科微学术

微生物学通报

常压室温等离子体结合高通量筛选技术在微生物育种方面的研究进展
作者:
基金项目:

国家自然科学基金(22078128)


Research progress in atmospheric and room-temperature plasma combined with high-throughput screening in microbial breeding
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    常压室温等离子体(atmospheric and room temperature plasma, ARTP)是一种新型诱变技术,具有诱变速度快、诱变条件温和、环境友好等特点。由于ARTP诱变的突变体具有高突变频率和良好的遗传稳定性,因此在微生物育种领域应用广泛。本文综述了近年来ARTP诱变技术在微生物育种中取得的进展、诱变后突变菌株的筛选策略和ARTP诱导微生物发生突变的机制,并对ARTP目前在微生物诱变育种中存在的问题进行讨论。

    Abstract:

    Atmospheric and room temperature plasma (ARTP), a new approach of mutagenesis, is characterized by fast mutagenesis speed, mild mutagenesis conditions, and environmental friendliness. The ARTP-induced mutants have high mutagenesis frequency and good genetic stability. Therefore, ARTP is widely used in microbial breeding. This paper reviews the progress in ARTP in microbial breeding in recent years, the screening strategy of mutants after mutagenesis, and the mechanism of ARTP-induced mutagenesis in microorganisms. Finally, we discuss the existing problems of ARTP in microbial breeding.

    参考文献
    [1] ZHANG X, ZHANG XF, LI HP, WANG LY, ZHANG C, XING XH, BAO CY. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool[J]. Applied Microbiology and Biotechnology, 2014, 98(12): 5387-5396.
    [2] LI DA, SHEN J, DING Q, WU JY, CHEN XS. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology[J]. Cell Biochemistry and Function, 2024, 42(3): e3991.
    [3] DOBRYNIN D, FRIDMAN G, FRIEDMAN G, FRIDMAN A. Physical and biological mechanisms of direct plasma interaction with living tissue[J]. New Journal of Physics, 2009, 11(11): 115020.
    [4] LIU KY, FANG H, CUI FJ, NYABAKO BA, TAO TL, ZAN XY, CHEN HY, SUN WJ. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology, 2020, 104(14): 6363-6373.
    [5] ZHANG H, YANG LF, YU ZL, HUANG Q. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: impacts on cell integrity, pigment contents and microcystins degradation[J]. Journal of Hazardous Materials, 2014, 268: 33-42.
    [6] LI HP, WANG LY, LI G, JIN LH, LE PS, ZHAO HX, XING XH, BAO CY. Manipulation of lipase activity by the helium radio-frequency, atmospheric-pressure glow discharge plasma jet[J]. Plasma Processes and Polymers, 2011, 8(3): 224-229.
    [7] ZHANG AD, MA YD, DENG Y, ZHOU ZW, CAO Y, YANG B, BAI J, SUN Q. Enhancing protease and amylase activities in Bacillus licheniformis XS-4 for traditional soy sauce fermentation using ARTP mutagenesis[J]. Foods, 2023, 12(12): 2381.
    [8] SREEDEVI PR, SURESH K. Cold atmospheric plasma mediated cell membrane permeation and gene delivery-empirical interventions and pertinence[J]. Advances in Colloid and Interface Science, 2023, 320: 102989.
    [9] CHENG LK, WANG J, ZHAO XB, YIN HH, FANG HT, LIN CW, ZHANG SS, SHEN ZQ, ZHAO CG. An antiphage Escherichia coli mutant for higher production of l-threonine obtained by atmospheric and room temperature plasma mutagenesis[J]. Biotechnology Progress, 2020, 36(6): e3058.
    [10] SUN X, LI PF, LIU XS, WANG X, LIU YJ, TURAIB A, CHENG ZW. Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method[J]. Journal of Cleaner Production, 2020, 250: 119509.
    [11] WANG LY, ZHAO HX, HE D, WU YN, JIN LH, LI G, SU N, LI HP, XING XH. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides[J]. Scientific Reports, 2020, 10: 14298.
    [12] LI G, LI HP, WANG LY, WANG S, ZHAO HX, SUN WT, XING XH, BAO CY. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters, 2008, 92(22): 221504.
