ZHANG N, KE ZJ, LIU ZQ, LI XY. CgRGS7 regulation of conidium production, appressorium formation and pathogenicity in Colletotrichum gloeosporioides[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(8): 1802-1807 (in Chinese).
    [23] JAIN S, AKIYAMA K, MAE K, OHGUCHI T, TAKATA R. Targeted disruption of a G protein α subunit gene results in reduced pathogenicity in Fusarium oxysporum[J]. Current Genetics, 2002, 41(6): 407-413.
    [24] LEI M, LIU J, FANG Y, SHAO YC, LI L, YU JH, CHEN FS. Effects of different G-protein α-subunits on growth, development and secondary metabolism of Monascus ruber M7[J]. Frontiers in Microbiology, 2019, 10: 1555.
    [25] CHOI YH, LEE NY, KIM SS, PARK HS, SHIN KS. Comparative characterization of G protein α subunits in Aspergillus fumigatus[J]. Pathogens, 2020, 9(4): 272.
    [26] 于金梦. 菰黑粉菌中G蛋白α亚基的功能研究[D]. 杭州: 中国计量大学硕士学位论文, 2020. YU JM. Study on the function of G protein α subunit in Ustilago esculenta[D]. Hangzhou: Master’s Thesis of China University of Metrology, 2020 (in Chinese).
    [27] ZUBER S, HYNES MJ, ANDRIANOPOULOS A. The G-protein α-subunit GasC plays a major role in germination in the dimorphic fungus Penicillium marneffei[J]. Genetics, 2003, 164(2): 487-499.
    [28] NISHIDA M, MARUYAMA Y, TANAKA R, KONTANI K, NAGAO T, KUROSE H. Gαi and Gαo are target proteins of reactive oxygen species[J]. Nature, 2000, 408: 492-495.
    [29] SUKNO SA, GARCÍA VM, SHAW BD, THON MR. Root infection and systemic colonization of maize by Colletotrichum graminicola[J]. Applied and Environmental Microbiology, 2008, 74(3): 823-832.
    [30] DOEHLEMANN G, BERNDT P, HAHN M. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia[J]. Molecular Microbiology, 2006, 59(3): 821-835.
    [31] CHANG MH, CHAE KS, HAN DM, JAHNG KY. The GanB Galpha-protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans[J]. Genetics, 2004, 167(3): 1305-1315.
    [32] ZHOU SZ, LIU SY, GUO CC, WEI HW, HE ZH, LIU ZQ, LI XY. The C2H2 transcription factor con7 regulates vegetative growth, cell wall integrity, oxidative stress, asexual sporulation, appressorium and hyphopodium formation, and pathogenicity in Colletotrichum graminicola and Colletotrichum siamense[J]. Journal of Fungi, 2024, 10(7): 495.
    [33] REGENFELDER E, SPELLIG T, HARTMANN A, LAUENSTEIN S, BÖLKER M, KAHMANN R. G proteins in Ustilago maydis: transmission of multiple signals?[J]. EMBO Journal, 1997, 16(8): 1934-1942.
    [34] HSUEH YP, XUE CY, HEITMAN J. G protein signaling governing cell fate decisions involves opposing Galpha subunits in Cryptococcus neoformans[J]. Molecular Biology of the Cell, 2007, 18(9): 3237-3249.
    [35] JAIN S, AKIYAMA K, TAKATA R, OHGUCHI T. Signaling via the G protein α subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum[J]. FEMS Microbiology Letters, 2005, 243(1): 165-172.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韦涵文,张莹,林少园,周双针,李晓宇,柳志强. 禾谷炭疽菌G蛋白α亚基CgrGa3调控营养生长、胁迫响应、孢子产生和致病性[J]. 微生物学通报, 2025, 52(4): 1462-1474

复制
分享
文章指标
  • 点击次数:31
  • 下载次数: 33
  • HTML阅读次数: 36
  • 引用次数: 0
历史
  • 收稿日期:2024-07-31
  • 录用日期:2024-12-13
  • 在线发布日期: 2025-04-21
  • 出版日期: 2025-04-20
文章二维码