科微学术

微生物学通报

病原菌胁迫下植物“呼救”策略的研究进展
作者:
基金项目:

国家自然科学基金(82160714);甘肃省科技重大专项(23ZDFA013-1);甘肃省自然科学基金(23JRRA1711);甘肃省产业支撑计划(2021CYZC-13);兰州市指导性计划(2022-5-167)


Research progress in the “cry for help” strategy of plants under pathogen stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [126]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    植物在生长过程中会受到生物与非生物性胁迫,其中病原菌侵染是生物胁迫中的重要组成部分。由于植物微生物组与植物共同生长进化,当植物受到病原菌胁迫时会通过特殊分泌物或招募有益菌对抗病原菌。本文从病原菌胁迫下植物微生物组变化、植物代谢产物变化、植物-微生物互作机制和植物“呼救”后形成的抑病土壤等方面阐述植物“呼救”策略研究进展,为植物土传病害防控提供参考依据。

    Abstract:

    Plants are subjected to biotic and abiotic stresses during growth, of which pathogen infection is a major biotic stress. Since the plant microbiome co-evolves with plants, the plants exposed to pathogen stress will fight against pathogens by special secretions or recruitment of beneficial microorganisms. This paper reviews the research progress in the “cry for help” strategy of plants under pathogen stress from the changes in plant microbiome and metabolites, plant-microbe interactions, the disease-suppressive soil formed after the plant “cry for help”, with a view to providing a basis for the prevention and control of soil-borne diseases in plants.

    参考文献
    [1] 翁凌胤, 栾冬冬, 周大朴, 郭庆港, 王光州, 张俊伶. 利用合成菌群促进作物健康: 进展与展望[J]. 应用生态学报, 2024, 35(3): 847-857. WENG LY, LUAN DD, ZHOU DP, GUO QG, WANG GZ, ZHANG JL. Using synthetic flora to promote crop health: Progress and future[J]. Chinese Journal of Applied Ecology, 2024, 35(3): 847-857(in Chinese).
    [2] 迟晓峰, 韩琳. 对植物逆境胁迫的研究[J]. 种子科技, 2019, 37(13): 122, 124. CHI XF, HAN L. Study on plant adversity stress[J]. Seed Science & Technology, 2019, 37(13): 122, 124(in Chinese).
    [3] PENG H, FENG HJ, ZHANG T, WANG Q. Editorial: plant defense mechanisms in plant-pathogen interactions[J]. Frontiers in Plant Science, 2023, 14: 1292294.
    [4] CHIA KS, CARELLA P. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses[J]. The New Phytologist, 2023, 240(2): 496-501.
    [5] 吴劲松. 植物对病原微生物的“化学防御”: 植保素的生物合成及其分子调控机制[J]. 应用生态学报, 2020, 31(7): 2161-2167. WU JS. The “chemical defense” of plants against pathogenic microbes: phytoalexins biosynthesis and molecular regulations[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2161-2167(in Chinese).
    [6] AHUJA I, KISSEN R, BONES AM. Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17(2): 73-90.
    [7] Kuć J, Rush JS. Phytoalexins[J]. Arch Biochem Biophys, 1985, 236(2): 455-472.
    [8] GARRARD EH, LOCHHEAD A. Relationships between soil micro-organisms and soil-borne plant pathogens. a review1[J]. Agricultural and Food Science, 2016. https://www.semanticscholar.org/paper/Relationships- Between-Soil-Micro-Organisms-and-A-Garrard-Lochhead/68f80453dc0d192d928ba39d5287affea6851967.
    [9] COOK RJ, ROVIRA AD. The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils[J]. Soil Biology and Biochemistry, 1976, 8(4): 269-273.
    [10] CARRIÓN VJ, PEREZ-JARAMILLO J, CORDOVEZ V, TRACANNA V, de HOLLANDER M, RUIZ-BUCK D, MENDES LW, van IJCKEN WFJ, GOMEZ- EXPOSITO R, ELSAYED SS, MOHANRAJU P, ARIFAH A, van der OOST J, PAULSON JN, MENDES R, van WEZEL GP, MEDEMA MH, RAAIJMAKERS JM. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465): 606-612.
