科微学术

微生物学通报

解脂耶氏酵母生物合成芳香族氨基酸衍生物的合成生物学策略
作者:
基金项目:

天津大学浙江研究院(绍兴)自主基金(2023X2-0013)


Strategy for the biosynthesis of aromatic amino acid derivatives by Yarrowia lipolytica
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    芳香族氨基酸衍生物广泛存在于自然界中,具有多种生物活性,包括抗氧化、抗炎、神经保护和抗癌特性。在食品、化妆品、营养保健品、化学等领域,尤其在制药工业中发挥着重要作用。近年来,解脂耶氏酵母(Yarrowia lipolytica)作为一种非常规模式生物,因其独特的生理生化特性在生物合成领域展现出独特的潜力,特别是在芳香族氨基酸衍生物的合成上,包括白藜芦醇和柚皮素等。由于其独特的胞质环境和高通量的乙酰辅酶A,解脂耶氏酵母成为合成芳香族氨基酸衍生物的理想宿主。本文总结了解脂耶氏酵母在生产芳香族氨基酸衍生物方面的合成生物学策略,并汇总目前解脂耶氏酵母合成芳香族氨基酸衍生物的进展,对解脂耶氏酵母底盘细胞在合成生物学未来的发展和挑战进行了展望。

    Abstract:

    Aromatic amino acid derivatives are widely distributed in the nature and possess antioxidant, anti-inflammatory, neuroprotective, and anticancer activities. They play important roles in various fields such as food, cosmetics, nutritional supplements, and chemistry, particularly in the pharmaceutical industry. In recent years, the unconventional model organism Yarrowia lipolytica has emerged as a promising candidate in biosynthesis due to its unique physiological and biochemical characteristics. Specifically, it has shown significant potential in the synthesis of aromatic amino acid derivatives, including resveratrol and naringenin. With a distinctive cytosolic environment and high flux of acetyl-CoA, Y. lipolytica stands out as an ideal host for the synthesis of aromatic amino acid derivatives. This review summarizes the biosynthesis strategies of Y. lipolytica in the production of aromatic amino acid derivatives and reviews the current progress in this field. Furthermore, it discusses the future prospects and challenges of applying Y. lipolytica as a chassis cell in synthetic biology.

