科微学术

微生物学通报

蛋白激酶在流感病毒生命周期不同阶段的作用
作者:
基金项目:

中央高校基本科研业务费专项资金(31920220134);甘肃省自然科学基金(20JR5RA505)


Roles of kinases in the life cycle of influenza virus
Author:
  • YANG Xuanye

    YANG Xuanye

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Mingyang

    GAO Mingyang

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HU Xinyan

    HU Xinyan

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Qianyun

    LIU Qianyun

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Yuhu

    WU Yuhu

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MA Xiaoxia

    MA Xiaoxia

    Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China;Life Science and Engineering College of Northwest Minzu University, Lanzhou 730010, Gansu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    流感病毒持续危害全球公共卫生安全,引起人类和动物的传染性呼吸道疾病,每年导致全球数十万人死亡。流感病毒能够通过抗原转变和抗原漂移进化出新型毒株,从而对现有药物和疫苗产生耐药性。为了解决这个问题,亟须研究新的抗病毒靶点来开发新型抗病毒药物。流感病毒的基因产物通过多种宿主激酶的磷酸化而被广泛修饰。丝氨酸、苏氨酸或酪氨酸残基的可逆磷酸化动态调节病毒蛋白在其生命周期不同阶段的结构、功能和亚细胞定位。此外,蛋白激酶参与多个宿主信号传导过程,这些信号传导途径通过调节宿主细胞环境来影响病毒的复制,从而建立关键的病毒-宿主关系。这种对宿主激酶的依赖性为开发激酶抑制剂作为下一代宿主靶向疗法的抗流感病毒药物提供了理论基础。为了充分利用这一潜力,阐明流感病毒-宿主激酶相互作用网络至关重要。本综述的重点是概述宿主激酶参与调节流感病毒生命周期不同阶段(从吸附到组装出芽)的分子机制。通过评估不同宿主激酶及其在病毒生命周期中特定磷酸化的作用,对病毒-宿主激酶相互作用网络进行全面概述,这可能有助于揭示新型抗病毒药物的潜在作用靶点。

    Abstract:

    Influenza virus continues to pose a threat to global public health and safety, leading to infectious respiratory diseases and causing hundreds of thousands of deaths worldwide every year. New strains are evolved through antigenic shift and drift, thereby developing resistance to existing drugs and vaccines. To address this issue and develop novel antiviral drugs, researchers need to explore new antiviral targets. The genetic products of influenza virus are widely modified through phosphorylation by host kinases. The reversible phosphorylation of serine, threonine, or tyrosine residues dynamically regulates the structures, functions, and subcellular localization of viral proteins at different stages of the viral life cycle. In addition, kinases affect a large number of signaling pathways, which influence virus transmission by regulating the host cell environment, thereby establishing critical virus-host relationships. The dependence on host kinases provides a theoretical basis for developing kinase inhibitors as the next generation of anti-influenza virus drugs. To fully utilize this potential, we need to clarify the influenza virus-host kinase interaction network. The focus of this review is to outline the molecular mechanisms by which host kinases regulate different stages, from adsorption to assembly and budding, in the life cycle of influenza virus. Evaluating the contributions of different host kinases and their specific phosphorylation throughout the influenza virus life cycle can provide a comprehensive overview of the virus-host kinase interaction network, which may help reveal potential targets for developing novel antiviral drugs.

