[1] |
ABBASI G, LI L, BREIVIK K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11): 6330-6340. |
|
[2] |
GUO Y, LU N, HE Q, WANG BY, CAO S, WANG Y. Autophagy: a newly discovered protective mechanism in the marine rotifer Brachionus plicatilis in response to BDE-47 exposure[J]. Aquatic Toxicology, 2023, 259: 106536. DOI:10.1016/j.aquatox.2023.106536 |
|
[3] |
QI X, ZHU M, YUAN Y, DANG Z, YIN HJJOHM. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar[J]. Journal of Hazardous Materials, 2023, 460: 132408. DOI:10.1016/j.jhazmat.2023.132408 |
|
[4] |
WANG R, TANG T, WEI YC, DANG D, HUANG KB, CHEN XW, YIN H, TAO XQ, LIN Z, DANG Z, LU GN. Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO 2 nanocomposites: mechanisms and pathways[J]. Environment International, 2019, 127: 5-12. DOI:10.1016/j.envint.2019.03.011 |
|
[5] |
ZHANG XX, CHEN R, LI ZH, YU JX, CHEN JY, ZHANG YY, CHEN JH, YU QQ, QIU XH. The influence of various microplastics on PBDEs contaminated soil remediation by nZVI and sulfide-nZVI: impedance, electron-accepting/-donating capacity and aging[J]. Science of the Total Environment, 2023, 880: 163233. DOI:10.1016/j.scitotenv.2023.163233 |
|
[6] |
PANDA D, MANICKAM S. Heterogeneous Sono-Fenton treatment of decabromodiphenyl ether (BDE-209): debromination mechanism and transformation pathways[J]. Separation and Purification Technology, 2019, 209: 914-920. DOI:10.1016/j.seppur.2018.06.069 |
|
[7] |
QI X, ZHU MH, YUAN YB, RONG XF, DANG Z, YIN H. Integrated toxicology, metabolomics, and transcriptomics analyses reveal the biodegradation and adaptation mechanisms to BDE-47 in Pseudomonas plecoglossicida[J]. Chemical Engineering Journal, 2023, 454: 140412. DOI:10.1016/j.cej.2022.140412 |
|
[8] |
STAPLETON HM, EAGLE S, ANTHOPOLOS R, WOLKIN A, MIRANDA ML. Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy[J]. Environmental Health Perspectives, 2011, 119(10): 1454-1459. DOI:10.1289/ehp.1003235 |
|
[9] |
WANG YL, FENG YY, CHEN YL, LI TY, TAN Y, MA YF, ZHANG ZL. Annual flux estimation and source apportionment of PCBs and PBDEs in the middle reach of Yangtze River, China[J]. Science of the Total Environment, 2023, 885: 163772. DOI:10.1016/j.scitotenv.2023.163772 |
|
[10] |
JIN MT, ZHANG SF, HE JQ, LU ZH, ZHOU SS, YE NX. Polybrominated diphenyl ethers from automobile microenvironment: occurrence, sources, and exposure assessment[J]. Science of the Total Environment, 2021, 781: 146658. DOI:10.1016/j.scitotenv.2021.146658 |
|
[11] |
XUE ND, CHEN XY, YANG B, QIN PF. Transfer and fate of polybrominated diphenyl ethers in an electrical equipment dismantling area using a multimedia fugacity model[J]. Environmental Science, 2016, 37(11): 4326-4332. (in Chinese) 薛南冬, 陈宣宇, 杨兵, 秦普丰, 龙雨. 应用环境多介质逸度模型研究废旧电器拆解区多溴联苯醚的迁移及归趋[J]. 环境科学, 2016, 37(11): 4326-4332. |
|
[12] |