    参考文献
    [1] XU XH, LIU YF, DU GC, LEDESMA-AMARO R, LIU L. Microbial chassis development for natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 779-796.
    [2] MA YR, WANG KF, WANG WJ, DING Y, SHI TQ, HUANG H, JI XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids[J]. Bioresource Technology, 2019, 281: 449-456.
    [3] MADZAK C. Yarrowia lipolytica strains and their biotechnological applications: how natural biodiversity and metabolic engineering could contribute to cell factories improvement[J]. Journal of Fungi, 2021, 7(7): 548.
    [4] 孔婧, 朱坤, 刘士琦, 荣兰新, 肖冬光, 于爱群. 代谢工程改造解脂耶氏酵母合成植物萜类化合物的研究进展[J]. 微生物学通报, 2021, 48(4): 1302-1313. KONG J, ZHU K, LIU SQ, RONG LX, XIAO DG, YU AQ. Advances in metabolic engineering of Yarrowia lipolytica to synthesize plant-derived terpenoids[J]. Microbiology China, 2021, 48(4): 1302-1313(in Chinese).
    [5] SEKOVA VY, ISAKOVA EP, DERYABINA YI. Biotechnological applications of the extremophilic yeast Yarrowia lipolytica (review)[J]. Applied Biochemistry and Microbiology, 2015, 51(3): 278-291.
    [6] CUI ZY, GAO CJ, LI JJ, HOU J, LIN CSK, QI QS. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH[J]. Metabolic Engineering, 2017, 42: 126-133.
    [7] XU P, QIAO KJ, AHN WS, STEPHANOPOULOS G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 10848-10853.
    [8] GROENEWALD M, BOEKHOUT T, NEUVÉGLISE C, GAILLARDIN C, van DIJCK PWM, WYSS M. Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential[J]. Critical Reviews in Microbiology, 2014, 40(3): 187-206.
    [9] LOIRA N, DULERMO T, NICAUD JM, SHERMAN DJ. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica[J]. BMC Systems Biology, 2012, 6: 35.
    [10] PAN PC, HUA Q. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica[J]. PLoS One, 2012, 7(12): e51535.
    [11] GUO YF, SU LQ, LIU Q, ZHU Y, DAI ZJ, WANG QH. Dissecting carbon metabolism of Yarrowia lipolytica type strain W29 using genome-scale metabolic modelling[J]. Computational and Structural Biotechnology Journal, 2022, 20: 2503-2511.
    [12] GUO XF, WU XX, MA H, LIU HY, LUO YZ. Yeast: a platform for the production of l-tyrosine derivatives[J]. Yeast, 2023, 40(5/6): 214-230.
    [13] LIU QL, YU T, LI XW, CHEN Y, CAMPBELL K, NIELSEN J, CHEN Y. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals[J]. Nature Communications, 2019, 10: 4976.
    [14] GU Y, MA JB, ZHU YL, DING XY, XU P. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals[J]. ACS Synthetic Biology, 2020, 9(8): 2096-2106.
    [15] SÁEZ-SÁEZ J, WANG GK, MARELLA ER, SUDARSAN S, PASTOR MC, BORODINA I. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production[J]. Metabolic Engineering, 2020, 62: 51-61.
    [16] LIU HY, XIAO QJ, WU XX, MA H, LI J, GUO XF, LIU ZY, ZHANG Y, LUO YZ. Mechanistic investigation of a D to N mutation in DAHP synthase that dictates carbon flux into the shikimate pathway in yeast[J]. Communications Chemistry, 2023, 6: 152.
    [17] LV YK, EDWARDS H, ZHOU JW, XU P. Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2019, 8(3): 568-576.
    [18] SHI SB, CHEN Y, SIEWERS V, NIELSEN J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of ACC[J]. mBio, 2014, 5(3): e01130-14.
    [19] PALMER CM, MILLER KK, NGUYEN A, ALPER HS. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metabolic Engineering, 2020, 57: 174-181.
    [20] LIU MS, WANG C, REN XF, GAO S, YU SQ, ZHOU JW. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica[J]. Bioresource Technology, 2022, 365: 128178.
    [21] KONZOCK O, ZAGHEN S, NORBECK J. Tolerance of Yarrowia lipolytica to inhibitors commonly found in lignocellulosic hydrolysates[J]. BMC Microbiology, 2021, 21(1): 77.
    [22] GUO ZP, DUQUESNE S, BOZONNET S, CIOCI G, NICAUD JM, MARTY A, O’DONOHUE MJ. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes[J]. Biotechnology for Biofuels, 2015, 8: 109.
    [23] WANG HM, YANG Y, LIN L, ZHOU WL, LIU MZ, CHENG KD, WANG W. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides[J]. Microbial Cell Factories, 2016, 15(1): 134.
    [24] SHANG YZ, ZHANG P, WEI WP, LI J, YE BC. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica[J]. Bioresource Technology, 2023, 381: 129129.
    [25] ZHANG P, WEI WP, SHANG YZ, YE BC. Metabolic engineering of Yarrowia lipolytica for high-level production of scutellarin[J]. Bioresource Technology, 2023, 385: 129421.
    [26] SHABBIR HUSSAIN M, WHEELDON I, BLENNER MA. A strong hybrid fatty acid inducible transcriptional sensor built from Yarrowia lipolytica upstream activating and regulatory sequences[J]. Biotechnology Journal, 2017, 12(10): 1700248.