    [11] HOU SJ, THIERGART T, VANNIER N, MESNY F, ZIEGLER J, PICKEL B, HACQUARD S. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light[J]. Nature Plants, 2021, 7: 1078-1092.
    [12] YIN CT, CASA VARGAS JM, SCHLATTER DC, HAGERTY CH, HULBERT SH, PAULITZ TC. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86.
    [13] YUAN J, ZHAO J, WEN T, ZHAO ML, LI R, GOOSSENS P, HUANG QW, BAI Y, VIVANCO JM, KOWALCHUK GA, BERENDSEN RL, SHEN QR. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 156.
    [14] 代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯. 生物和非生物逆境胁迫下的植物系统信号[J]. 植物学报, 2019, 54(2): 255-264. DAI YJ, LUO XF, ZHOU WG, CHEN F, SHUAI HW, YANG WY, SHU K. Plant systemic signaling under biotic and abiotic stresses conditions[J]. Chinese Bulletin of Botany, 2019, 54(2): 255-264(in Chinese).
    [15] CHOUDHARY DK. Microbial rescue to plant under habitat-imposed abiotic and biotic stresses[J]. Applied Microbiology and Biotechnology, 2012, 96(5): 1137-1155.
    [16] 陈舒婷. 两种绿绒蒿属植物根系微生物多样性特征及可培养内生菌分离与抗菌活性研究[D]. 拉萨: 西藏大学硕士学位论文, 2023. CHEN ST. Characteristics of root zone microbial diversity and isolation and antibacterial activity of culturable endophytes of two plants of Meconopsis species[D]. Lasa: Master’s Thesis of Tibet University, 2023(in Chinese).
    [17] SANTOYO G, GAMALERO E, GLICK BR. Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress[J]. Frontiers in Sustainable Food Systems, 2021, 5: 672881.
    [18] ALI S, XIE LN. Plant growth promoting and stress mitigating abilities of soil born microorganisms[J]. Recent Patents on Food, Nutrition & Agriculture, 2020, 11(2): 96-104.
    [19] DEBRAY R, SOCOLAR Y, KAULBACH G, GUZMAN A, HERNANDEZ CA, CURLEY R, DHOND A, BOWLES T, KOSKELLA B. Water stress and disruption of mycorrhizas induce parallel shifts in phyllosphere microbiome composition[J]. The New Phytologist, 2022, 234(6): 2018-2031.
    [20] PÉREZ-JARAMILLO JE, MENDES R, RAAIJMAKERS JM. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6): 635-644.
    [21] de MANDAL S, JEON J. Phyllosphere microbiome in plant health and disease[J]. Plants, 2023, 12(19): 3481.
    [22] VORHOLT JA. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10: 828-840.
    [23] LIU HW, BRETTELL LE, QIU ZG, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743.
    [24] LI PD, ZHU ZR, ZHANG YZ, XU JP, WANG HK, WANG ZY, LI HY. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1): 56.
    [25] LIU HW, LI JY, CARVALHAIS LC, PERCY CD, VERMA JP, SCHENK PM, SINGH BK. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. The New Phytologist, 2021, 229(5): 2873-2885.
    [26] TANG J, XIAO YF, XU XR, TANG M, ZHANG XM, YI Y. Root microbiota alters response to root rot in Rhododendron delavayi Franch[J]. Frontiers in Microbiology, 2023, 14: 1236110.
    [27] VOGEL CM, POTTHOFF DB, SCHÄFER M, BARANDUN N, VORHOLT JA. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen[J]. Nature Microbiology, 2021, 6(12): 1537-1548.
    [28] LIU YP, CHEN L, WU GW, FENG HC, ZHANG GS, SHEN QR, ZHANG RF. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions®, 2017, 30(1): 53-62.
