科微学术

微生物学通报

海洋环境中卤代有机化合物的厌氧微生物还原脱卤研究进展
作者:
基金项目:

国家自然科学基金(42276150,41977269)


Advances in reductive dehalogenation of halogenated organic compounds by anaerobic microorganisms in the marine environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    卤代有机化合物(halogenated organic compounds, HOCs)因其潜在的毒性、环境持久性及生物富集性而备受关注。海洋环境是HOCs重要汇集地,不仅累积了大量人工合成的HOCs,还包含多种天然产生的HOCs。微生物驱动的厌氧还原脱卤过程是HOCs污染治理的重要方法,其中有机卤化物呼吸细菌(organohalide-respiring bacteria, OHRB)在HOCs的生物修复和地球化学循环过程中发挥着核心作用。本文概述了海洋环境中HOCs的来源、分布、微生物厌氧还原脱卤机制,以及已分离的OHRB和还原脱卤酶的研究进展,旨在为海洋环境中HOCs的生物修复提供参考,并为厘清海洋环境中卤素的生物地球化学循环过程提供理论基础。此外,本文还探讨了海洋和陆地脱卤菌的特性差异及其潜在联系,以阐明它们在不同生态系统中的环境适应性及其进化起源。

    Abstract:

    Halogenated organic compounds (HOCs) have gained increasing attention due to their potential toxicity, environmental persistence, and bioconcentration. The marine environment is a major source and sink of HOCs, not only accumulating large amounts of anthropogenic HOCs but also containing a wide range of naturally produced HOCs. Microbial reductive dehalogenation is a key strategy for the remediation of HOCs pollution, in which organohalide-respiring bacteria (OHRB) play a pivotal role in the bioremediation and geochemical cycling of HOCs. This article provides an overview of the sources and distribution of HOCs in the marine environment as well as the mechanisms of reductive dehalogenation by anaerobic microorganisms. It systematically reviews the research progress in reductive dehalogenating bacteria that have been isolated from the marine environment and the reductive dehalogenases, aiming to provide a reference for the bioremediation of HOCs in the marine environment and lay a theoretical foundation for clarifying the biogeochemical cycle of halogens in the marine environment. Additionally, this article explores the differences in the properties of marine and terrestrial dehalogenating bacteria and their potential connections, which are important for elucidating their evolution and environmental adaptation in different ecosystems.

    参考文献
    [1] 金梨娟, 陈宝梁. 环境中卤代有机污染物的自然来源、背景浓度及形成机理[J]. 化学进展, 2017, 29(9): 1093-1114. JIN LJ, CHEN BL. Natural origins, concentration levels, and formation mechanisms of organohalogens in the environment[J]. Progress in Chemistry, 2017, 29(9): 1093-1114(in Chinese).
    [2] 阮哲璞, 徐希辉, 陈凯, 乔文静, 蒋建东. 微生物降解持久性有机污染物的研究进展与展望[J]. 微生物学报, 2020, 60(12): 2763-2784. RUAN ZP, XU XH, CHEN K, QIAO WJ, JIANG JD. Recent advances in microbial catabolism of persistent organic pollutants[J]. Acta Microbiologica Sinica, 2020, 60(12): 2763-2784(in Chinese).
    [3] BEYER A, BIZIUK M. Environmental fate and global distribution of polychlorinated biphenyls[M]// WHITACRE DM, ed. Reviews of Environmental Contamination and Toxicology. Boston, MA: Springer US, 2009: 137-158.
    [4] QIU YL, STRID A, BIGNERT A, ZHU ZL, ZHAO JF, ATHANASIADOU M, ATHANASSIADIS I, BERGMAN Å. Chlorinated and brominated organic contaminants in fish from Shanghai markets: a case study of human exposure[J]. Chemosphere, 2012, 89(4): 458-466.
    [5] ZHU MH, YUAN YB, YIN H, GUO ZY, WEI XP, QI X, LIU H, DANG Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: a review[J]. Science of the Total Environment, 2022, 805: 150270.
