科微学术

微生物学通报

基于反转录子的微生物基因编辑技术研究进展
作者:
基金项目:

青岛市博士后应用研究项目(QDBSH20230202047);微生物技术国家重点实验室生命科学领域校内联合项目基金(SKLMTIJP-2024-04);山东大学基本科研业务费专项资金(2023QNTD001)


Research progress in microbial gene editing based on retrons
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    反转录子(retron)主要是由非编码RNA和逆转录酶所组成的参与抗噬菌体防御系统的细菌遗传元件。基于retron能产生多拷贝单链DNA的特性,将其与同源重组蛋白或CRISPR/Cas蛋白相结合已经在细菌和酵母中实现高效精准的基因编辑,而不依赖于外源DNA的直接引入。Retron系统经过不同优化,可应用于突变子文库构建、分子记录仪、蛋白连续进化等多个方向。本文首先介绍了retron的结构与分子机制,重点总结了基于retron的基因编辑技术在细菌和真菌中的应用,并对其优势和限制因素进行分析。最后对基于retron的基因编辑技术的未来发展进行了展望。

    Abstract:

    A retron, a bacterial genetic element mainly composed of a non-coding RNA and a reverse transcriptase, is involved in the anti-phage defense system. Since retrons can produce multi-copy single-stranded DNAs, combining retrons with proteins of homologous recombination or CRISPR/Cas has achieved efficient and accurate gene editing in bacteria and yeast, without relying on the direct introduction of exogenous DNAs. The optimized retron system can be applied in multiple fields such as mutant library construction, molecular recorder, and continuous evolution of proteins. This review introduces the structures and molecular mechanisms of retrons, summarizes the application of retron-based gene editing in bacteria and fungi, and analyzes the advantages and limitations of this technology. Finally, the future development of gene editing based on retrons is prospected.

