科微学术

微生物学通报

里氏木霉纤维素酶基因表达与调控
作者:
基金项目:

国家重点研发计划(2018YFA0900500);国家自然科学基金(31670040,31470162);山东省自然科学基金重大基础研究项目(ZR2019ZD19)


Progress in the cellulase gene expression and regulation in Trichoderma reesei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    木质纤维素是可再生生物质资源的重要组成部分,其高效生物降解可以为绿色生物制造提供重要的原料保障。里氏木霉(Trichoderma reesei)是主要的纤维素酶工业生产菌株,其强大的纤维素酶生产能力对木质纤维素的水解糖化过程至关重要。在过去几十年中,研究人员对里氏木霉纤维素酶的表达与调控机制有了比较深入的了解,揭示了其酶系复杂的转录调控网络机制。本文系统综述了里氏木霉纤维素酶基因表达调控的关键环节,包括信号传导、转录调控及染色质重塑等方面的相关研究进展,并对如何通过遗传学改造提升里氏木霉纤维素酶的表达合成进行了总结和讨论。

    Abstract:

    As an abundant and renewable bioresource, lignocellulose after efficient depolymerization can provide raw materials for green bio-manufacturing. Trichoderma reesei is one of the main industrial producers of cellulases. Its outstanding capability of producing cellulases plays an important role in lignocellulose saccharification. In the past few decades, researchers have gained a preliminary understanding of the mechanisms underlying the induced cellulase gene expression in T.reesei, and revealed a complex regulatory network controlling the biosynthesis of various glycohydrolytic enzymes. Here we systematically review the recent progress in the regulation of cellulase gene expression in T. reeseiregarding signal transduction, transcriptional regulation, and chromatin remodeling. Furthermore, we review the latest progress in genetic engineering for improving cellulase production based on the understanding of the above regulatory network.

    参考文献
    [1] ISIKGOR FH, BECER CR. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers[J]. Polymer Chemistry, 2015, 6(25): 4497-4559.
    [2] DAS N, JENA PK, PADHI D, KUMAR MOHANTY M, SAHOO G. A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production[J]. Biomass Conversion and Biorefinery, 2023, 13(2): 1503-1527.
    [3] REN FY, WU F, WU X, BAO TT, JIE YC, GAO L. Fungal systems for lignocellulose deconstruction: from enzymatic mechanisms to hydrolysis optimization[J]. GCB Bioenergy, 2024, 16(5): e13130.
    [4] KUBICEK CP, STEINDORFF AS, CHENTHAMARA K, MANGANIELLO G, HENRISSAT B, ZHANG J, CAI F, KOPCHINSKIY AG, KUBICEK EM, KUO AL, BARONCELLI R, SARROCCO S, NORONHA EF, VANNACCI G, SHEN QR, GRIGORIEV IV, DRUZHININA IS. Evolution and comparative genomics of the most common Trichoderma species[J]. BMC Genomics, 2019, 20(1): 485.
    [5] GUPTA VK, STEINDORFF AS, de PAULA RG, SILVA-ROCHA R, MACH-AIGNER AR, MACH RL, SILVA RN. The post-genomic era of Trichoderma reesei: what’s next?[J]. Trends in Biotechnology, 2016, 34(12): 970-982.
    [6] 辛琪, 徐金涛, 汪天虹, 刘巍峰, 陈冠军. 丝状真菌红褐肉座菌(Hypocrea jecorina)纤维素酶基因的转录调控研究进展[J]. 微生物学报, 2010, 50(11): 1431-1437. XIN Q, XU JT, WANG TH, LIU WF, CHEN GJ. Transcriptional regulation of cellulases and hemicellulases gene in Hypocrea jecorina: a review[J]. Acta Microbiologica Sinica, 2010, 50(11): 1431-1437(in Chinese).
    [7] DONG CD, PATEL AK, MADHAVAN A, CHEN CW, SINGHANIA RR. Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery: a review[J]. Bioresource Technology, 2023, 379: 128992.
    [8] 张飞, 白凤武, 赵心清. 丝状真菌纤维素酶合成诱导及转录调控[J]. 生物工程学报, 2016, 32(11): 1481-1495. ZHANG F, BAI FW, ZHAO XQ. Induction and regulation of cellulase expression in filamentous fungi: a review[J]. Chinese Journal of Biotechnology, 2016, 32(11): 1481-1495(in Chinese).