    [6] WANG P, SHANG HT, LI HH, WANG YW, LI YM, ZHANG HD, ZHANG QH, LIANG Y, JIANG GB. PBDEs, PCBs and PCDD/Fs in the sediments from seven major river basins in China: occurrence, congener profile and spatial tendency[J]. Chemosphere, 2016, 144: 13-20.
    [7] TORNERO V, HANKE G. Chemical contaminants entering the marine environment from sea-based sources: a review with a focus on European seas[J]. Marine Pollution Bulletin, 2016, 112(1/2): 17-38.
    [8] AGARWAL V, BLANTON JM, PODELL S, TATON A, SCHORN MA, BUSCH J, LIN ZJ, SCHMIDT EW, JENSEN PR, PAUL VJ, BIGGS JS, GOLDEN JW, ALLEN EE, MOORE BS. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges[J]. Nature Chemical Biology, 2017, 13(5): 537-543.
    [9] 王泽懿, 吕梦冉, 于洋, 张悦妍, 温丽莲, 李昂. 地下水脱卤过程中的微生物种间代谢互作: 提高原位氯代烯烃厌氧脱氯效能的有效途径[J]. 微生物学通报, 2023, 50(4): 1576-1590. WANG ZY, LÜ MR, YU Y, ZHANG YY, WEN LL, LI A. Metabolic interactions among microbial species during groundwater dehalogenation: an effective way to improve in-situ anaerobic dechlorination of chlorinated ethenes[J]. Microbiology China, 2023, 50(4): 1576-1590(in Chinese).
    [10] KING GM. Dehalogenation in marine sediments containing natural sources of halophenols[J]. Applied and Environmental Microbiology, 1988, 54(12): 3079-3085.
    [11] LIU YH, WANG L, LIU RL, FANG JS. Biogeochemical cycling of halogenated organic compounds in the ocean: Current progress and future directions[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2024, 205: 104237.
    [12] WANG YF, TAM NFY. Microbial remediation of organic pollutants[M]//World Seas: An Environmental Evaluation. Amsterdam: Elsevier, 2019: 283-303.
    [13] PENG P, GORIS T, LU Y, NIJSSE B, BURRICHTER A, SCHLEHECK D, KOEHORST JJ, LIU J, SIPKEMA D, SINNINGHE DAMSTE JS, STAMS AJM, HÄGGBLOM MM, SMIDT H, ATASHGAHI S. Organohalide-respiring Desulfoluna species isolated from marine environments[J]. The ISME Journal, 2020, 14(3): 815-827.
    [14] WANG SQ, QIU L, LIU XW, XU GF, SIEGERT M, LU QH, JUNEAU P, YU L, LIANG DW, HE ZL, QIU RL. Electron transport chains in organohalide-respiring bacteria and bioremediation implications[J]. Biotechnology Advances, 2018, 36(4): 1194-1206.
    [15] MATTURRO B, FRASCADORE E, ROSSETTI S. High-throughput sequencing revealed novel Dehalococcoidia in dechlorinating microbial enrichments from PCB-contaminated marine sediments[J]. FEMS Microbiology Ecology, 2017. DOI: 10.1093/femsec/fix134.
    [16] HAN YC, PENG YY, PENG JX, CAO L, XU YR, YANG Y, WU MH, ZHOU H, ZHANG C, ZHANG DD, WANG MX, GREEN C, DONG, XY. Phylogenetically and structurally diverse reductive dehalogenases link biogeochemical cycles in deep-sea cold seeps[J]. bioRxiv, 2024. DOI: 10.1101/2024.01.23.576788.
    [17] KASTER AK, MAYER-BLACKWELL K, PASARELLI B, SPORMANN AM. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin[J]. The ISME Journal, 2014, 8(9): 1831-1842.
    [18] WANG SQ, CHNG KR, WILM A, ZHAO SY, YANG KL, NAGARAJAN N, HE JZ. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12103-12108.