    [29] FERNÁNDEZ-GONZÁLEZ AJ, CARDONI M, CABANÁS CGL, VALVERDE-CORREDOR A, VILLADAS PJ, FERNÁNDEZ-LÓPEZ M, MERCADO-BLANCO J. Linking belowground microbial network changes to different tolerance level towards Verticillium wilt of olive[J]. Microbiome, 2020, 8(1): 11.
    [30] Petrini O. Fungal endophytes of tree leaves. In Microbial Ecology of Leaves, J.H. Andrews, and S.S. Hirano (eds)[M]. New York, NY: Springer Verlag, 1991: 179-197.
    [31] HARDOIM PR, van OVERBEEK LS, BERG G, PIRTTILÄ AM, COMPANT S, CAMPISANO A, DÖRING M, SESSITSCH A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3): 293-320.
    [32] RAIO A, PUOPOLO G. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield[J]. World Journal of Microbiology and Biotechnology, 2021, 37(6): 99.
    [33] 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. XIE TP, LIU N, LIU YM, QU X, BO SQ, JING M. Effects of chemical fertilizer reduction and application of plant growth regulators from traditional Chinese medicine on the quality and its bacterial community in rhizosphere soil[J]. Biotechnology Bulletin, 2022, 38(3): 79-91(in Chinese).
    [34] JAKUBIEC-KRZESNIAK K, RAJNISZ-MATEUSIAK A, GUSPIEL A, ZIEMSKA J, SOLECKA J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties[J]. Polish Journal of Microbiology, 2018, 67(3): 259-272.
    [35] WANG C, LU YY, CAO SG. Antimicrobial compounds from marine actinomycetes[J]. Archives of Pharmacal Research, 2020, 43(7): 677-704.
    [36] WANG N, WANG LY, ZHU K, HOU SS, CHEN L, MI DD, GUI Y, QI YJ, JIANG CH, GUO JH. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum[J]. Frontiers in Microbiology, 2019, 10: 98.
    [37] HASHEM A, TABASSUM B, ALLAH EFA. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi Journal of Biological Sciences, 2019, 26(6): 1291-1297.
    [38] Wang ZH, Song Y. Toward understanding the genetic bases underlying plant‐mediated “cry for help” to the microbiota[J]. iMeta, 2022. DOI: 10.1002/imt2.8.
    [39] XIAO RH, HAN Q, LIU Y, ZHANG XH, HAO QN, CHAI QQ, HAO YF, DENG JB, LI X, JI HT. Melatonin attenuates the urea-induced yields improvement through remodeling transcriptome and rhizosphere microbial community structure in soybean[J]. Frontiers in Microbiology, 2022, 13: 903467.
    [40] HU J, WEI Z, FRIMAN VP, GU SH, WANG XF, EISENHAUER N, YANG TJ, MA J, SHEN QR, XU YC, JOUSSET A. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6): e01790-16.
    [41] SONG H, CHEN F, WU X, HU M, GENG QL, YE M, ZHANG C, JIANG L, CAO SQ. MNB1 gene is involved in regulating the iron-deficiency stress response in Arabidopsis thaliana[J]. BMC Plant Biology, 2022, 22(1): 151.
    [42] Lv TF, Zhan CF, Pan, QQ, Xu, HR, Fang, HD, Wang MC, Matsumoto, Haruna. Plant Pathogenesis: toward multidimensional understanding of the microbiome[J]. iMeta, 2023, 2(3): 1.
    [43] BASS D, STENTIFORD GD, WANG HC, KOSKELLA B, TYLER CR. The pathobiome in animal and plant diseases[J]. Trends in Ecology & Evolution, 2019, 34(11): 996-1008.
    [44] LIBERTUCCI J, YOUNG VB. The role of the microbiota in infectious diseases[J]. Nature Microbiology, 2019, 4(1): 35-45.
    [45] DING LN, LI YT, WU YZ, LI T, GENG R, CAO J, ZHANG W, TAN XL. Plant disease resistance-related signaling pathways: recent progress and future prospects[J]. International Journal of Molecular Sciences, 2022, 23(24): 16200.