    参考文献
    [1] LIANG YY. Pathogenicity and virulence of influenza[J]. Virulence, 2023, 14(1): 2223057.
    [2] JAVANIAN M, BARARY M, GHEBREHEWET S, KOPPOLU V, VASIGALA V, EBRAHIMPOUR S. A brief review of influenza virus infection[J]. Journal of Medical Virology, 2021, 93(8): 4638-4646.
    [3] KENMOE S, TAKUISSU G, EBOGO-BELOBO J, KENGNE-NDÉ C, MBAGA D, BOWO-NGANDJI A, ONDIGUI NDZIE J, KENFACK-MOMO R, TCHATCHOUANG S, LONTUO FOGANG R, ZEUKO’O MENKEM E, KAME-NGASSE G, MAGOUDJOU-PEKAM J, PUZELLI S, LUCENTINI L, VENERI C, MANCINI P, BONANNO FERRARO G, IACONELLI M, del GIUDICE C, et al. A systematic review of influenza virus in water environments across human, poultry, and wild bird habitats[J]. Water Research X, 2024, 22: 100210.
    [4] HU LB, LAO GQ, LIU R, FENG J, LONG F, PENG T. The race toward a universal influenza vaccine: front runners and the future directions[J]. Antiviral Research, 2023, 210: 105505.
    [5] WANG WC, SAYEDAHMED EE, SAMBHARA S, MITTAL SK. Progress towards the development of a universal influenza vaccine[J]. Viruses, 2022, 14(8): 1684.
    [6] NGUYEN QT, CHOI YK. Targeting antigens for universal influenza vaccine development[J]. Viruses, 2021, 13(6): 973.
    [7] SMYK JM, SZYDŁOWSKA N, SZULC W, MAJEWSKA A. Evolution of influenza viruses-drug resistance, treatment options, and prospects[J]. International Journal of Molecular Sciences, 2022, 23(20): 12244.
    [8] KUMARI R, SHARMA SD, KUMAR A, ENDE Z, MISHINA M, WANG YY, FALLS Z, SAMUDRALA R, POHL J, KNIGHT PR, SAMBHARA S. Antiviral approaches against influenza virus[J]. Clinical Microbiology Reviews, 2023, 36(1): e0004022.
    [9] SUKHDEO S, LEE N. Influenza: clinical aspects, diagnosis, and treatment[J]. Current Opinion in Pulmonary Medicine, 2022, 28(3): 199-204.
    [10] HICKERSON BT, PETROVSKAYA SN, DICKENSHEETS H, DONNELLY RP, INCE WL, ILYUSHINA NA. Impact of baloxavir resistance- associated substitutions on influenza virus growth and drug susceptibility[J]. Journal of Virology, 2023, 97(7): e0015423.
    [11] MEINEKE R, RIMMELZWAAN GF, ELBAHESH H. Influenza virus infections and cellular kinases[J]. Viruses, 2019, 11(2): 171.
    [12] YÁNGÜEZ E, HUNZIKER A, DOBAY MP, YILDIZ S, SCHADING S, ELSHINA E, KARAKUS U, GEHRIG P, GROSSMANN J, DIJKMAN R, SCHMOLKE M, STERTZ S. Phosphoproteomic-based kinase profiling early in influenza virus infection identifies GRK2 as antiviral drug target[J]. Nature Communications, 2018, 9(1): 3679.