    [19] YEO BG, TAKADA H, YAMASHITA R, OKAZAKI Y, UCHIDA K, TOKAI T, TANAKA K, TRENHOLM N. PCBs and PBDEs in microplastic particles and zooplankton in open water in the Pacific Ocean and around the coast of Japan[J]. Marine Pollution Bulletin, 2020, 151: 110806.
    [20] WANG C, LU HY, LAN JZ, ZAMAN KHAU, CAO SG. A review: halogenated compounds from marine fungi[J]. Molecules, 2021, 26(2): 458.
    [21] HUANG JJ, LI RJ, SHI TD, YE JD, ZHANG HB, JIN SC, GAO H, WANG Q, NA GS. Determination of multiple organic flame retardants in maricultural water using high-volume/high-throughput solid-phase extraction followed by liquid/gas chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2022, 1663: 462766.
    [22] ASTRAHAN P, SILVERMAN J, GERTNER Y, HERUT B. Spatial distribution and sources of organic matter and pollutants in the SE Mediterranean (Levantine basin) deep water sediments[J]. Marine Pollution Bulletin, 2017, 116(1/2): 521-527.
    [23] DRAZEN JC, SUTTON TT. Dining in the deep: the feeding ecology of deep-sea fishes[J]. Annual Review of Marine Science, 2017, 9: 337-366.
    [24] GRIBBLE GW. A survey of recently discovered naturally occurring organohalogen compounds[J]. Journal of Natural Products, 2024, 87(4): 1285-1305.
    [25] KENG FSL, PHANG SM, ABD RAHMAN N, LEEDHAM ELVIDGE EC, MALIN G, STURGES WT. The emission of volatile halocarbons by seaweeds and their response towards environmental changes[J]. Journal of Applied Phycology, 2020, 32(2): 1377-1394.
    [26] LI C, SHI DY. Structural and bioactive studies of halogenated constituents from sponges[J]. Current Medicinal Chemistry, 2020, 27(14): 2335-2360.
    [27] LEY Y, CHENG XY, YING ZY, ZHOU NY, XU Y. Characterization of two marine lignin-degrading consortia and the potential microbial lignin degradation network in nearshore regions[J]. Microbiology Spectrum, 2023, 11(3): e0442422.
    [28] GRIBBLE GW. Naturally occurring organohalogen compounds: a comprehensive review[M]//Progress in the Chemistry of Organic Natural Products. Cham: Springer Nature Switzerland, 2023: 1-546.
    [29] DONG YX, PENG WY, LIU YJ, WANG ZH. Photochemical origin of reactive radicals and halogenated organic substances in natural waters: a review[J]. Journal of Hazardous Materials, 2021, 401: 123884.
    [30] MEGSON D, BROWN T, JONES GR, ROBSON M, JOHNSON GW, TIKTAK GP, SANDAU CD, REINER EJ. Polychlorinated biphenyl (PCB) concentrations and profiles in marine mammals from the North Atlantic Ocean[J]. Chemosphere, 2022, 288: 132639.
    [31] RANJBAR JAFARABADI A, RIYAHI BAKHTIARI A, MITRA S, MAISANO M, CAPPELLO T, JADOT C. First polychlorinated biphenyls (PCBs) monitoring in seawater, surface sediments and marine fish communities of the Persian Gulf: distribution, levels, congener profile and health risk assessment[J]. Environmental Pollution, 2019, 253: 78-88.
    [32] UMASANGAJI H, RAMILI Y, NAJAMUDDIN. Status of polychlorinated biphenyl (PCBs) contamination in several marine and freshwater sediments in the world during the last three decades[J]. IOP Conference Series: Earth and Environmental Science, 2020, 584(1): 012012.
    [33] DÍAZ-JARAMILLO M, LAITANO MV, GONZALEZ M, MIGLIORANZA KSB. Spatio-temporal trends and body size differences of OCPs and PCBs in Laeonereis culveri (Polychaeta: Nereididae) from Southwest Atlantic estuaries[J]. Marine Pollution Bulletin, 2018, 136: 107-113.