    [27] XIONG XC, CHEN SL. Expanding toolbox for genes expression of Yarrowia lipolytica to include novel inducible, repressible, and hybrid promoters[J]. ACS Synthetic Biology, 2020, 9(8): 2208-2213.
    [28] WEI WP, SHANG YZ, ZHANG P, LIU Y, YOU D, YIN BC, YE BC. Engineering prokaryotic transcriptional activator XylR as a xylose-inducible biosensor for transcription activation in yeast[J]. ACS Synthetic Biology, 2020, 9(5): 1022-1029.
    [29] 张萍, 魏文平, 周英, 叶邦策. 解脂耶氏酵母中光控表达系统的构建及其应用研究[J]. 合成生物学, 2021, 2(5): 778-791. ZHANG P, WEI WP, ZHOU Y, YE BC. Construction of a light-controlled expression system and its application in Yarrowia lipolytica[J]. Synthetic Biology Journal, 2021, 2(5): 778-791(in Chinese).
    [30] LV YK, MARSAFARI M, KOFFAS M, ZHOU JW, XU P. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis[J]. ACS Synthetic Biology, 2019, 8(11): 2514-2523.
    [31] YUE MY, LIU MS, GAO S, REN XF, ZHOU SH, RAO YJ, ZHOU JW. High-level de novo production of (2S)-eriodictyol in Yarrowia lipolytica by metabolic pathway and NADPH regeneration engineering[J]. Journal of Agricultural and Food Chemistry, 2024, 72(8): 4292-4300.
    [32] AKRAM M, RASOOL A, AN T, FENG XD, LI C. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production[J]. Chemical Engineering Science, 2021, 230: 116177.
    [33] TONG YJ, ZHOU JW, ZHANG L, XU P. A golden-gate based cloning toolkit to build violacein pathway libraries in Yarrowia lipolytica[J]. ACS Synthetic Biology, 2021, 10(1): 115-124.
    [34] 陈修来, 刘佳, 罗秋玲, 刘立明. 微生物辅因子平衡的代谢调控[J]. 生物工程学报, 2017, 33(1): 16-26. CHEN XL, LIU J, LUO QL, LIU LM. Manipulation of cofactor balance in microorganisms[J]. Chinese Journal of Biotechnology, 2017, 33(1): 16-26(in Chinese).
    [35] DENG C, LV XQ, LI JH, ZHANG HZ, LIU YF, DU GC, AMARO RL, LIU L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors[J]. Metabolic Engineering, 2021, 67: 330-346.
    [36] WANG YN, LIU XN, CHEN BH, LIU W, GUO ZK, LIU XY, ZHU XX, LIU JY, ZHANG J, LI J, ZHANG L, GAO YD, ZHANG GH, WANG Y, CHOUDHARY MI, YANG SC, JIANG HF. Metabolic engineering of Yarrowia lipolytica for scutellarin production[J]. Synthetic and Systems Biotechnology, 2022, 7(3): 958-964.
    [37] KADOWAKI JT, JONES TH, SENGUPTA A, GOPALAN V, SUBRAMANIAM VV. Copper oxide-based cathode for direct NADPH regeneration[J]. Scientific Reports, 2021, 11: 180.
    [38] RUTHERFORD JC, BAHN YS, van den BERG B, HEITMAN J, XUE CY. Nutrient and stress sensing in pathogenic yeasts[J]. Frontiers in Microbiology, 2019, 10: 442.
    [39] BELLOU S, MAKRI A, TRIANTAPHYLLIDOU IE, PAPANIKOLAOU S, AGGELIS G. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment[J]. Microbiology, 2014, 160(Pt 4): 807-817.
    [40] CERVANTES-CHÁVEZ JA, KRONBERG F, PASSERON S, RUIZ-HERRERA J. Regulatory role of the PKA pathway in dimorphism and mating in Yarrowia lipolytica[J]. Fungal Genetics and Biology, 2009, 46(5): 390-399.
    [41] CERVANTES-CHÁVEZ JA, RUIZ-HERRERA J. STE11 disruption reveals the central role of a MAPK pathway in dimorphism and mating in Yarrowia lipolytica[J]. FEMS Yeast Research, 2006, 6(5): 801-815.
    [42] LI M, LI YQ, ZHAO XF, GAO XD. Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica[J]. FEMS Yeast Research, 2014, 14(3): 451-463.
    [43] HURTADO CA, RACHUBINSKI RA. MHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast Yarrowia lipolytica[J]. Journal of Bacteriology, 1999, 181(10): 3051-3057.
    [44] LIU MM, ZHANG J, YE JR, QI QS, HOU J. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production[J]. ACS Synthetic Biology, 2021, 10(12): 3551-3560.
    [45] LV YK, GU Y, XU JL, ZHOU JW, XU P. Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield[J]. Metabolic Engineering, 2020, 61: 79-88.
    [46] WONG L, ENGEL J, JIN EQ, HOLDRIDGE B, XU P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica[J]. Metabolic Engineering Communications, 2017, 5: 68-77.
    [47] WRÓBEL-KWIATKOWSKA M, TURSKI W, KOCKI T, RAKICKA-PUSTUŁKA M, RYMOWICZ W. An efficient method for production of kynurenic acid by Yarrowia lipolytica[J]. Yeast, 2020, 37(9/10): 541-547.
    [48] WRÓBEL-KWIATKOWSKA M, TURSKI W, JUSZCZYK P, KITA A, RYMOWICZ W. Improved production of kynurenic acid by Yarrowia lipolytica in media containing different honeys[J]. Sustainability, 2020, 12(22): 9424.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈茁,朱源,李伟国,闫晓光,颜丙扬,乔建军,赵广荣. 解脂耶氏酵母生物合成芳香族氨基酸衍生物的合成生物学策略[J]. 微生物学通报, 2025, 52(1): 33-45

复制
分享
文章指标
  • 点击次数:123
  • 下载次数: 133
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2024-04-30
  • 录用日期:2024-05-17
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码