    [13] GARCÍA-CÁRCELES J, CABALLERO E, GIL C, MARTÍNEZ A. Kinase inhibitors as underexplored antiviral agents[J]. Journal of Medicinal Chemistry, 2022, 65(2): 935-954.
    [14] AMOUSSOU NG, BIGOT A, ROUSSAKIS C, ROBERT JM H. Haspin: a promising target for the design of inhibitors as potent anticancer drugs[J]. Drug Discovery Today, 2018, 23(2): 409-415.
    [15] ROSKOSKI R. Properties of FDA-approved small molecule protein kinase inhibitors: a 2024 update[J]. Pharmacological Research, 2024, 200: 107059.
    [16] LI CC, WANG XJ, WANG HC R. Repurposing host-based therapeutics to control coronavirus and influenza virus[J]. Drug Discovery Today, 2019, 24(3): 726-736.
    [17] WANG X, PU FY, YANG XY, FENG XL, ZHANG JY, DUAN K, NIAN XX, MA ZR, MA XX, YANG XM. Immunosuppressants exert antiviral effects against influenza A(H1N1)pdm09 virus via inhibition of nucleic acid synthesis, mRNA splicing, and protein stability[J]. Virulence, 2024, 15(1): 2301242.
    [18] 蒲飞洋, 汪梦竹, 冯茜莉, 赵泽阳, 杨光美, 李倬, 马忠仁, 马晓霞. 乙型流感病毒感染过程中干扰素介导的天然免疫应答[J]. 中国生物制品学杂志, 2023, 36(4): 423-428. PU FY, WANG MZ, FENG QL, ZHAO ZY, YANG GM, LI Z, MA ZR, MA XX. Innate immune response mediated by interferon during influenza B virus infection[J]. Chinese Journal of Biologicals, 2023, 36(4): 423-428(in Chinese).
    [19] BHULLAR KS, LAGARÓN NO, McGOWAN EM, PARMAR I, JHA A, HUBBARD BP, RUPASINGHE HPV. Kinase-targeted cancer therapies: progress, challenges and future directions[J]. Molecular Cancer, 2018, 17(1): 48.
    [20] GARCIA-MORO E, ZHANG J, CALDER LJ, BROWN NR, GAMBLIN SJ, SKEHEL JJ, ROSENTHAL PB. Reversible structural changes in the influenza hemagglutinin precursor at membrane fusion pH[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(33): e2208011119.
    [21] GHAFOORI SM, PETERSEN GF, CONRADY DG, CALHOUN BM, STIGLIANO MZZ, BAYDO RO, GRICE R, ABENDROTH J, LORIMER DD, EDWARDS TE, FORWOOD JK. Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal diversity in the C05 antibody recognition site[J]. Scientific Reports, 2023, 13(1): 6940.
    [22] WANG QS, PAN WL, WANG S, PAN C, NING HY, HUANG SL, CHIU SH, CHEN JL. Protein tyrosine phosphatase SHP2 suppresses host innate immunity against influenza A virus by regulating EGFR-mediated signaling[J]. Journal of Virology, 2021, 95(6): e02001-20.
    [23] VERMA V, DILEEPAN M, HUANG QF, PHAN T, HU WS, LY H, LIANG YY. Influenza A virus activates cellular Tropomyosin receptor kinase A (TrkA) signaling to promote viral replication and lung inflammation[J]. PLoS Pathogens, 2022, 18(9): e1010874.