    [34] JIANG S, WAN MM, LIN K, CHEN YS, WANG R, TAN LJ, WANG JT. Spatiotemporal distribution, source analysis and ecological risk assessment of polychlorinated biphenyls (PCBs) in the Bohai Bay, China[J]. Marine Pollution Bulletin, 2024, 198: 115780.
    [35] STACK ME, RICHARDOT WH, GARCIA R, NGUYEN T, CHOY CA, JENSEN PR, GUTLEBEN J, DODDER NG, ALUWIHARE LI, HOH E. Identification of DDT+ in deep ocean sediment and biota in the Southern California bight[J]. Environmental Science & Technology Letters, 2024, 11(5): 479-484.
    [36] QIU YW, WANG DX, ZHANG G. Assessment of persistent organic pollutants (POPs) in sediments of the Eastern Indian Ocean[J]. Science of the Total Environment, 2020, 710: 136335.
    [37] KAHKASHAN S, WANG XH, CHEN JF, BAI YC, YA ML, WU YL, CAI YZ, WANG SQ, SALEEM M, AFTAB J, INAM A. Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean[J]. Chemosphere, 2019, 235: 959-968.
    [38] CUI JT, YU ZQ, MI M, HE LS, SHA ZL, YAO P, FANG JS, SUN WD. Occurrence of halogenated organic pollutants in hadal trenches of the Western Pacific Ocean[J]. Environmental Science & Technology, 2020, 54(24): 15821-15828.
    [39] DASGUPTA S, PENG X, CHEN S, LI J, DU M, ZHOU YH, ZHONG G, XU H, TA K. Toxic anthropogenic pollutants reach the deepest ocean on Earth[J]. Geochemical Perspectives Letters, 2018: 22-26.
    [40] DENG ZC, HAN XB, CHEN CL, WANG H, MA BB, ZHANG DD, ZHANG ZC, ZHANG CF. The distribution characteristics of polychlorinated biphenyls (PCBs) in the surface sediments of Ross Sea and Drake Passage, Antarctica: a 192 congeners analysis[J]. Marine Pollution Bulletin, 2020, 154: 111043.
    [41] DENG ZC, HU ST, TANG LM, JIANG LB, HE JY, SHEN KY, XU YJ, JIANG RJ, LI TJ, CHEN CL, CHEN BR, ZHOU HH, ZHANG DD, CHEN JW, ZHANG CF. Carbazole and polyhalogenated carbazoles in the marine environment around the Zhoushan Archipelago: distribution characteristics, environmental behavior, and sources[J]. Journal of Hazardous Materials, 2023, 442: 129999.
    [42] HU ST, JIANG LJ, JIANG LB, TANG LM, WICKRAMA ARACHCHIGE AUK, YU H, DENG ZC, LI LY, WANG CS, ZHANG DS, CHEN CL, LIN SQ, CHEN X, ZHANG CF. Spatial distribution characteristics of carbazole and polyhalogenated carbazoles in water column and sediments in the open Western Pacific Ocean[J]. Journal of Hazardous Materials, 2024, 469: 133956.
    [43] HALLIWELL T, FISHER K, PAYNE KAP, RIGBY SEJ, LEYS D. Heterologous expression of cobalamin dependent class-III enzymes[J]. Protein Expression and Purification, 2021, 177: 105743.
    [44] 崔逸儒, 杨毅, 严俊, 李秀颖. 脱卤单胞菌属在厌氧降解有机氯化物及污染场地修复应用中的研究进展[J]. 生物工程学报, 2021, 37(10): 3565-3577. CUI YR, YANG Y, YAN J, LI XY. piration potential in marine sediments from Aarhus Bay[J]. FEMS Microbiology Ecology, 2022, 98(8): fiac073.
    [79] WANG YF, ZHU HW, WANG Y, ZHANG XL, TAM NFY. Diversity and dynamics of microbial community structure in different mangrove, marine and freshwater sediments during anaerobic debromination of PBDEs[J]. Frontiers in Microbiology, 2018, 9: 952.