    [46] ECCLESTON L, BRAMBILLA A, VLOT AC. New molecules in plant defence against pathogens[J]. Essays in Biochemistry, 2022, 66(5): 683-693.
    [47] LEBEIS SL, PAREDES SH, LUNDBERG DS, BREAKFIELD N, GEHRING J, McDONALD M, MALFATTI S, GLAVINA del RIO T, JONES CD, TRINGE SG, DANGL JL. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250): 860-864.
    [48] RAMIREZ-PRADO JS, LATRASSE D, RODRIGUEZ- GRANADOS NY, HUANG Y, MANZA-MIANZA D, BRIK-CHAOUCHE R, JAOUANNET M, CITERNE S, BENDAHMANE A, HIRT H, RAYNAUD C, BENHAMED M. The polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 100(6): 1118-1131.
    [49] MENG FW, YANG C, CAO JD, CHEN H, PANG JH, ZHAO QQ, WANG ZY, FU ZQ, LIU J. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice[J]. Journal of Integrative Plant Biology, 2020, 62(10): 1552-1573.
    [50] YANG BY, ZHENG MZ, DONG WP, XU PL, ZHENG Y, YANG W, LUO YM, GUO JH, NIU DD, YU YY, JIANG CH. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment[J]. Microbiology Spectrum, 2023, 11(2): e0361122.
    [51] ERB M, KLIEBENSTEIN DJ. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy[J]. Plant Physiology, 2020, 184(1): 39-52.
    [52] 李春霞, 吴兴彪, 靳亚忠. 根系代谢物介导的植物-微生物互作的研究进展[J]. 微生物学报, 2022, 62(9): 3318-3328. LI CX, WU XB, JIN YZ. Advances on plant-microbe interaction mediated by root metabolites[J]. Acta Microbiologica Sinica, 2022, 62(9): 3318-3328(in Chinese).
    [53] NARAYANI M, SRIVASTAVA S. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production[J]. Phytochemistry Reviews, 2017, 16(6): 1227-1252.
    [54] 覃瀚仪, 李魏, 戴良英. 植物代谢产物在抗病反应中的功能研究进展[J]. 中国农学通报, 2015, 31(18): 256-259. QIN HY, LI W, DAI LY. Research progress of plant metabolites function on resistant response[J]. Chinese Agricultural Science Bulletin, 2015, 31(18): 256-259(in Chinese).
    [55] 李端, 周立刚, 王蓟花, 李健强, 张仲凯. 茄科植保素的研究进展[J]. 天然产物研究与开发, 2004, 16(1): 84-87, 79. LI D, ZHOU LG, WANG JH, LI JQ, ZHANG ZK. Progress on phytoalexin research of solanaceous plants[J]. Natural Product Research and Development, 2004, 16(1): 84-87, 79(in Chinese).
    [56] DEAVOURS BE, DIXON RA. Metabolic engineering of isoflavonoid biosynthesis in alfalfa[J]. Plant Physiology, 2005, 138(4): 2245-2259.
    [57] BAKKER PAHM, PIETERSE CMJ, de JONGE R, BERENDSEN RL. The soil-borne legacy[J]. Cell, 2018, 172(6): 1178-1180.
    [58] ROLFE SA, GRIFFITHS J, TON J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes[J]. Current Opinion in Microbiology, 2019, 49: 73-82.
    [59] CAO Y, WANG YY, GUI CL, NGUVO KJ, MA L, WANG Q, SHEN QR, ZHANG RF, GAO XQ. Beneficial rhizobacterium triggers induced systemic resistance of maize to Gibberella stalk rot via calcium signaling[J]. Molecular Plant-Microbe Interactions: MPMI, 2023, 36(8): 516-528.
    [60] ALMAGRO L, GÓMEZ ROS LV, BELCHI- NAVARRO S, BRU R, BARCELÓ AR, PEDREÑO MA. Class III peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2009, 60(2): 377-390.