    [24] MEINEKE R, STELZ S, BUSCH M, WERLEIN C, KÜHNEL M, JONIGK D, RIMMELZWAAN GF, ELBAHESH H. FDA-approved Abl/EGFR/PDGFR kinase inhibitors show potent efficacy against pandemic and seasonal influenza A virus infections of human lung explants[J]. iScience, 2023, 26(4): 106309.
    [25] RAHMAN MA, SHOROBI FM, UDDIN MN, SAHA S, HOSSAIN MA. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models[J]. In Silico Pharmacology, 2022, 10(1): 17.
    [26] GOH LK, SORKIN A. Endocytosis of receptor tyrosine kinases[J]. Cold Spring Harb Perspect Biol, 2013, 5(5): a017459.
    [27] FUJIOKA Y, SATOH AO, HORIUCHI K, FUJIOKA M, TSUTSUMI K, SASAKI J, NEPAL P, KASHIWAGI S, PAUDEL S, NISHIDE S, NANBO A, SASAKI T, OHBA Y. A peptide derived from phosphoinositide 3-kinase inhibits endocytosis and influenza virus infection[J]. Cell Structure and Function, 2019, 44(1): 61-74.
    [28] MARJUKI H, GORNITZKY A, MARATHE BM, ILYUSHINA NA, ALDRIDGE JR, DESAI G, WEBBY RJ, WEBSTER RG. Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion[J]. Cellular Microbiology, 2011, 13(4): 587-601.
    [29] COLLINS MP, FORGAC M. Regulation and function of V-ATPases in physiology and disease[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2020, 1862(12): 183341.
    [30] KÖNIG R, STERTZ S, ZHOU YY, INOUE A, HOFFMANN HH, BHATTACHARYYA S, ALAMARES JG, TSCHERNE DM, ORTIGOZA MB, LIANG YH, GAO QS, ANDREWS SE, BANDYOPADHYAY S, de JESUS P, TU BP, PACHE L, SHIH C, ORTH A, BONAMY G, MIRAGLIA L, et al. Human host factors required for influenza virus replication[J]. Nature, 2010, 463(7282): 813-817.
    [31] ELBAHESH H, CLINE T, BARANOVICH T, GOVORKOVA EA, SCHULTZ-CHERRY S, RUSSELL CJ. Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses[J]. Journal of Virology, 2014, 88(12): 6714-6728.
    [32] HAWSE WF, CATTLEY RT. T cells transduce T-cell receptor signal strength by generating different phosphatidylinositols[J]. Journal of Biological Chemistry, 2019, 294(13): 4793-4805.
    [33] SAKAI J, YANG J, CHOU CK, WU WW, AKKOYUNLU M. B cell receptor-induced IL-10 production from neonatal mouse CD19+CD43 cells depends on STAT5-mediated IL-6 secretion[J]. eLife, 2023, 12: e83561.
    [34] GAO WJ, LIU JX, XIE YE, LUO P, LIU ZQ, LIU L, ZHOU H. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine[J]. Pharmacological Research, 2021, 167: 105513.
    [35] CHAN L, ALIZADEH K, ALIZADEH K, FAZEL F, KAKISH JE, KARIMI N, KNAPP JP, MEHRANI Y, MINOTT JA, MOROVATI S, RGHEI A, STEGELMEIER AA, VANDERKAMP S, KARIMI K, BRIDLE BW. Review of influenza virus vaccines: the qualitative nature of immune responses to infection and vaccination is a critical consideration[J]. Vaccines, 2021, 9(9): 979.