    [9] MOMENI MH, ZITTING A, JÄÄMURU V, TURUNEN R, PENTTILÄ P, BUCHKO GW, HILTUNEN S, MAIOROVA N, KOIVULA A, SAPKOTA J, MARJAMAA K, MASTER ER. Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils[J]. Biotechnology for Biofuels and Bioproducts, 2024, 17(1): 56.
    [10] SUTO M, TOMITA F. Induction and catabolite repression mechanisms of cellulase in fungi[J]. Journal of Bioscience and Bioengineering, 2001, 92(4): 305-311.
    [11] LOHR D, VENKOV P, ZLATANOVA J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network[J]. FASEB Journal, 1995, 9(9): 777-787.
    [12] ZHANG WX, KOU YB, XU JT, CAO YL, ZHAO GL, SHAO J, WANG H, WANG ZX, BAO XM, CHEN GJ, LIU WF. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis[J]. Journal of Biological Chemistry, 2013, 288(46): 32861-32872.
    [13] WANG ZX, YANG RF, LV WH, ZHANG WX, MENG XF, LIU WF. Functional characterization of sugar transporter CRT1 reveals differential roles of its C-terminal region in sugar transport and cellulase induction in Trichoderma reesei[J]. Microbiology Spectrum, 2022, 10(4): e0087222.
    [14] ZNAMEROSKI EA, LI X, TSAI JC, GALAZKA JM, GLASS NL, CATE JHD. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa[J]. Journal of Biological Chemistry, 2014, 289(5): 2610-2619.
    [15] YAN S, XU Y, YU XW. Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 118.
    [16] NOGUEIRA KMV, de PAULA RG, ANTONIÊTO ACC, dos REIS TF, CARRARO CB, SILVA AC, ALMEIDA F, RECHIA CGV, GOLDMAN GH, SILVA RN. Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei[J]. Biotechnology for Biofuels, 2018, 11: 84.
    [17] LICCARDO F, LUINI A, Di MARTINO R. Endomembrane-based signaling by GPCRs and G-proteins[J]. Cells, 2022, 11(3): 528.
    [18] LATORRACA NR, VENKATAKRISHNAN AJ, DROR RO. GPCR dynamics: structures in motion[J]. Chemical Reviews, 2017, 117(1): 139-155.
    [19] SMRCKA AV. G protein βγ subunits: central mediators of G protein-coupled receptor signaling[J]. Cellular and Molecular Life Sciences, 2008, 65(14): 2191-2214.
    [20] CABRERA IE, PACENTINE IV, LIM A, GUERRERO N, KRYSTOFOVA S, LI LD, MICHKOV AV, SERVIN JA, AHRENDT SR, CARRILLO AJ, DAVIDSON LM, BARSOUM AH, CAO J, CASTILLO R, CHEN WC, DINKCHIAN A, KIM S, KITADA SM, LAI TH, MACH A, et al. Global analysis of predicted G protein-coupled receptor genes in the filamentous fungus, Neurospora crassa[J]. G3, 2015, 5(12): 2729-2743.
    [21] GRUBER S, OMANN M, ZEILINGER S. Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma[J]. BMC Microbiology, 2013, 13: 108.
    [22] SCHMOLL M, HINTERDOBLER W. Chapter Three-Tools for adapting to a complex habitat: G-protein coupled receptors in Trichoderma[J]. Progress in Molecular Biology and Translational Science, 2022, 193(1): 65-97.
    [23] STAPPLER E, DATTENBÖCK C, TISCH D, SCHMOLL M. Analysis of light- and carbon-specific transcriptomes implicates a class of G-protein-coupled receptors in cellulose sensing[J]. mSphere, 2017, 2(3): e00089-17.
    [24] SEIBEL C, GREMEL G, DO NASCIMENTO SILVA R, SCHUSTER A, KUBICEK CP, SCHMOLL M. Light-dependent roles of the G-protein alpha subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei)[J]. BMC Biology, 2009, 7: 58.
    [25] SCHMOLL M, SCHUSTER A, SILVA RD, KUBICEK CP. The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light[J]. Eukaryotic Cell, 2009, 8(3): 410-420.
    [26] COLLIER LA, GHOSH A, BORKOVICH KA. Heterotrimeric G-protein signaling is required for cellulose degradation in Neurospora crassa[J]. mBio, 2020, 11(6): e02419-20.