    [61] WASTERNACK C, SONG SS. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. Journal of Experimental Botany, 2017, 68(6): 1303-1321.
    [62] 赵庆芳, 张玉芳, 唐文菊, 彭民贵, 李巧峡. 当归感染根腐病菌后生理活性变化的研究[J]. 西北师范大学学报(自然科学版), 2014, 50(2): 82-86. ZHAO QF, ZHANG YF, TANG WJ, PENG MG, LI QX. Study on physiological activity of Angelica sinensis after infected with root rot fungus[J]. Journal of Northwest Normal University (Natural Science Edition), 2014, 50(2): 82-86(in Chinese).
    [63] DURRANT WE, DONG X. Systemic acquired resistance[J]. Annual Review of Phytopathology, 2004, 42: 185-209.
    [64] CHOUDHARY DK, PRAKASH A, JOHRI BN. Induced systemic resistance (ISR) in plants: mechanism of action[J]. Indian Journal of Microbiology, 2007, 47(4): 289-297.
    [65] YU P, HE XM, BAER M, BEIRINCKX S, TIAN T, MOYA YAT, ZHANG XC, DEICHMANN M, FREY FP, BRESGEN V, LI CJ, RAZAVI BS, SCHAAF G, von WIRÉN N, SU Z, BUCHER M, TSUDA K, GOORMACHTIG S, CHEN XP, HOCHHOLDINGER F. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7: 481-499.
    [66] BAIS HP, WEIR TL, PERRY LG, GILROY S, VIVANCO JM. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266.
    [67] BADRI DV, WEIR TL, van der LELIE D, VIVANCO JM. Rhizosphere chemical dialogues: plant-microbe interactions[J]. Current Opinion in Biotechnology, 2009, 20(6): 642-650.
    [68] NEAL AL, AHMAD S, GORDON-WEEKS R, TON J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere[J]. PLoS One, 2012, 7(4): e35498.
    [69] NIEMEYER HM. Hydroxamic acids derived from 2-hydroxy-2H-1, 4-benzoxazin-3(4H)-one: key defense chemicals of cereals[J]. Journal of Agricultural and Food Chemistry, 2009, 57(5): 1677-1696.
    [70] ANNE COTTON TE, PÉTRIACQ P, CAMERON DD, AL MESELMANI M, SCHWARZENBACHER R, ROLFE SA, TON J. Metabolic regulation of the maize rhizobiome by benzoxazinoids[J]. The ISME Journal, 2019, 13(7): 1647-1658.
    [71] STRINGLIS IA, YU K, FEUSSNER K, de JONGE R, van BENTUM S, van VERK MC, BERENDSEN RL, BAKKER PAHM, FEUSSNER I, PIETERSE CMJ. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): E5213-E5222.
    [72] HUANG AC, JIANG T, LIU YX, BAI YC, REED J, QU BY, GOOSSENS A, NÜTZMANN HW, BAI Y, OSBOURN A. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): eaau6389.
    [73] RUDRAPPA T, CZYMMEK KJ, PARÉ PW, BAIS HP. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3): 1547-1556.
    [74] LIU HW, BRETTELL LE. Plant defense by VOC-induced microbial priming[J]. Trends in Plant Science, 2019, 24(3): 187-189.
    [75] McBRIDE SG, CHOUDOIR M, FIERER N, STRICKLAND MS. Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics[J]. Ecology, 2020, 101(10): e03130.
    [76] WEN T, ZHAO ML, YUAN J, KOWALCHUK GA, SHEN QR. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes[J]. Soil Ecology Letters, 2021, 3(1): 42-51.
    [77] 汪巧. 植物抗病机理研究进展综述[J]. 安徽农学通报, 2015, 21(8): 24-30, 103. WANG Q. Advances on the mechanism of plant disease resistance[J]. Anhui Agricultural Science Bulletin, 2015, 21(8): 24-30, 103(in Chinese).