    [36] MONDAL A, DAWSON AR, POTTS GK, FREIBERGER EC, BAKER SF, MOSER LA, BERNARD KA, COON JJ, MEHLE A. Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery[J]. eLife, 2017, 6: e26910.
    [37] DAWSON AR, WILSON GM, FREIBERGER EC, MONDAL A, COON JJ, MEHLE A. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase[J]. PLoS Pathogens, 2020, 16(9): e1008841.
    [38] MIYAKE Y, ISHII K, HONDA A. Influenza virus infection induces host pyruvate kinase M which interacts with viral RNA-dependent RNA polymerase[J]. Frontiers in Microbiology, 2017, 8: 162.
    [39] LIU L, MADHUGIRI R, SAUL VV, BACHER S, KRACHT M, PLESCHKA S, SCHMITZ ML. Phosphorylation of the PA subunit of influenza polymerase at Y393 prevents binding of the 5'-termini of RNA and polymerase function[J]. Scientific Reports, 2023, 13(1): 7042.
    [40] SCHREIBER A, BOFF L, ANHLAN D, KRISCHUNS T, BRUNOTTE L, SCHUBERTH C, WEDLICH- SÖLDNER R, DREXLER H, LUDWIG S. Dissecting the mechanism of signaling-triggered nuclear export of newly synthesized influenza virus ribonucleoprotein complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16557-16566.
    [41] WANG SS, ZHAO ZD, BI YH, SUN L, LIU XL, LIU WJ. Tyrosine 132 phosphorylation of influenza A virus M1 protein is crucial for virus replication by controlling the nuclear import of M1[J]. Journal of Virology, 2013, 87(11): 6182-6191.
    [42] LIU L, WEBER A, LINNE U, SHEHATA M, PLESCHKA S, KRACHT M, SCHMITZ ML. Phosphorylation of influenza A virus matrix protein 1 at threonine 108 controls its multimerization state and functional association with the STRIPAK complex[J]. mBio, 2023, 14(1): e0323122.
    [43] GALES JP, KUBINA J, GELDREICH A, DIMITROVA M. Strength in diversity: nuclear export of viral RNAs[J]. Viruses, 2020, 12(9): 1014.
    [44] ZHAO LC, XIA HZ, HUANG JJ, ZHENG YQ, LIU C, SU J, PING JH. Features of nuclear export signals of NS2 protein of influenza D virus[J]. Viruses, 2020, 12(10): 1100.
    [45] DONG MY, WANG YY, LI P, CHEN ZN, ANIRUDHAN V, CUI QH, RONG LJ, DU RK. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor[J]. Virologica Sinica, 2023, 38(6): 931-939.
    [46] CUI L, ZHENG WN, LI MH, BAI XY, YANG WX, LI J, FAN WH, GAO GF, SUN L, LIU WJ. Phosphorylation status of tyrosine 78 residue regulates the nuclear export and ubiquitination of influenza A virus nucleoprotein[J]. Frontiers in Microbiology, 2019, 10: 1816.