    [27] TISCH D, KUBICEK CP, SCHMOLL M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei[J]. BMC Genomics, 2011, 12: 613.
    [28] WANG MY, ZHAO QS, YANG JH, JIANG BJ, WANG FZ, LIU KM, FANG X. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei[J]. PLoS One, 2013, 8(8): e72189.
    [29] WANG ZX, AN N, XU WQ, ZHANG WX, MENG XF, CHEN GJ, LIU WF. Functional characterization of the upstream components of the Hog1-like kinase cascade in hyperosmotic and carbon sensing in Trichoderma reesei[J]. Biotechnology for Biofuels, 2018, 11: 97.
    [30] WANG MY, ZHANG ML, LI L, DONG YM, JIANG Y, LIU KM, ZHANG RQ, JIANG BJ, NIU KL, FANG X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation[J]. Biotechnology for Biofuels, 2017, 10: 99.
    [31] ZHANG JW, ZHANG YM, ZHONG YH, QU YB, WANG TH. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei[J]. PLoS One, 2012, 7(11): e48786.
    [32] LI N, QIU ZY, CAI WC, SHEN YL, WEI DZ, CHEN YM, WANG W. The Ras small GTPase RSR1 regulates cellulase production in Trichoderma reesei[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 87.
    [33] SCHUSTER A, TISCH D, SEIDL-SEIBOTH V, KUBICEK CP, SCHMOLL M. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei[J]. Applied and Environmental Microbiology, 2012, 78(7): 2168-2178.
    [34] NOGUEIRA KMV, COSTA MD, de PAULA RG, MENDONÇA-NATIVIDADE FC, RICCI-AZEVEDO R, SILVA RN. Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose[J]. BMC Microbiology, 2015, 15: 195.
    [35] ELLILÄ S, FONSECA L, UCHIMA C, COTA J, GOLDMAN GH, SALOHEIMO M, SACON V, SIIKA-AHO M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries[J]. Biotechnology for Biofuels, 2017, 10: 30.
    [36] ZHANG WX, GUO JQ, WU XX, REN YJ, LI CY, MENG XF, LIU WF. Reformulating the hydrolytic enzyme cocktail of Trichoderma reesei by combining XYR1 overexpression and elimination of four major cellulases to improve saccharification of corn fiber[J]. Journal of Agricultural and Food Chemistry, 2022, 70(1): 211-222.
    [37] LV XX, ZHENG FL, LI CY, ZHANG WX, CHEN GJ, LIU WF. Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei[J]. Biotechnology for Biofuels, 2015, 8: 67.
    [38] LV DM, ZHANG WX, MENG XF, LIU WF. Single mutation in transcriptional activator Xyr1 enhances cellulase and xylanase production in Trichoderma reesei on glucose[J]. Journal of Agricultural and Food Chemistry, 2023, 71(31): 11993-12003.
    [39] MELLO-DE-SOUSA TM, GORSCHE R, JOVANOVIĆ B, MACH RL, MACH-AIGNER AR. In vitro characterization of a nuclear receptor-like domain of the xylanase regulator 1 from Trichoderma reesei[J]. Journal of Fungi, 2022, 8(12): 1254.
    [40] DERNTL C, GUDYNAITE-SAVITCH L, CALIXTE S, WHITE T, MACH RL, MACH-AIGNER AR. Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains[J]. Biotechnology for Biofuels, 2013, 6(1): 62.
    [41] ZHAO QQ, YANG ZZ, XIAO ZY, ZHANG Z, XING J, LIANG HQ, GAO LW, ZHAO J, QU YB, LIU GD. Structure-guided engineering of transcriptional activator XYR1 for inducer-free production of lignocellulolytic enzymes in Trichoderma reesei[J]. Synthetic and Systems Biotechnology, 2023, 8(4): 732-740.
    [42] ZHANG JJ, CHEN YM, WU C, LIU P, WANG W, WEI DZ. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei[J]. The Journal of Biological Chemistry, 2019, 294(48): 18435-18450.
    [43] ZHENG FL, CAO YL, YANG RF, WANG L, LV XX, ZHANG WX, MENG XF, LIU WF. Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II[J]. PLoS Genetics, 2020, 16(9): e1008979.
    [44] CAO YL, ZHENG FL, ZHANG WX, MENG XF, LIU WF. Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression[J]. Molecular Microbiology, 2019, 112(4): 1145-1162.