    [78] SAIJO Y, LOO EPI, YASUDA S. Pattern recognition receptors and signaling in plant-microbe interactions[J]. The Plant Journal: for Cell and Molecular Biology, 2018, 93(4): 592-613.
    [79] SOOD M, KAPOOR D, KUMAR V, KALIA N, BHARDWAJ R, SIDHU GPS, SHARMA A. Mechanisms of plant defense under pathogen stress: a review[J]. Current Protein & Peptide Science, 2021, 22(5): 376-395.
    [80] COLL NS, EPPLE P, DANGL JL. Programmed cell death in the plant immune system[J]. Cell Death and Differentiation, 2011, 18(8): 1247-1256.
    [81] PITSILI E, PHUKAN UJ, COLL NS. Cell death in plant immunity[J]. Cold Spring Harbor Perspectives in Biology, 2020, 12(6): a036483.
    [82] PENG YJ, YANG JF, LI X, ZHANG YL. Salicylic acid: biosynthesis and signaling[J]. Annual Review of Plant Biology, 2021, 72: 761-791.
    [83] SAHA B, NAYAK J, SRIVASTAVA R, SAMAL S, KUMAR D, CHANWALA J, DEY N, GIRI MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling[J]. Planta, 2023, 259(1): 7.
    [84] ZHAO ML, ZHAO J, YUAN J, HALE L, WEN T, HUANG QW, VIVANCO JM, ZHOU JZ, KOWALCHUK GA, SHEN QR. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell & Environment, 2021, 44(2): 613-628.
    [85] CHAPARRO JM, BADRI DV, VIVANCO JM. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4): 790-803.
    [86] HANEY CH, SAMUEL BS, BUSH J, AUSUBEL FM. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 2015, 1(6): 15051.
    [87] REINHOLD-HUREK B, BÜNGER W, BURBANO CS, SABALE M, HUREK T. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annual Review of Phytopathology, 2015, 53: 403-424.
    [88] ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, Da ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3: 470-480.
    [89] HU LF, ROBERT CAM, CADOT S, ZHANG X, YE M, LI BB, MANZO D, CHERVET N, STEINGER T, van der HEIJDEN MGA, SCHLAEPPI K, ERB M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9: 2738.
    [90] DARWENT MJ, PATERSON E, TOMOS AD. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration[J]. Journal of Experimental Botany, 2003, 54(381): 325-334.
    [91] JONES DL, NGUYEN C, FINLAY RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1): 5-33.
    [92] EL ZAHAR HAICHAR F, SANTAELLA C, HEULIN T, ACHOUAK W. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69-80.
    [93] WEN T, XIE PH, LIU HW, LIU T, ZHAO ML, YANG SD, NIU GQ, HALE L, SINGH BK, KOWALCHUK GA, SHEN QR, YUAN J. Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease[J]. Nature Communications, 2023, 14(1): 4497.
    [94] LATTANZIO V, LATTANZIO V, CARDINALI A, IMPERATO F. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects[J]. Research Signpost, 2006.
    [95] O’BANION BS, JONES P, DEMETROS AA, KELLEY BR, KNOOR LH, WAGNER AS, CHEN JG, MUCHERO W, REYNOLDS TB, JACOBSON D, LEBEIS SL. Plant myo-inositol transport influences bacterial colonization phenotypes[J]. Current Biology: CB, 2023, 33(15): 3111-3124.e5.
    [96] WEISSKOPF L, HELLER S, EBERL L. Burkholderia species are major inhabitants of white lupin cluster roots[J]. Applied and Environmental Microbiology, 2011, 77(21): 7715-7720.
    [97] KOST T, STOPNISEK N, AGNOLI K, EBERL L, WEISSKOPF L. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans[J]. Frontiers in Microbiology, 2014, 4: 421.
    [98] ZHOU XG, ZHANG JY, RAHMAN MKU, GAO DM, WEI Z, WU FZ, DINI-ANDREOTE F. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant, 2023, 16(5): 849-864.