YIN MF, LI J, WANG CP, SUN WH. A novel technology for enhanced remediation of soils contaminated by PBDEs[J]. China Environmental Science, 2017, 37(10): 3853-3860. (in Chinese) 殷梦菲, 李静, 王翠苹, 孙红文. 多溴联苯醚污染土壤的新型强化修复技术[J]. 中国环境科学, 2017, 37(10): 3853-3860. DOI:10.3969/j.issn.1000-6923.2017.10.029 |
|
[13] |
HAO YF, MENG WY, LI YM, HAN X, LU HL, WANG P, YANG RQ, ZHANG QH, JIANG GB. Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-alesund and London Island, Svalbard, Arctic[J]. Journal of Environmental Sciences, 2020, 97: 180-185. DOI:10.1016/j.jes.2020.04.031 |
|
[14] |
XIONG SY, HAO YF, LI YM, YANG RQ, PEI ZG, ZHANG QH, JIANG GB. Accumulation and influencing factors of novel brominated flame retardants in soil and vegetation from Fildes Peninsula, Antarctica[J]. Science of the Total Environment, 2021, 756: 144088. DOI:10.1016/j.scitotenv.2020.144088 |
|
[15] |
DUAN L, YING YQ, ZHONG JY, JIANG CJ, CHEN W. Key factors controlling colloids-bulk soil distribution of polybrominated diphenyl ethers (PBDEs) at an e-waste recycling site: implications for PBDE mobility in subsurface environment[J]. Science of the Total Environment, 2022, 819: 153080. DOI:10.1016/j.scitotenv.2022.153080 |
|
[16] |
HU JJ, LAN SH, KANG G, GAO YY, WEN ZL, LÜ XM, ZHANG XL, YU YX. Pollution, source and ecological risk assessment of typical toxic organic pollutants in the Dongjiang River[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 147-155. (in Chinese) 胡俊杰, 兰善红, 康耿, 高圆圆, 温志良, 吕小梅, 张小磊, 余应新. 东江流域典型毒害有机污染物的污染特征、来源及生态风险[J]. 环境科学学报, 2022, 42(12): 147-155. |
|
[17] |
XIE Q, LIU F, ZHANG XY, WU YP. Fatty acids and organohalogen contaminants in seafood from the Pearl River Estuary, China: risk-benefit analyses of seafood consumption[J]. Science of the Total Environment, 2023, 900: 165725. DOI:10.1016/j.scitotenv.2023.165725 |
|
[18] |
XIE J, ZHANG G, WU Q, LUO M, CHEN D, ZHANG Y, HE L, LI Y, ZHANG Q, LIN T, JIANG G. First evidence and potential sources of novel brominated flame retardants and BDE 209 in the deepest ocean[J]. Journal of Hazardous Materials, 2023, 448: 130974. DOI:10.1016/j.jhazmat.2023.130974 |
|
[19] |
DENG D, CHEN HX, TAM NFY. Temporal and spatial contamination of polybrominated diphenyl ethers (PBDEs) in wastewater treatment plants in Hong Kong[J]. Science of the Total Environment, 2015, 502: 133-142. DOI:10.1016/j.scitotenv.2014.08.090 |
|
[20] |
HAN WL, LIU Y, FENG KW. Spatiotemporal differentiation and degradation analysis of polybrominated diphenyl ethers in Sediments of Shanmei reservoir and its inflowing river, Quanzhou, China[J]. Environmental Science, 2020, 41(10): 4525-4538. (in Chinese) 韩文亮, 刘豫, 冯凯文. 泉州山美水库及入库河流沉积物中多溴二苯醚的时空分异和降解分析[J]. 环境科学, 2020, 41(10): 4525-4538. |
|
[21] |
GU SY, EKPEGHERE KI, KIM HY, LEE IS, KIM DH, CHOO G, OH JE. Brominated flame retardants in marine environment focused on aquaculture area: occurrence, source and bioaccumulation[J]. Science of the Total Environment, 2017, 601: 1182-1191. |