    [47] ZHENG WN, LI J, WANG SS, CAO SS, JIANG JW, CHEN C, DING C, QIN C, YE X, GAO GF, LIU WJ. Phosphorylation controls the nuclear-cytoplasmic shuttling of influenza A virus nucleoprotein[J]. Journal of Virology, 2015, 89(11): 5822-5834.
    [48] LI Y, SUN L, ZHENG WN, Madina·MAHESUTIHAN, LI J, BI YH, WANG HR, LIU WJ, LUO TR. Phosphorylation and dephosphorylation of threonine 188 in nucleoprotein is crucial for the replication of influenza A virus[J]. Virology, 2018, 520: 30-38.
    [49] LI B, CLOHISEY SM, CHIA BS, WANG B, CUI A, EISENHAURE T, SCHWEITZER LD, HOOVER P, PARKINSON NJ, NACHSHON A, SMITH N, REGAN T, FARR D, GUTMANN MU, BUKHARI SI, LAW A, SANGESLAND M, GAT-VIKS I, DIGARD P, VASUDEVAN S, et al. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection[J]. Nature Communications, 202??? ????戀爀?嬀??崀?伀???一?伀一?刀????夀嘀???刀??伀?嘀???匀伀唀刀?匀匀??唀?????嘀?一匀?????匀??圀??????渀?椀渀昀氀甀攀渀稀愀?瘀椀爀甀猀?攀渀琀爀礀?椀渀栀椀戀椀琀漀爀?琀愀爀最攀琀猀?挀氀愀猀猀????倀??猀甀戀????猀甀戀??欀椀渀愀猀攀?愀渀搀?猀礀渀攀爀最椀稀攀猀?眀椀琀栀?漀猀攀氀琀愀洀椀瘀椀爀嬀?崀????匀??渀昀攀挀琀椀漀甀猀??椀猀攀愀猀攀猀??? ??????? ??????????????戀爀?嬀??崀???????堀唀????????一?圀圀??倀?一??堀????????????唀??????唀??????渀琀椀?椀渀昀氀甀攀渀稀愀?攀昀昀攀挀琀?愀渀搀?愀挀琀椀漀渀?洀攀挀栀愀渀椀猀洀猀?漀昀?琀栀攀?挀栀攀洀椀挀愀氀?挀漀渀猀琀椀琀甀攀渀琀?最愀氀氀漀挀愀琀攀挀栀椀渀???最愀氀氀愀琀攀?昀爀漀洀??椀?倀椀琀栀攀挀攀氀氀漀戀椀甀洀?挀氀礀瀀攀愀爀椀愀??椀???攀渀琀栀嬀?崀???挀琀愀?倀栀愀爀洀愀挀漀氀漀最椀挀愀?匀椀渀椀挀愀??? ???????????????????????戀爀?嬀??崀?匀??一??吀夀??匀唀一?夀???匀唀一????倀刀?一娀?刀???倀?一???堀????唀?堀???堀唀?堀???刀漀氀攀?漀昀?吀?????愀挀琀椀瘀愀琀攀搀?欀椀渀愀猀攀???吀?????愀挀琀椀瘀愀琀椀漀渀?椀渀???一??椀渀昀氀甀攀渀稀愀???瘀椀爀甀猀?椀渀搀甀挀攀搀?挀??甀渀?琀攀爀洀椀渀愀氀?欀椀渀愀猀攀?愀挀琀椀瘀愀琀椀漀渀?愀渀搀?瘀椀爀甀猀?爀攀瀀氀椀挀愀琀椀漀渀嬀?崀??嘀椀爀漀氀漀最礀??? ??????????????????戀爀?嬀? 崀?匀??刀??甀洀氀???刀?吀???唀????匀???匀??刀????刀??????刀??刀?吀????倀??一娀?伀???唀?圀???匀??吀栀攀?挀氀椀渀椀挀愀氀氀礀?愀瀀瀀爀漀瘀攀搀?????椀渀栀椀戀椀琀漀爀?吀爀愀洀攀琀椀渀椀戀?攀昀昀椀挀椀攀渀琀氀礀?戀氀漀挀欀猀?椀渀昀氀甀攀渀稀愀???瘀椀爀甀猀?瀀爀漀瀀愀最愀琀椀漀渀?愀渀搀?挀礀琀漀欀椀渀攀?攀砀瀀爀攀猀猀椀漀渀嬀?崀???渀琀椀瘀椀爀愀氀?刀攀猀攀愀爀挀栀??? ?????????? ?????戀爀?嬀??崀???刀???一一?匀????????匀?????吀愀爀最攀琀椀渀最?琀栀攀?瀀爀漀瘀椀爀愀氀?栀漀猀琀?欀椀渀愀猀攀???????氀椀洀椀琀猀?椀渀昀氀甀攀渀稀愀?愀?瘀椀爀甀猀?瀀愀琀栀漀最攀渀攀猀椀猀?愀渀搀?一?欀??爀攀最甀氀愀琀攀搀?瀀爀漀?椀渀昀氀愀洀洀愀琀漀爀礀?爀攀猀瀀漀渀猀攀猀嬀?崀??嘀椀爀漀氀漀最礀??? ????????????????戀爀?嬀??崀?匀??刀????刀????嘀????一一????匀???伀甀洀氀?一?一?????匀???伀?刀?匀??????吀??娀???刀?一伀?????刀唀一伀吀吀????????匀吀????匀???伀甀洀氀?????甀洀氀?一??刀?????刀?一??唀匀?????伀????一一?????伀????一一????倀?伀甀洀氀?????一一?匀??刀?匀???刀?唀??倀??一娀?伀???唀?圀???匀??吀栀攀?????????椀渀栀椀戀椀琀漀爀??吀刀?  ??攀昀昀椀挀椀攀渀琀氀礀?戀氀漀挀欀猀?匀?刀匀??漀嘀???瀀爀漀瀀愀最愀琀椀漀渀?愀渀搀?愀氀氀攀瘀椀愀琀攀猀?瀀爀漀?椀渀昀氀愀洀洀愀琀漀爀礀?挀礀琀漀欀椀渀攀??挀栀攀洀漀欀椀渀攀?爀攀猀瀀漀渀猀攀猀嬀?崀???攀氀氀甀氀愀爀?愀渀搀??漀氀攀挀甀氀愀爀??椀昀攀?匀挀椀攀渀挀攀猀??? ???????????????戀爀?嬀??崀???唀刀????????娀??????伀???????刀????儀唀?刀一??????????唀甀洀氀????刀????匀??刀????刀??????唀甀洀氀????刀????倀??匀?????匀???唀?圀???匀??倀??一娀?伀???渀琀椀瘀椀爀愀氀?攀昀昀椀挀愀挀礀?愀最愀椀渀猀琀?椀渀昀氀甀攀渀稀愀?瘀椀爀甀猀?愀渀搀?瀀栀愀爀洀愀挀漀欀椀渀攀琀椀挀?愀渀愀氀礀猀椀猀?漀昀?愀?渀漀瘀攀氀?????椀渀栀椀戀椀琀漀爀???吀刀?  ???椀渀?挀攀氀氀?挀甀氀琀甀爀攀?愀渀搀?椀渀?琀栀攀?洀漀甀猀攀?洀漀搀攀氀嬀?崀???渀琀椀瘀椀爀愀氀?刀攀猀攀愀爀挀栀??? ? ???????? ?? ??, 383(1): 6-11.