    [99] PHILLIPS DA, FOX TC, KING MD, BHUVANESWARI TV, TEUBER LR. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiology, 2004, 136(1): 2887-2894.
    [100] BAKER R. Biological Control of Plant Pathogens: Definitions[M]. Freeman, San Francisco, CA, 1985.
    [101] WELLER DM, RAAIJMAKERS JM, MCSPADDEN GARDENER BB, THOMASHOW LS. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual Review of Phytopathology, 2002, 40: 309-348.
    [102] WEN T, DING ZX, THOMASHOW LS, HALE L, YANG SD, XIE PH, LIU XY, WANG HQ, SHEN QR, YUAN J. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil[J]. The New Phytologist, 2023, 238(6): 2634-2650.
    [103] CHAPELLE E, MENDES R, BAKKER PAHM, RAAIJMAKERS JM. Fungal invasion of the rhizosphere microbiome[J]. The ISME Journal, 2016, 10(1): 265-268.
    [104] BERENDSEN RL, VISMANS G, YU K, SONG Y, de JONGE R, BURGMAN WP, BURMØLLE M, HERSCHEND J, BAKKER PAHM, PIETERSE CMJ. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 2018, 12(6): 1496-1507.
    [105] VERBON EH, TRAPET PL, STRINGLIS IA, KRUIJS S, BAKKER PAHM, PIETERSE CMJ. Iron and immunity[J]. Annual Review of Phytopathology, 2017, 55: 355-375.
    [106] 陈福慧, 申乃坤, 姜明国, 王一兵. 作物重茬连作障碍中自毒物质的研究进展[J]. 中国农业科技导报, 2022, 24(10): 125-132. CHEN FH, SHEN NK, JIANG MG, WANG YB. Research progress of autotoxic secretions in crops replant successive cropping obstacles[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 125-132(in Chinese).
    [107] 施梦馨, 刘莹, 官会林, 王豪吉, 徐武美. 药用植物化感自毒作用及消减措施[J]. 中国现代中药, 2023, 25(9): 2013-2019. SHI MX, LIU Y, GUAN HL, WANG HJ, XU WM. Allelopathic autotoxicity of medicinal plants and reduction measures[J]. Modern Chinese Medicine, 2023, 25(9): 2013-2019(in Chinese).
    [108] 刘雨艳, 保丽美, 魏云林, 字富庭, 谭勇. 连作三七根际土壤自毒物质与微生物互作研究进展[J]. 中药材, 2022, 45(1): 242-247. LIU YY, BAO LM, WEI YL, ZI FT, TAN Y. Research progress on interaction between autotoxic substances and microorganisms in rhizosphere soil of continuous cropping Panax notoginseng[J]. Journal of Chinese Medicinal Materials, 2022, 45(1): 242-247(in Chinese).
    [109] 张博洋, 陈彦宏, 栗锦鹏, 原静静, 黄储, 何明月, 王惠珍. 自毒物质降解菌缓解药用植物连作障碍的作用及机制研究进展[J]. 中国野生植物资源, 2023, 42(11): 7-14. ZHANG BY, CHEN YH, LI JP, YUAN JJ, HUANG C, HE MY, WANG HZ. Research progress on the role and mechanisms of autotoxicity-degrading bacteria in alleviating continuous cropping obstacles of medicinal plants[J]. Chinese Wild Plant Resources, 2023, 42(11): 7-14(in Chinese).
    [110] 李敏, 张丽叶, 张艳江, 朱娟娟, 马海军. 酚酸类自毒物质微生物降解转化研究进展[J]. 生态毒理学报, 2019, 14(3): 72-78. LI M, ZHANG LY, ZHANG YJ, ZHU JJ, MA HJ. Review on the microbial biodegradation and metabolism of autotoxic phenolic acids[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 72-78(in Chinese).
    [111] TOYOTA K, SHIRAI S. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens[J]. Microbes and Environments, 2018, 33(4): 345-347.