    参考文献
    [1] LIN FL, SPERLE K, STERNBERG N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(5): 1391-1395.
    [2] van den BOSCH M, LOHMAN PHM, PASTINK A. DNA double-strand break repair by homologous recombination[J]. Biological Chemistry, 2002, 383(6): 873-892.
    [3] ZHANG Y, BUCHHOLZ F, MUYRERS JP, STEWART AF. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature Genetics, 1998, 20(2): 123-128.
    [4] MUYRERS JP, ZHANG Y, TESTA G, STEWART AF. Rapid modification of bacterial artificial chromosomes by ET-recombination[J]. Nucleic Acids Research, 1999, 27(6): 1555-1557.
    [5] ZHANG YM, MUYRERS JPP, RIENTJES J, STEWART AF. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells[J]. BMC Molecular Biology, 2003, 4(1): 1.
    [6] 郑文韬, 张友明, 卞小莹. Red/ET同源重组技术及其在微生物基因组挖掘中的应用进展[J]. 微生物学报, 2017, 57(11): 1735-1746. ZHENG WT, ZHANG YM, BIAN XY. Advances in Red/ET recombineering and its application for microbial genome mining[J]. Acta Microbiologica Sinica, 2017, 57(11): 1735-1746(in Chinese).
    [7] LANIGAN TM, KOPERA HC, SAUNDERS TL. Principles of genetic engineering[J]. Genes, 2020, 11(3): 291.
    [8] CARROLL D. Genome engineering with zinc-finger nucleases[J]. Genetics, 2011, 188(4): 773-782.
    [9] CHANDRASEGARAN S, CARROLL D. Origins of programmable nucleases for genome engineering[J]. Journal of Molecular Biology, 2016, 428(5Pt B): 963-989.
    [10] RAN FA, HSU PD, WRIGHT J, AGARWALA V, SCOTT DA, ZHANG F. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocols, 2013, 8(11): 2281-2308.
    [11] YANG H, REN SL, YU SY, PAN HF, LI TD, GE SX, ZHANG J, XIA NS. Methods favoring homology- directed repair choice in response to CRISPR/Cas9 induced-double strand breaks[J]. International Journal of Molecular Sciences, 2020, 21(18): 6461.
    [12] PACESA M, PELEA O, JINEK M. Past, present, and future of CRISPR genome editing technologies[J]. Cell, 2024, 187(5): 1076-1100.
    [13] COX DBT, GOOTENBERG JS, ABUDAYYEH OO, FRANKLIN B, KELLNER MJ, JOUNG J, ZHANG F. RNA editing with CRISPR-cas13[J]. Science, 2017, 358(6366): 1019-1027.
    [14] CHEN JS, MA EB, HARRINGTON LB, Da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
    [15] LIU GW, LIN QP, JIN S, GAO CX. The CRISPR-Cas toolbox and gene editing technologies[J]. Molecular Cell, 2022, 82(2): 333-347.
    [16] ZHAO B, CHEN SA A, LEE J, FRASER HB. Bacterial retrons enable precise gene editing in human cells[J]. The CRISPR Journal, 2022, 5(1): 31-39.
    [17] MILLMAN A, BERNHEIM A, STOKAR-AVIHAIL A, FEDORENKO T, VOICHEK M, LEAVITT A, OPPENHEIMER-SHAANAN Y, SOREK R. Bacterial retrons function in anti-phage defense[J]. Cell, 2020, 183(6): 1551-1561.e12.
    [18] FURUICHI T, DHUNDALE A, INOUYE M, INOUYE S. Branched RNA covalently linked to the 5' end of a single-stranded DNA in Stigmatella aurantiaca: Structure of msDNA[J]. Cell, 1987, 48(1): 47-53.
    [19] LAMPSON BC, VISWANATHAN M, INOUYE M, INOUYE S. Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA[J]. The Journal of Biological Chemistry, 1990, 265(15): 8490-8496.
    [20] YEE T, FURUICHI T, INOUYE S, INOUYE M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus[J]. Cell, 1984, 38(1): 203-209.
    [21] LAMPSON BC, INOUYE M, INOUYE S. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus[J]. Cell, 1989, 56(4): 701-707.
    [22] LIM D, MAAS WK. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B[J]. Cell, 1989, 56(5): 891-904.
    [23] LAMPSON BC, SUN J, HSU MY, VALLEJO-RAMIREZ J, INOUYE S, INOUYE M. Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA[J]. Science, 1989, 243(4894Pt 1): 1033-1038.
    [24] TEMIN HM. Reverse transcriptases. retrons in bacteria[J]. Nature, 1989, 339(6222): 254-255.
    [25] RYCHLIK I, SEBKOVA A, GREGOROVA D, KARPISKOVA R. Low-molecular-weight plasmid of Salmonella enterica serovar Enteritidis codes for retron reverse transcriptase and influences phage resistance[J]. Journal of Bacteriology, 2001, 183(9): 2852-2858.
    [26] SIMON AJ, ELLINGTON AD, FINKELSTEIN IJ. Retrons and their applications in genome engineering[J]. Nucleic Acids Research, 2019, 47(21): 11007-11019.
    [27] INOUYE M, INOUYE S. Retrons and multicopy single-stranded DNA[J]. Journal of Bacteriology, 1992, 174(8): 2419-2424.
    [28] MESTRE MR, GONZÁLEZ-DELGADO A, GUTIÉRREZ-RUS LI, MARTÍNEZ-ABARCA F, TORO N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems[J]. Nucleic Acids Research, 2020, 48(22): 12632-12647.
    [29] PALKA C, FISHMAN CB, BHATTARAI-KLINE S, MYERS SA, SHIPMAN SL. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1[J]. Nucleic Acids Research, 2022, 50(6): 3490-3504.
    [30] PILOUSOVA L, MATIASOVICOVA J, SISAK F, HAVLICKOVA H, RYCHLIK I. Retron reverse transcriptase (rrtT) can be lost in multidrug resistant Salmonella enterica serovar Typhimurium DT104 strains and influences virulence for mice[J]. Veterinary Microbiology, 2005, 111(3/4): 191-197.
    [31] ELFENBEIN JR, KNODLER LA, NAKAYASU ES, ANSONG C, BREWER HM, BOGOMOLNAYA L, ADAMS LG, McCLELLAND M, ADKINS JN, ANDREWS-POLYMENIS HL. Multicopy single-stranded DNA directs intestinal colonization of enteric pathogens[J]. PLoS Genetics, 2015, 11(9): e1005472.