    [58] PATIL A, ANHLAN D, FERRANDO V, MECATE- ZAMBRANO A, MELLMANN A, WIXLER V, BOERGELING Y, LUDWIG S. Phosphorylation of influenza A virus NS1 at serine 205 mediates its viral polymerase-enhancing function[J]. Journal of Virology, 2021, 95(6): e02369-20.
    [59] HSIANG TY, ZHOU LG, KRUG RM. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses[J]. Journal of Virology, 2012, 86(19): 10370-10376.
    [60] ELBAHESH H, BERGMANN S, RUSSELL CJ. Focal adhesion kinase (FAK) regulates polymerase activity of multiple influenza A virus subtypes[J]. Virology, 2016, 499: 369-374.
    [61] MECATE-ZAMBRANO A, SUKUMAR S, SEEBOHM G, CIMINSKI K, SCHREIBER A, ANHLAN D, GREUNE L, WIXLER L, GROTHE S, STEIN NC, SCHMIDT MA, LANGER K, SCHWEMMLE M, SHI TL, LUDWIG S, BOERGELING Y. Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly[J]. PLoS Pathogens, 2020, 16(8): e1008775.
    [62] LI FT, LIU JY, YANG JZ, SUN HR, JIANG ZM, WANG CX, ZHANG X, YU YH, ZHAO CK, PU J, SUN YP, CHANG KC, LIU JH, SUN HL. H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: mechanism of avian influenza virus inter-species infection in humans[J]. PLoS Pathogens, 2021, 17(12): e1010098.
    [63] HUI XF, CAO L, XU T, ZHAO LZ, HUANG K, ZOU Z, REN PL, MAO HY, YANG Y, GAO S, SUN XM, LIN X, JIN ML. PSMD12-mediated M1 ubiquitination of influenza A virus at K102 regulates viral replication[J]. Journal of Virology, 2022, 96(15): e0078622.
    [64] WANG XY, HINSON ER, CRESSWELL P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts[J]. Cell Host & Microbe, 2007, 2(2): 96-105.
    [65] KUMAR N, LIANG YH, PARSLOW TG, LIANG YY. Receptor tyrosine kinase inhibitors block multiple steps of influenza a virus replication[J]. Journal of Virology, 2011, 85(6): 2818-2827.
    [66] MEINEKE R, STELZ S, BUSCH M, WERLEIN C, KÜHNEL M, JONIGK D, RIMMELZWAAN GF, ELBAHESH H. FDA-approved inhibitors of RTK/Raf signaling potently impair multiple steps of in vitro and ex vivo influenza A virus infections[J]. Viruses, 2022, 14(9)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨宣叶,高明阳,胡欣妍,刘倩芸,吴玉湖,马晓霞. 蛋白激酶在流感病毒生命周期不同阶段的作用[J]. 微生物学通报, 2025, 52(1): 90-100

复制
分享
文章指标
  • 点击次数:68
  • 下载次数: 107
  • HTML阅读次数: 94
  • 引用次数: 0
历史
  • 收稿日期:2024-04-20
  • 录用日期:2024-07-31
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码