    [45] WANG L, ZHANG WX, CAO YL, ZHENG FL, ZHAO GL, LV XX, MENG XF, LIU WF. Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei[J]. PLoS Genetics, 2021, 17(2): e1009351.
    [46] XIONG LL, KAMESHWAR AKS, CHEN X, GUO ZY, MAO CQ, CHEN SF, QIN WS. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks[J]. Microbial Cell Factories, 2016, 15(1): 215.
    [47] STRICKER AR, TREFFLINGER P, ARO N, P故?愀渀搀?琀漀砀椀挀椀琀礀?椀渀??椀?匀愀挀挀栀愀爀漀洀礀挀攀猀?挀攀爀攀瘀椀猀椀愀攀??椀?嬀?崀??????? ? ??? ??????????????戀爀?嬀??崀????一???????????一?夀???匀??一?夀???圀????娀??圀?一??圀???攀挀栀愀渀椀猀洀?漀昀?娀渀?猀甀瀀?????猀甀瀀??爀攀最甀氀愀琀椀漀渀?漀昀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀甀琀??? 嬀?崀???椀漀琀攀挀栀渀漀氀漀最礀?昀漀爀??椀漀昀甀攀氀猀?愀渀搀??椀漀瀀爀漀搀甀挀琀猀??? ???????????????戀爀?嬀??崀?堀?一?儀???伀一??夀????嘀?堀堀?????一???????唀?圀????椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??栀椀猀琀漀渀攀?愀挀攀琀礀氀琀爀愀渀猀昀攀爀愀猀攀??挀渀??爀攀最甀氀愀琀攀猀?昀甀渀最愀氀?最爀漀眀琀栀??挀漀渀椀搀椀愀琀椀漀渀??愀渀搀?挀攀氀氀甀氀愀猀攀?最攀渀攀?攀砀瀀爀攀猀猀椀漀渀嬀?崀???甀爀爀攀渀琀??椀挀爀漀戀椀漀氀漀最礀??? ????????????? ??????戀爀?嬀??崀?匀???伀吀???????刀????刀???倀??吀????倀?????一???刀吀????刀吀?????匀?唀?刀?????匀??吀??????????刀?匀????刀??吀???????唀???????倀??吀栀攀?瀀甀琀愀琀椀瘀攀?瀀爀漀琀攀椀渀?洀攀琀栀礀氀琀爀愀渀猀昀攀爀愀猀攀??????挀漀渀琀爀漀氀猀?挀攀氀氀甀氀愀猀攀?最攀渀攀?攀砀瀀爀攀猀猀椀漀渀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀???漀氀攀挀甀氀愀爀??椀挀爀漀戀椀漀氀漀最礀??? ?????????????? ???????戀爀?嬀??崀???伀?夀???夀?一??刀???娀??一????????一??堀???娀??一??圀堀????唀?圀????甀愀氀?爀攀最甀氀愀琀漀爀礀?爀漀氀攀?漀昀?挀栀爀漀洀愀琀椀渀?爀攀洀漀搀攀氀攀爀??匀圀??椀渀?挀漀漀爀搀椀渀愀琀椀渀最?挀攀氀氀甀氀愀猀攀?愀渀搀?猀攀挀漀渀搀愀爀礀?洀攀琀愀戀漀氀椀琀攀?戀椀漀猀礀渀琀栀攀猀椀猀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀??洀?椀漀??? ???????????攀 ????????戀爀?嬀??崀?倀?吀?刀匀伀一?刀??一?嘀????一?一?????椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀甀琀??? ??琀栀椀爀琀礀?礀攀愀爀猀?漀昀?猀琀爀愀椀渀?椀洀瀀爀漀瘀攀洀攀渀琀嬀?崀???椀挀爀漀戀椀漀氀漀最礀??? ????????倀琀????????????戀爀?嬀??崀???匀??伀??刀???刀??伀一?????匀???伀吀??????攀氀氀甀氀愀猀攀猀?愀渀搀?戀攀礀漀渀搀??琀栀攀?