|
[22] |
AGARWAL V, BLANTON JM, PODELL S, TATON A, SCHORN MA, BUSCH J, LIN ZJ, SCHMIDT EW, JENSEN PR, PAUL VJ, BIGGS JS, GOLDEN JW, ALLEN EE, MOORE BS. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges[J]. Nature Chemical Biology, 2017, 13(5): 537-543. DOI:10.1038/nchembio.2330 |
|
[23] |
BERISTAIN-MONTIEL E, VILLALOBOS-PIETRINI R, NUNEZ-VILCHIS A, ARIAS-LOAIZA GE, HERNANDEZ-PANIAGUA IY, AMADOR-MUNOZ O. Polybrominated diphenyl ethers and organochloride pesticides in the organic matter of air suspended particles in Mexico valley: a diagnostic to evaluate public policies[J]. Environmental Pollution, 2020, 267: 115637. DOI:10.1016/j.envpol.2020.115637 |
|
[24] |
JIN M T, LU ZH, LI LJ, SEN XY, ZHANG SF. Pollution characteristics and source analysis of PBDEs in dust in typical public places[J]. China Environmental Science, 2021, 41(4): 1878-1885. (in Chinese) 金漫彤, 陆朱豪, 郦林军, 沈学优, 张顺飞. 典型室内公共场所灰尘中PBDEs污染特征及源解析[J]. 中国环境科学, 2021, 41(4): 1878-1885. DOI:10.3969/j.issn.1000-6923.2021.04.042 |
|
[25] |
IBETO C, AJU E, IMAFIDON B, OKONGWU D. Exposure evaluation and risk assessment of polybrominated diphenyl ethers in dust from microenvironments in Nsukka, Nigeria[J]. Environmental Science and Pollution Research, 2021, 28(25): 32374-32385. DOI:10.1007/s11356-021-13054-x |
|
[26] |
PORTET-KOLTALO F, GUIBERT N, MORIN C, DE MENGIN-FONDRAGON F, FROUARD A. Evaluation of polybrominated diphenyl ether (PBDE) flame retardants from various materials in professional seating furnishing wastes from French flows[J]. Waste Management, 2021, 131: 108-116. DOI:10.1016/j.wasman.2021.05.038 |
|
[27] |
ZHANG K, LIU FY, CHEN W, CHEN J, HUANG Q. Degradation of decabromodiphenyl ether by corncob-sodium al lginate immobilized bacteria[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(5): 904-910. (in Chinese) 张可, 刘福义, 陈伟, 陈佳, 黄俊, 陈强. 玉米芯吸附-海藻酸钠固定微生物对十溴联苯醚的降解[J]. 应用与环境生物学报, 2016, 22(5): 904-910. |
|
[28] |
WU Q, LI H, KUO DT, CHEN S, MAI B, LI H, LIU Z, DENG M, ZHANG H, HU XJEP. Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China[J]. Environmental Pollution, 2017, 220: 63-71. DOI:10.1016/j.envpol.2016.09.023 |
|
[29] |
SUN Y, TENG Y, ZHAO L, LI R, REN WJ. Non-negligibly negative role of e-waste-derived pyrogenic carbon in the soil washing of copper and polybrominated diphenyl ethers[J]. Journal of Hazardous Materials, 2023, 458: 131841. DOI:10.1016/j.jhazmat.2023.131841 |
|
[30] |
ZHOU YX, SUN JJ, WANG L, ZHU GH, LI MF, LIU JS, LI ZG, GONG HP, WU CW, YIN G. Multiple classes of chemical contaminants in soil from an e-waste disposal site in China: occurrence and spatial distribution[J]. Science of the Total Environment, 2021, 752: 141924. DOI:10.1016/j.scitotenv.2020.141924 |
|
[31] |