    [13] YU F, ZHANG M, SUN JF, WANG F, LI XF, LIU Y, WANG Z, ZHAO XR, LI JH, CHEN J, DU GC, XUE ZL. Improved neomycin sulfate potency in Streptomyces fradiae using atmospheric and room temperature plasma (ARTP) mutagenesis and fermentation medium optimization[J]. Microorganisms, 2022, 10(1): 94.
    [14] YE LT, YE RF, HU FX, WANG GZ. Combination of atmospheric and room temperature plasma (ARTP) mutagenesis, genome shuffling and dimethyl sulfoxide (DMSO) feeding to improve FK506 production in Streptomyces tsukubaensis[J]. Biotechnology Letters, 2021, 43(9): 1809-1820.
    [15] YIN XQ, LI YY, ZHOU JW, RAO SQ, DU GC, CHEN J, LIU S. Enhanced production of transglutaminase in Streptomyces mobaraensis through random mutagenesis and site-directed genetic modification[J]. Journal of Agricultural and Food Chemistry, 2021, 69(10): 3144-3153.
    [16] 陆欢, 沈玲, 尚晓冬, 刘建雨, 王瑞娟, 杨慧. 常压室温等离子体技术在微生物诱变育种中的研究进展[J]. 生物学杂志, 2023, 40(4): 92-97. LU H, SHEN L, SHANG XD, LIU JY, WANG RJ, YANG H. Application of atmospheric and room temperature plasma mutagenesis in microbial and edible fungi mutation breeding[J]. Journal of Biology, 2023, 40(4): 92-97(in Chinese).
    [17] 周英俊. 马铃薯疮痂病生防菌的选育及其抗病机理研究[D]. 无锡: 江南大学博士学位论文, 2023. ZHOU YJ. Breeding and biocontrol mechanism of antagonist bacterium against the potato common scab pathogen[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2023(in Chinese).
    [18] BAO ZJ, WANG XM, WANG QF, ZOU L, PENG LX, LI LJ, TU WY, LI Q. A novel method of domestication combined with ARTP to improve the reduction ability of Bacillus velezensis to Cr(VI)[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109091.
    [19] WANG LY, HUANG ZL, LI G, ZHAO HX, XING XH, SUN WT, LI HP, GOU ZX, BAO CY. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma[J]. Journal of Applied Microbiology, 2010, 108(3): 851-858.
    [20] WANG XR, TIAN XR, WU YJ, SHEN XF, YANG SB, CHEN SX. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization[J]. Preparative Biochemistry & Biotechnology, 2018, 48(6): 514-521.
    [21] MENG LH, GAO X, LIU XX, SUN MM, YAN H, LI A, YANG YK, BAI ZH. Enhancement of heterologous protein production in Corynebacterium glutamicum via atmospheric and room temperature plasma mutagenesis and high-throughput screening[J]. Journal of Biotechnology, 2021, 339: 22-31.
    [22] SONG CF, HAN XX, YIN QR, CHEN DQ, LI HW, LI SH. Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment[J]. The Science of the Total Environment, 2021, 801: 149791.
    [23] ELSHOBARY ME, ZABED HM, QI XH, EL-SHENODY RA. Enhancing biomass and lipid productivity of a green microalga Parachlorella kessleri for biodiesel production using rapid mutation of atmospheric and room temperature plasma[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 122.
    [24] 潘俊潼, 寇凤雨, 刘瑞艳, 王一然, 赵辉. 常压室温等离子体-紫外复合诱变选育β-法尼烯高产菌株[J]. 微生物学通报, 2020, 47(2): 542-551. PAN JT, KOU FY, LIU RY, WANG YR, ZHAO H. Breeding of high β-farnesene producing strain by ARTP-UV combined mutation[J]. Microbiology China, 2020, 47(2): 542-551(in Chinese).
    [25] HAN GQ, XU N, SUN XP, CHEN JZ, CHEN C, WANG Q. Improvement of l-valine production by atmospheric and room temperature plasma mutagenesis and high-throughput screening in Corynebacterium glutamicum[J]. ACS Omega, 2020, 5(10): 4751-4758.