昀椀爀猀琀?? ?礀攀愀爀猀?漀昀?琀栀攀?攀渀稀礀洀攀?瀀爀漀搀甀挀攀爀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀???椀挀爀漀戀椀愀氀??攀氀氀??愀挀琀漀爀椀攀猀??? ???????????? ???戀爀?嬀??崀???一??儀匀????唀?????娀??伀?堀儀???????圀???渀最椀渀攀攀爀椀渀最??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀甀琀??? ?眀椀琀栀?琀栀攀?漀瘀攀爀攀砀瀀爀攀猀猀椀漀渀?漀昀?攀最氀??愀琀?琀栀攀??椀?愀挀攀???椀??氀漀挀甀猀?琀漀?爀攀氀椀攀瘀攀?爀攀瀀爀攀猀猀椀漀渀?漀渀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?愀渀搀?琀漀?愀搀樀甀猀琀?琀栀攀?爀愀琀椀漀?漀昀?挀攀氀氀甀氀漀氀礀琀椀挀?攀渀稀礀洀攀猀?昀漀爀?洀漀爀攀?攀昀昀椀挀椀攀渀琀?栀礀搀爀漀氀礀猀椀猀?漀昀?氀椀最渀漀挀攀氀氀甀氀漀猀椀挀?戀椀漀洀愀猀猀嬀?崀???漀甀爀渀愀氀?漀昀??椀漀琀攀挀栀渀漀氀漀最礀??? ????????????????戀爀?嬀? 崀?堀???夀??夀?一???刀??堀????????漀洀戀椀渀攀搀?猀琀爀愀琀攀最礀?漀昀?琀爀愀渀猀挀爀椀瀀琀椀漀渀?昀愀挀琀漀爀?洀愀渀椀瀀甀氀愀琀椀漀渀?愀渀搀???最氀甀挀漀猀椀搀愀猀攀?最攀渀攀?漀瘀攀爀攀砀瀀爀攀猀猀椀漀渀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??愀渀搀?椀琀猀?愀瀀瀀氀椀挀愀琀椀漀渀?椀渀?氀椀最渀漀挀攀氀氀甀氀漀猀攀?戀椀漀挀漀渀瘀攀爀猀椀漀渀嬀?崀???漀甀爀渀愀氀?漀昀??渀搀甀猀琀爀椀愀氀??椀挀爀漀戀椀漀氀漀最礀??愀洀瀀???椀漀琀攀挀栀渀漀氀漀最礀??? ???????????? ???????戀爀?嬀??崀???伀????儀??一?夀???圀?一??夀???儀唀?夀???娀?伀一??夀???倀爀漀搀甀挀琀椀漀渀?漀昀?琀栀攀?瘀攀爀猀愀琀椀氀攀?挀攀氀氀甀氀愀猀攀?昀漀爀?挀攀氀氀甀氀漀猀攀?戀椀漀挀漀渀瘀攀爀猀椀漀渀?愀渀搀?挀攀氀氀甀氀愀猀攀?椀渀搀甀挀攀爀?猀礀渀琀栀攀猀椀猀?戀礀?最攀渀攀琀椀挀?椀洀瀀爀漀瘀攀洀攀渀琀?漀昀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀???椀漀琀攀挀栀渀漀氀漀最礀?昀漀爀??椀漀昀甀攀氀猀??? ????? ???????戀爀?嬀??崀?娀??一??????夀?一??刀?????伀?夀???娀??一??圀堀???嘀?堀堀????一??堀???娀?伀一??夀??????一?????娀?伀唀?儀堀????唀?圀????渀最椀渀攀攀爀椀渀最??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??昀漀爀?栀礀瀀攀爀瀀爀漀搀甀挀琀椀漀渀?漀昀?挀攀氀氀甀氀愀猀攀猀?漀渀?最氀甀挀漀猀攀?琀漀?攀昀昀椀挀椀攀渀琀氀礀?猀愀挀挀栀愀爀椀昀礀?瀀爀攀琀爀攀愀琀攀搀?挀漀爀渀挀漀戀猀嬀?崀???漀甀爀渀愀氀?漀昀??最爀椀挀甀氀琀甀爀愀氀?愀渀搀??漀漀搀??栀攀洀椀猀琀爀礀??? ? ???????????????????????戀爀?嬀??崀??刀???吀??????一伀匀??匀??匀????吀??一??????匀??吀??????伀???????????刀?匀??????吀????唀刀??夀???渀搀甀挀攀爀?昀爀攀攀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?猀礀猀琀攀洀?戀愀猀攀搀?漀渀?琀栀攀?挀漀渀猀琀椀琀甀琀椀瘀攀?攀砀瀀爀攀猀猀椀漀渀?漀昀?洀甀琀愀琀攀搀?堀夀刀??愀渀搀??????椀渀?琀栀攀?椀渀搀甀猀琀爀椀愀氀?昀甀渀最甀猀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀??匀挀椀攀渀琀椀昀椀挀?刀攀瀀漀爀琀猀??? ??????????????????戀爀?嬀??崀???一?????吀?一?夀匀?????圀??一?唀??????伀唀?匀????唀伀?圀????唀?夀?????一??堀??倀爀攀挀椀猀椀漀渀?攀渀最椀渀攀攀爀椀渀最?漀昀?琀栀攀?琀爀愀渀猀挀爀椀瀀琀椀漀渀?昀愀挀琀漀爀?挀爀攀??椀渀??椀??礀瀀漀挀爀攀愀?樀攀挀漀爀椀渀愀??椀????椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀???昀漀爀?攀昀昀椀挀椀攀渀琀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?椀渀?琀栀攀?瀀爀攀猀攀渀挀攀?漀昀?最氀甀挀漀猀攀嬀?崀???爀漀渀琀椀攀爀猀?椀渀??椀漀攀渀最椀渀攀攀爀椀渀最?愀渀搀??椀漀琀攀挀栀渀漀氀漀最礀??? ? ??????????戀爀?嬀??崀?娀??一??????????圀??娀??伀?堀儀???渀栀愀渀挀攀搀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?昀爀漀洀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀甀琀??? ?戀礀?攀渀最椀渀攀攀爀椀渀最?眀椀琀栀?愀渀?愀爀琀椀昀椀挀椀愀氀?稀椀渀挀?昀椀渀最攀爀?瀀爀漀琀攀椀渀?氀椀戀爀愀爀礀嬀?崀???椀漀琀攀挀栀渀漀氀漀最礀??漀甀爀渀愀氀??? ???????? ??????????? ??戀爀?嬀??崀?娀??一??????圀唀????圀?一??圀??圀?一??圀??圀????娀???漀渀猀琀爀甀挀琀椀漀渀?漀昀?攀渀栀愀渀挀攀搀?琀爀愀渀猀挀爀椀瀀琀椀漀渀愀氀?愀挀琀椀瘀愀琀漀爀猀?昀漀爀?椀洀瀀爀漀瘀椀渀最?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀唀吀??? 嬀?崀???椀漀爀攀猀漀甀爀挀攀猀?愀渀搀??椀漀瀀爀漀挀攀猀猀椀渀最??? ??????????? ??戀爀?嬀??崀?娀??一??????娀??一???堀??圀?一??圀??圀?一??圀??圀????娀???渀栀愀渀挀攀搀?挀攀氀氀甀氀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀??刀甀琀??? ?椀?瘀椀愀??椀??挀漀渀猀琀椀琀甀琀椀漀渀?漀昀?洀椀渀椀洀愀氀?琀爀愀渀猀挀爀椀瀀琀椀漀渀愀氀?愀挀琀椀瘀愀琀漀爀猀嬀?崀???椀挀爀漀戀椀愀氀??攀氀氀??愀挀琀漀爀椀攀猀??? ???????????????戀爀?嬀??崀??嘀?????娀??一??圀堀????一??堀?????唀?圀?????渀漀瘀攀氀?昀甀猀椀漀渀?琀爀愀渀猀挀爀椀瀀琀椀漀渀?昀愀挀琀漀爀?搀爀椀瘀攀猀?栀椀最栀?挀攀氀氀甀氀愀猀攀?愀渀搀?砀礀氀愀渀愀猀攀?瀀爀漀搀甀挀琀椀漀渀?漀渀?最氀甀挀漀猀攀?椀渀??椀?吀爀椀挀栀漀搀攀爀洀愀?爀攀攀猀攀椀??椀?嬀?崀???椀漀爀攀猀漀甀爀挀攀?吀攀挀栀渀漀氀漀最礀??? ?????? ??????? ?AO CL, LIU YL, WANG J, LI J, LI SY, DENG Y. Identification of the genetic requirements for zinc toleranc
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邢翠霞,夏雨潇,张伟欣,刘巍峰. 里氏木霉纤维素酶基因表达与调控[J]. 微生物学通报, 2024, 51(12): 4884-4898

复制
分享
文章指标
  • 点击次数:142
  • 下载次数: 177
  • HTML阅读次数: 150
  • 引用次数: 0
历史
  • 收稿日期:2024-06-27
  • 录用日期:2024-09-21
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码