    [32] GAO LY, ALTAE-TRAN H, BÖHNING F, MAKAROVA KS, SEGEL M, SCHMID-BURGK JL, KOOB J, WOLF YI, KOONIN EV, ZHANG F. Diverse enzymatic activities mediate antiviral immunity in prokaryotes[J]. Science, 2020, 369(6507): 1077-1084.
    [33] MAXWELL KL. Retrons: complementing CRISPR in phage defense[J]. The CRISPR Journal, 2020, 3(4): 226-227.
    [34] 田雨顺, 罗鹏, 刘秋婷, 胡超群. 细菌重组系统及其应用研究进展[J]. 微生物学通报, 2017, 44(2): 473-482. TIAN YS, LUO P, LIU QT, HU CQ. Progress on bacterial recombination systems and their application[J]. Microbiology China, 2017, 44(2): 473-482(in Chinese).
    [35] DILLINGHAM MS, KOWALCZYKOWSKI SC. RecBCD enzyme and the repair of double-stranded DNA breaks[J]. Microbiology and Molecular Biology Reviews, 2008, 72(4): 642-671.
    [36] CHENG KY, WILKINSON M, CHABAN Y, WIGLEY DB. A conformational switch in respo.
    [55] CHEN PJ, LIU DR. Prime editing for precise and highly versatile genome manipulation[J]. Nature Reviews Genetics, 2023, 24(3): 161-177.
    [56] SIMON AJ, MORROW BR, ELLINGTON AD. Retroelement-based genome editing and evolution[J]. ACS Synthetic Biology, 2018, 7(11): 2600-2611.
    [57] LIU WQ, ZUO SQ, SHAO YR, BI K, ZHAO JR, HUANG L, XU ZN, LIAN JZ. Retron-mediated multiplex genome editing and continuous evolution in Escherichia coli[J]. Nucleic Acids Research, 2023, 51(15): 8293-8307.
    [58] LOPEZ SC, CRAWFORD KD, LEAR SK, BHATTARAI-KLINE S, SHIPMAN SL. Precise genome editing across Kingdoms of life using retron-derived DNA[J]. Nature Chemical Biology, 2022, 18(2): 199-206.
    [59] BHATTARAI-KLINE S, LEAR SK, FISHMAN CB, LOPEZ SC, LOCKSHIN ER, SCHUBERT MG, NIVALA J, CHURCH GM, SHIPMAN SL. Recording gene expression order in DNA by CRISPR addition of retron barcodes[J]. Nature, 2022, 608(7921): 217-225.
    [60] JIANG WJ, RAO GS, AMAN R, BUTT H, KAMEL R, SEDEEK K, MAHFOUZ MM. High-efficiency retron-mediated single-stranded DNA production in plants[J]. Synthetic Biology, 2022, 7(1): ysac025.
    [61] FARZADFARD F, GHARAEI N, CITORIK RJ, LU TK. Efficient retroelement-mediated DNA writing in bacteria[J]. Cell Systems, 2021, 12(9): 860-872.e5.
    [62] DORON S, MELAMED S, OFIR G, LEAVITT A, LOPATINA A, MAI KR, AMITAI G, SOREK R. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379): eaar4120.he National Academy of Sciences of the United States of America, 2021, 118(18): e2018181118.
    [44] GONZÁLEZ-DELGADO A, LOPEZ SC, ROJAS- MONTERO M, FISHMAN CB, SHIPMAN SL. Simultaneous multi-site editing of individual genomes using retron arrays[J]. Nature Chemical Biology, 2024, 20: 1482-1492.
    [45] SHARON E, CHEN SA A, KHOSLA NM, SMITH JD, PRITCHARD JK, FRASER HB. Functional genetic variants revealed by massively parallel precise genome editing[J]. Cell, 2018, 175(2): 544-557.e16.
    [46] DENG MT, WU YK, LV XQ, LIU L, LI JH, DU GC, CHEN J, LIU YF. Heterologous single-strand DNA-annealing and binding protein enhance CRISPR-based genome editing efficiency in Komagataella phaffii[J]. ACS Synthetic Biology, 2023, 12(11): 3443-3453.
    [47] 李瑞娟, 赵晓雨, 杨润雨, 刘洋, 颜富, 王海龙, 张友明, 符军. 噬菌体重组酶介导的DNA同源重组工程[J]. 微生物学通报, 2021, 48(9): 3230-3248. LI RJ, ZHAO XY, YANG RY, LIU Y, YAN F, WANG HL, ZHANG YM, FU J. Recombineering mediated by bacteriophage recombinases[J]. Microbiology China, 2021, 48(9): 3230-3248(in Chinese).
    [48] NEWING TP, BREWSTER JL, FITSCHEN LJ, BOUWER JC, JOHNSTON NP, YU HB, TOLUN G. Redβ177 annealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination[J]. Nature Communications, 2022, 13(1): 5649.
    [49] WANNIER TM, NYERGES A, KUCHWARA HM, CZIKKELY M, BALOGH D, FILSINGER GT, BORDERS NC, GREGG CJ, LAJOIE MJ, RIOS X, PÁL C, CHURCH GM. Improved bacterial recombineering by parallelized protein discovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13689-13698.
    [50] KONG XF, WANG ZK, ZHANG RX, WANG X, ZHOU YS, SHI LY, YANG H. Precise genome editing without exogenous donor DNA via retron editing system in human cells[J]. Protein & Cell, 2021, 12(11): 899-902.
    [51] ZHAO ZH, SHANG P, MOHANRAJU P, GEIJSEN N. Prime editing: advances and therapeutic applications[J]. Trends in Biotechnology, 2023, 41(8): 1000-1012.
    [52] ANZALONE AV, RANDOLPH PB, DAVIS JR, SOUSA AA, KOBLAN LW, LEVY JM, CHEN PJ, WILSON C, NEWBY GA, RAGURAM A, LIU DR. Search-and- replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157.
    [53] TANG S, STERNBERG SH. Genome editing with retroelements[J]. Science, 2023, 382(6669): 370-371.
    [54] DOMAN JL, PANDEY S, NEUGEBAUER ME, AN MR, DAVIS JR, RANDOLPH PB, McELROY A, GAO XD, RAGURAM A, RICHTER MF, EVERETTE KA, BANSKOTA S, TIAN K, TAO YA, TOLAR J, OSBORN MJ, LIU DR. Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J]. Cell, 2023, 186(18): 3983-4002.e26
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘婷婷,刘嘉琪,刘洋,卞小莹. 基于反转录子的微生物基因编辑技术研究进展[J]. 微生物学通报, 2024, 51(12): 4854-4868

复制
分享
文章指标
  • 点击次数:149
  • 下载次数: 252
  • HTML阅读次数: 245
  • 引用次数: 0
历史
  • 收稿日期:2024-07-13
  • 录用日期:2024-10-12
  • 在线发布日期: 2024-12-24
  • 出版日期: 2024-12-20
文章二维码