    [26] QIU YB, ZHANG YT, ZHU YF, SHA YY, XU ZQ, FENG XH, LI S, XU H. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing[J]. Bioprocess and Biosystems Engineering, 2019, 42(10): 1711-1720.
    [27] ZHANG N, JIANG JC, YANG J, WEI M, ZHAO J, XU H, XIE JC, TONG YJ, YU L. Citric acid production from acorn starch by tannin tolerance mutant Aspergillus niger AA120[J]. Applied Biochemistry and Biotechnology, 2019, 188(1): 1-11.
    [28] YAO ZY, GONG JS, LIU YR, JIANG JY, ZHANG YS, SU C, LI H, KANG CL, LIU L, XU ZH, SHI JS. Genetic variation reveals the enhanced microbial hyaluronan biosynthesis via atmospheric and room temperature plasma[J]. Carbohydrate Polymers, 2023, 312: 120809.
    [29] ZHANG N, JIANG Y, SUN YJ, JIANG JC, TONG YJ. Breeding of a thermostable xylanase-producing strain of Myceliophthora thermophila by atmospheric room temperature plasma (ARTP) mutagenesis[J]. Frontiers in Bioengineering and Biotechnology, 2023, 10: 1095323.
    [30] LIU YK, LI SC. Breeding of high-yield alkaline protease producing strain by atmospheric and room temperature plasma mutagenesis[J]. IOP Conference Series: Earth and Environmental Science, 2020, 453(1): 012089.
    [31] LIU WM, YANG WW, WU J, CHENG Y, WEI ZC, WANG T, AMPOFO KA, MA HL, CUI FJ, YANG XM, YAN JK, YANG LQ, ZHANG H. ARTP mutagenesis to improve mycelial polysaccharide production of Grifola frondosa using a mixture of wheat bran and rice bran as substrate[J]. Journal of Food Quality, 2021, 2021: 6110743.
    [32] LI MQ, HUANG XY, XIONG ZL. Investigation of stimulated growth effect using pulsed cold atmospheric plasma treatment on Ganoderma lucidum[J]. Plasma Science and Technology, 2022, 24(11): 115503.
    [33] LI TT, CHEN LJ, WU D, DONG GC, CHEN WC, ZHANG HN, YANG Y, WU WH. The structural characteristics and biological activities of intracellular polysaccharide derived from mutagenic Sanghuangporous sanghuang strain[J]. Molecules, 2020, 25(16): 3693.
    [34] 崔杰宇. 毛竹发酵制备高抑菌性哈茨木霉微生物农药的研究[D]. 南京: 南京林业大学硕士学位论文, 2023. CUI JY. A high antibacterial biopesticide production from a mutant strain of Trichoderma harzianum based on moso bamboo substrate[D]. Nanjing: Master’s Thesis of Nanjing Forestry University, 2023(in Chinese).
    [35] ZOU RS, LI SY, ZHANG LL, ZHANG C, HAN YJ, GAO G, SUN XY, GONG XQ. Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10[J]. Journal of Bioscience and Bioengineering, 2019, 127(6): 698-702.
    [36] LIU Y, CHEN X, WEI D, XING XH. Breeding a novel chlorophyll-deficient mutant of Auxenochlorella pyrenoidosa for high-quality protein production by atmospheric room temperature plasma mutagenesis[J]. Bioresource Technology, 2023, 390: 129907.
    [37] ZHU CY, ZHAO XY, LYU ZY, GAO WL, ZHAO QW, CHEN XN, LI YQ. Daptomycin production enhancement by ARTP mutagenesis and fermentation optimization in Streptomyces roseosporus[J]. Journal of Applied Microbiology, 2023, 134(10): lxad230.
    [38] DUAN GW, WU B, QIN H, WANG WT, TAN Q, DAI YH, QIN Y, TAN FR, HU GQ, HE MX. Replacing water and nutrients for ethanol production by ARTP derived biogas slurry tolerant Zymomonas mobilis strain[J]. Biotechnology for Biofuels, 2019, 12: 124.