    [80] PAN Y, CHEN J, ZHOU HC, FARZANA S, TAM NFY. Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination[J]. Marine Pollution Bulletin, 2017, 124(2): 1055-1062.
    [81] XU GF, ZHANG N, ZHAO XJ, CHEN C, ZHANG CF, HE JZ. Offshore marine sediment microbiota respire structurally distinct organohalide pollutants[J]. Environmental Science & Technology, 2022, 56(5): 3065-3075.
    [82] XU GF, ZHAO XJ, ZHAO SY, ROGERS MJ, HE JZ. Salinity determines performance, functional populations, and microbial ecology in consortia attenuating organohalide pollutants[J]. The ISME Journal, 2023, 17(5): 660-670.
    [83] LI WL, DONG XY, LU R, ZHOU YL, ZHENG PF, FENG D, WANG Y. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments[J]. Environmental Microbiology, 2021, 23(11): 6844-6858.
    [84] ZHENG RK, CAI RN, LIU R, LIU G, SUN CM. Maribellus comscasis sp. nov., a novel deep-sea Bacteroidetes bacterium, possessing a prominent capability of degrading cellulose[J]. Environmental Microbiology, 2021, 23(8): 4561-4575.
    [85] DONG XY, GREENING C, BRÜLS T, CONRAD R, GUO K, BLASKOWSKI S, KASCHANI F, KAISER M, ABU LABAN N, MECKENSTOCK RU. Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats[J]. The ISME Journal, 2018, 12(8): 2039-2050.
    [86] LOW A, SHEN ZY, CHENG D, ROGERS MJ, LEE PKH, HE JZ. A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a[J]. Scientific Reports, 2015, 5: 15204.
    [87] SAIYARI DM, CHUANG HP, SENORO DB, LIN TF, WHANG LM, CHIU YT, CHEN YH. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater[J]. Sustainable Environment Research, 2018, 28(4): 149-157.
    [88] CHOW WL, CHENG D, WANG SQ, HE JZ. Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species[J]. The ISME Journal, 2010, 4(8): 1020-1030.
    [89] YANG Y, ZHANG YZ, CÁPIRO NL, YAN J. Genomic characteristics distinguish geographically distributed Dehalococcoidia[J]. Frontiers in Microbiology, 2020, 11: 546063.
    [90] SEWELL HL, KASTER AK, SPORMANN AM. Homoacetogenesis in deep-sea Chloroflexi, as inferred by single-cell genomics, provides a link to reductive dehalogenation in terrestrial Dehalococcoidetes[J]. mBio, 2017, 8(6): e02022-17.gy, 2014, 5: 80.
    [57] ZHANG C, BOSMA TNP, ATASHGAHI S, SMIDT H. Genome-resolved transcriptomics reveals novel organohalide-respiring bacteria from Aarhus Bay sediments[J]. bioRxiv, 2023. DOI: 10.1101/2023.04. 17.537210.
    [58] DeWEERD KA, MANDELCO L, TANNER RS, WOESE CR, SUFLITA JM. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium[J]. Archives of Microbiology, 1990, 154(1): 23-30.
    [59] 王晶晶, 李秀颖, 宋玉芳, 严俊, 杨毅. 环境因子对厌氧微生物脱卤的影响研究进展[J]. 微生物学通报, 2022, 49(10): 4357-4381. WANG JJ, LI XY, SONG YF, YAN J, YANG Y. Effects of environmental factors on anaerobic microbial dehalogenation: a review[J]. Microbiology China, 2022, 49(10): 4357-4381(in Chinese).
    [60] MAY HD, MILLER GS, KJELLERUP BV, SOWERS KR. Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium[J]. Applied and Environmental Microbiology, 2008, 74(7): 2089-2094.
    [61] WU Q, SOWERS KR, MAY HD. Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium[J]. Applied and Environmental Microbiology, 2000, 66(1): 49-53.
    [62] CHENG D, HE JZ. Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene[J]. Applied and Environmental Microbiology, 2009, 75(18): 5910-5918.