    [112] JAYARAMAN S, NAOREM AK, LAL R, DALAL RC, SINHA NK, PATRA AK, CHAUDHARI SK. Disease-suppressive soils-beyond food production: a critical review[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1437-1465.
    [113] DENG XH, ZHANG N, LI YC, ZHU CZ, QU BY, LIU HJ, LI R, BAI Y, SHEN QR, SALLES JF. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities[J]. The New Phytologist, 2022, 235(4): 1558-1574.
    [114] ELLIS JG. Can plant microbiome studies lead to effective biocontrol of plant diseases?[J]. Molecular Plant-Microbe Interactions®, 2017, 30(3): 190-193.
    [115] BÉLANGER RR, LABBÉ C, LEFEBVRE F, TEICHMANN B. Mode of action of biocontrol agents: all that glitters is not gold[J]. Canadian Journal of Plant Pathology, 2012, 34(4): 469-478.
    [116] CAI F, YU GH, WANG P, WEI Z, FU L, SHEN QR, CHEN W. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum[J]. Plant Physiology and Biochemistry, 2013, 73: 106-113.
    [117] AHMED W, DAI ZL, ZHANG JH, LI SC, AHMED A, MUNIR S, LIU Q, TAN YJ, JI GH, ZHAO ZX. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities[J]. Microbiology Spectrum, 2022, 10(4): e0147122.
    [118] LI ZJ, TANG SY, GAO HS, REN JY, XU PL, DONG WP, ZHENG Y, YANG W, YU YY, GUO JH, LUO YM, NIU DD, JIANG CH. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis[J]. Plant, Cell & Environment, 2024, 47(1): 337-353.
    [119] LIU YP, ZHANG HH, WANG J, GAO WT, SUN XT, XIONG Q, SHU X, MIAO YZ, SHEN QR, XUN WB, ZHANG RF. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome[J]. Nature Communications, 2024, 15: 1907.
    [120] DENG YW, ZHAI KR, XIE Z, YANG DY, ZHU XD, LIU JZ, WANG X, QIN P, YANG YZ, ZHANG GM, LI Q, ZHANG JF, WU SQ, MILAZZO J, MAO BZ, WANG ET, XIE HA, THARREAU D, HE ZH. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965.
    [121] WANG J, ZHOU L, SHI H, CHERN M, YU H, YI H, HE M, YIN JJ, ZHU XB, LI Y, LI WT, LIU JL, WANG JC, CHEN XQ, QING H, WANG YP, LIU GF, WANG WM, LI P, WU XJ, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028.
    [122] BONATERRA A, BADOSA E, DARANAS N, FRANCÉS J, ROSELLÓ G, MONTESINOS E. Bacteria as biological control agents of plant diseases[J]. Microorganisms, 2022, 10(9): 1759.
    [123] SHAYANTHAN A, ORDOÑEZ PAC, ORESNIK IJ. The role of synthetic microbial communities (SynCom) in sustainable agriculture[J]. Frontiers in Agronomy, 2022, 4: 896307.
    [124] HARTMANN A, PROENÇA DN. Biological control of phytopathogens: mechanisms and applications[J]. Pathogens, 2023, 12(6): 783.
    [125] MENG JX, ZHANG XY, HAN XS, FAN B. Application and development of biocontrol agents in China[J]. Pathogens, 2022, 11(10): 1120.
    [126] LAWSON CE, HARCOMBE WR, HATZENPICHLER R, LINDEMANN SR, LÖFFLER FE, O’MALLEY MA, GARCÍA MARTÍN H, PFLEGER BF, RASKIN L, VENTURELLI OS, WEISSBRODT DG, NOGUERA DR, McMAHON KD. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17: 725-741.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨林桦,杜晓雪,张佳宁,谢田朋,杨涛. 病原菌胁迫下植物“呼救”策略的研究进展[J]. 微生物学通报, 2025, 52(1): 17-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-09
  • 录用日期:2024-05-22
  • 在线发布日期: 2025-01-21
  • 出版日期: 2025-01-20
文章二维码