    [39] 许鹏飞. 皮状丝孢酵母ARTP诱变选育及其产油关键酶基因转录组分析[D]. 宜昌: 三峡大学硕士学位论文, 2020. XU PF. Mutagenic breeding of Trichosporon cutaneum by ARTP and transcriptome analysis of key enzyme genes for oil production[D]. Yichang: Master’s Thesis of China Three Gorges University, 2020(in Chinese).
    [40] 周秋利, 顾喆, 龙凌凤, 郭书贤, 刘汝宽, 孙海彦, 孙付保. 复合诱变野生酵母ZZ-46选育高产油脂菌株[J]. 食品与发酵工业, 2020, 46(21): 16-22. ZHOU QL, GU Z, LONG LF, GUO SX, LIU RK, SUN HY, SUN FB. Improving microbial oil yield in Trichosporon dermatis by mutagenesis[J]. Food and Fermentation Industries, 2020, 46(21): 16-22(in Chinese).
    [41] WEI LL, MAO YR, LIU H, KE CZ, LIU XL, LI SB. Effect of an inorganic nitrogen source (NH4)2SO4 on the production of welan gum from Sphingomonas sp. mutant obtained through UV-ARTP compound mutagenesis[J]. International Journal of Biological Macromolecules, 2022, 210: 630-638.
    [42] 吕苗苗, 牛春, 石彦鹏, 张萍. 阿维链霉菌高产菌株的复合筛选[J]. 国外医药(抗生素分册), 2024, 45(2): 94-99. Lyu MM, NIU C, SHI YP, ZHANG P. Compound screening of high-yield strain of Streptomyces avermitilis[J]. World Notes on Antibiotics, 2024, 45(2): 94-99(in Chinese).
    [43] CHIU FWY, STAVRAKIS S. High-throughput droplet-based microfluidics for directed evolution of enzymes[J]. Electrophoresis, 2019, 40(21): 2860-2872.
    [44] YU QH, LI YC, WU B, HU W, HE MX, HU GQ. Novel mutagenesis and screening technologies for food microorganisms: advances and prospects[J]. Applied Microbiology and Biotechnology, 2020, 104(4): 1517-1531.
    [45] WANG Q, CHEN YL, FU JJ, YANG QX, FENG LR. High-throughput screening of lycopene-overproducing mutants of Blakeslea trispora by combining ARTP mutation with microtiter plate cultivation and transcriptional changes revealed by RNA-seq[J]. Biochemical Engineering Journal, 2020, 161: 107664.
    [46] GONG YL, FAN N, YANG X, PENG B, JIANG H. New advances in microfluidic flow cytometry[J]. Electrophoresis, 2019, 40(8): 1212-1229.
    [47] LIU SY, WANG B, SUI ZW, WANG ZQ, LI LQ, ZHEN XX, ZHAO W, ZHOU GP. Faster detection of Staphylococcus aureus in milk and milk powder by flow cytometry[J]. Foodborne Pathogens and Disease, 2021, 18(5): 346-353.
    [48] TU R, LI LP, YUAN HL, HE RL, WANG QH. Biosensor-enabled droplet microfluidic system for the rapid screening of 3-dehydroshikimic acid produced in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(12): 1155-1160.
    [49] ABUAITA BH, WITHEY JH. Genetic screening for bacterial mutants in liquid growth media by fluorescence-activated cell sorting[J]. Journal of Microbiological Methods, 2011, 84(1): 109-113.
    [50] LIN J, CHEN Y, YAN HL, NAHIDIAN B, HU Q, HAN DX. High-throughput fluorescence-activated cell sorting for cell wall-deficient microalgal mutants screening[J]. Algal Research, 2020, 50: 102011.
    [51] 孙梦楚, 陆亮宇, 申晓林, 孙新晓, 王佳, 袁其朋. 基于荧光检测的高通量筛选技术和装备助力细胞工厂构建[J]. 合成生物学, 2023, 4(5): 947-965. SUN MC, LU LY, SHEN XL, SUN XX, WANG J, YUAN QP. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction[J]. Synthetic Biology Journal, 2023, 4(5): 947-965(in Chinese).
    [52] YU XY, LI S, FENG HB, LIAO XH, XING XH, BAI ZH, LIU XX, ZHANG C. CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion[J]. Metabolic Engineering, 2023, 75: 192-204.