    [63] SUN B, COLE JR, SANFORD RA, TIEDJE JM. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol[J]. Applied and Environmental Microbiology, 2000, 66(6): 2408-2413.
    [64] AHN YB, KERKHOF LJ, HÄGGBLOM MM. Desulfoluna spongiiphila sp. nov., a dehalogenating bacterium in the Desulfobacteraceae from the marine sponge Aplysina aerophoba[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 9): 2133-2139.
    [65] SUN B, COLE JR, TIEDJE JM. Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(Pt 2): 365-371.
    [66] BOYLE AW, PHELPS CD, YOUNG LY. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol[J]. Applied and Environmental Microbiology, 1999, 65(3): 1133-1140.
    [67] LOHNER ST, SPORMANN AM. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616): 20120326.
    [68] LAI QL, LI GZ, SHAO ZZ. Genome sequence of Nitratireductor pacificus type strain pht-3B[J]. Journal of Bacteriology, 2012, 194(24): 6958.
    [69] LIU J, HÄGGBLOM MM. Genome-guided identification of organohalide-respiring Deltaproteobacteria from the marine environment[J]. mBio, 2018, 9(6): e02471-18.
    [70] DENG ZC, CHEN HX, WANG J, ZHANG N, HAN ZQ, XIE YT, ZHANG XY, FANG XD, YU H, ZHANG DD, YUE Z, ZHANG CF. Marine dehalogenator and its chaperones: microbial duties and responses in 2,4,6-trichlorophenol dechlorination[J]. Environmental Science & Technology, 2023, 57(30): 11300-11312.
    [71] SANFORD RA, CHOWDHARY J, LÖFFLER FE. Organohalide-respiring deltaproteobacteria[M]// Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 235-258.
    [72] YANG Y, SANFORD R, YAN J, CHEN G, CÁPIRO NL, LI XY, LÖFFLER FE. Roles of organohalide- respiring Dehalococcoidia in carbon cycling[J]. mSystems, 2020, 5(3): e00757-19.
    [73] WASMUND K, ALGORA C, MÜLLER J, KRÜGER M, LLOYD KG, REINHARDT R, ADRIAN L. Development and application of primers for the class Dehalococcoidia (phylum Chloroflexi) enables deep insights into diversity and stratification of subgroups in the marine subsurface[J]. Environmental Microbiology, 2015, 17(10): 3540-3556.
    [74] CHEN C, XU GF, ROGERS MJ, HE JZ. Metabolic synergy of Dehalococcoides populations leading to greater reductive dechlorination of polychlorinated biphenyls[J]. Environmental Science & Technology, 2024, 58(5): 2384-2392.
    [75] LEE M, LIANG G, HOLLAND SI, O’FARRELL C, OSBORNE K, MANEFIELD MJ. Dehalobium species implicated in 2,3,7,8-tetrachlorodibenzo-p-dioxin dechlorination in the contaminated sediments of Sydney Harbour Estuary[J]. Marine Pollution Bulletin, 2022, 179: 113690.
    [76] MATTURRO B, PRESTA E, ROSSETTI S. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes[J]. Science of the Total Environment, 2016, 545: 445-452.
    [77] MATTURRO B, Di LENOLA M, UBALDI C, ROSSETTI S. First evidence on the occurrence and dynamics of Dehalococcoides mccartyi PCB-dechlorinase genes in marine sediment during Aroclor1254 reductive dechlorination[J]. Marine Pollution Bulletin, 2016, 112(1/2): 189-194.
    [78] ZHANG C, ATASHGAHI S, BOSMA TNP, PENG P, SMIDT H. Organohalide res
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢烨婷,张晓艳,邓招超,胡松涛,姜丽佳,李艳红,章春芳. 海洋环境中卤代有机化合物的厌氧微生物还原脱卤研究进展[J]. 微生物学通报, 2025, 52(3): 881-895

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-02
  • 录用日期:2024-09-05
  • 在线发布日期: 2025-03-19
文章二维码