    [53] JIANG JJ, YANG GY, MA FQ. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies[J]. Biotechnology Advances, 2023, 66: 108173.
    [54] MA FQ, CHUNG MT, YAO Y, NIDETZ R, LEE LM, LIU AP, FENG Y, KURABAYASHI K, YANG GY. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform[J]. Nature Communications, 2018, 9: 1030.
    [55] CHENG F, TANG XL, KARDASHLIEV T. Transcription factor-based biosensors in high-throughput screening: advances and applications[J]. Biotechnology Journal, 2018, 13(7): e1700648.
    [56] VITELLI M, BUDMAN H, PRITZKER M, TAMER M. Applications of flow cytometry sorting in the pharmaceutical industry: a review[J]. Biotechnology Progress, 2021, 37(4): e3146.
    [57] HAMMAR P, ANGERMAYR SA, SJOSTROM SL, van der MEER J, HELLINGWERF KJ, HUDSON EP, JOENSSON HN. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria[J]. Biotechnology for Biofuels, 2015, 8: 193.
    [58] HU SY, WANG BX, LUO Q, ZENG RM, ZHANG JM, CHENG J. Advances in droplet-based microfluidic high-throughput screening of engineered strains and enzymes based on ultraviolet, visible, and fluorescent spectroscopy[J]. Fermentation, 2023, 10(1): 33.
    [59] 刘帅. X射线诱变选育红曲霉高产Monacolin K菌株及发酵工艺优化研究[D]. 长沙: 中南林业科技大学硕士学位论文, 2023. LIU S. Study on the breeding of Monascus purpureus with high production of Monacolin K by X-ray mutation and optimization of fermentation process[D]. Changsha: Master’s Thesis of Central South University of Forestry & Technology, 2023(in Chinese).
    [60] POTHOULAKIS G, CERONI F, REEVE B, ELLIS T. The spinach RNA aptamer as a characterization tool for synthetic biology[J]. ACS Synthetic Biology, 2014, 3(3): 182-187.
    [61] MAHR R, FRUNZKE J. Transcription factor-based biosensors in biotechnology: current state and future prospects[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 79-90.
    [62] GIELEN F, HOURS R, EMOND S, FISCHLECHNER M, SCHELL U, HOLLFELDER F. Ultrahigh- throughput-directed enzyme evolution by absorbance- activated droplet sorting (AADS)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7383-E7389.
    [63] MA YF, YANG HQ, CHEN XZ, SUN B, DU GC, ZHOU ZM, SONG JN, FAN Y, SHEN W. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline α-amylase as a case study[J]. Protein Expression and Purification, 2015, 114: 82-88.
    [64] 陈洲琴, 张祝兰, 杨煌建, 程贤, 严凌斌, 连云阳. 红色诺卡氏菌高产菌的ARTP诱变选育与发酵条件优化[J]. 化学与生物工程, 2024, 41(3): 46-52. CHEN ZQ, ZHANG ZL, YANG HJ, CHENG X, YAN LB, LIAN YY. ARTP mutagenesis breeding and fermentation conditions optimization of high Nocardia rubra-producing strain[J]. Chemistry & Bioengineering, 2024, 41(3): 46-52(in Chinese).
    [65] LU Y, WANG LY, MA K, LI G, ZHANG C, ZHAO HX, LAI QH, LI HP, XING XH. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP)[J]. Biochemical Engineering Journal, 2011, 55(1): 17-22.
    [66] ZONG H, ZHAN Y, LI X, PENG LJ, FENG FQ, LI D. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma[J]. African Journal of Microbiology Research, 2012, 6: 3154-3158.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康竞艺,艾奕伶,刘秀霞,白仲虎. 常压室温等离子体结合高通量筛选技术在微生物育种方面的研究进展[J]. 微生物学通报, 2025, 52(1): 78-89

复制
分享
文章指标
  • 点击次数:126
  • 下载次数: 112
  • HTML阅读次数: 95
  • 引用次数: 0
历史
  • 收稿日期:2024-04-20
  • 录用日期:2024-05-30
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码