ZHANG SJ, ZHOU X, LI MF, ZHU GH, GONG HP, WANG L, LIU JS. Pollution characteristics and environmental transport behavior of PBDEs in agriculture soil around an electronic waste dismantling venue[J]. Environmental Pollution & Control, 2018, 40(7): 819-823. (in Chinese) 张胜军, 周欣, 李沐霏, 朱国华, 巩宏平, 王玲, 刘劲松. 电子垃圾拆解区周边农田土壤中多溴联苯醚污染特征及其环境迁移行为研究[J]. 环境污染与防治, 2018, 40(7): 819-823. |
|
[32] |
WEI BK, LIU C, WANG Y, JIN J. Polybrominated diphenyl ether in e-waste dismantling sites in taizhou city, Zhejiang Province: concentration, distribution, and migration trend[J]. Environmental Science, 2020, 41(10): 4740-4748. (in Chinese) 魏抱楷, 柳晨, 王英, 金军. 浙江省台州市电子垃圾拆解地多溴联苯醚浓度水平分布特征和迁移趋势[J]. 环境科学, 2020, 41(10): 4740-4748. |
|
[33] |
OLORUNTOBA K, SINDIKU O, OSIBANJO O, WEBER R. Polybrominated diphenyl ethers (PBDEs) concentrations in soil, sediment and water samples around electronic wastes dumpsites in Lagos, Nigeria[J]. Emerging Contaminants, 2022, 8: 206-215. DOI:10.1016/j.emcon.2022.03.003 |
|
[34] |
HAN Y, CHENG JL, HE L, ZHANG MN, REN S, SUN JZ, XING XY, TANG ZW. Polybrominated diphenyl ethers in soils from Tianjin, North China: distribution, health risk, and temporal trends[J]. Environmental Geochemistry and Health, 2021, 43(3): 1177-1191. DOI:10.1007/s10653-020-00645-9 |
|
[35] |
ZHEN XB, LUO XJ, MAI BX. Research progress on biomagnification of persistent halogenated compounds (PHCs) in food webs[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 30-43. (in Chinese) 郑晓波, 罗孝俊, 麦碧娴. 持久性卤代有机污染物(PHCs)在食物网中的生物放大研究进展[J]. 矿物岩石地球化学通报, 2020, 39(1): 30-43. |
|
[36] |
WU JP, LUO XJ, ZHANG Y, CHEN SJ, MAI BX, GUAN YT, YANG ZY. Residues of polybrominated diphenyl ethers in frogs (Rana limnocharis) from a contaminated site, South China: tissue distribution, biomagnification, and maternal transfer[J]. Environmental Science & Technology, 2009, 43(14): 5212-5217. |
|
[37] |
LU R, CAO X, ZHENG X, ZENG Y, JIANG Y, MAI B. Biomagnification and elimination effects of persistent organic pollutants in a typical wetland food web from South China[J]. Journal of Hazardous Materials, 2023, 457: 131733. DOI:10.1016/j.jhazmat.2023.131733 |
|
[38] |
WU X, CHEN L, LI X, CAO X, ZHENG X, LI R, ZHANG JE, LUO X, MAI B. Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs[J]. Environmental Pollution, 2022, 306: 119433. DOI:10.1016/j.envpol.2022.119433 |
|
[39] |
REN ZH, ZENG YH, TANG B, LUO XJ, HUANG CC, MAI BX. Bioaccumulative characteristics of halogenated flame retardants in aquatic and terrestrial biotas: a case study of catfish and pigeons[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 163-168. (in Chinese) 任子贺, 曾艳红, 唐斌, 罗孝俊, 黄晨晨, 麦碧娴. 水生和陆生生物体中卤系阻燃剂的差异性富集研究: 以鲶鱼和家鸽为例[J]. 生态毒理学报, 2018, 13(1): 163-168. |
|
[40] |
JIANG YY, ZENG YH, ZHANG YT, TANG B, LUO XJ, MAI BX. Tissue-specific bioaccumulation of halogenated organic pollutants in fish[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 141-149. (in Chinese) 江逸野, 曾艳红, 张艳婷, 唐斌, 罗孝俊, 麦碧娴. 卤代有机污染物的组织差异性生物富集研究[J]. 生态毒理学报, 2022, 17(4): 141-149. |
|
[41] |
CHAI MW, LI RL, SHI C, SHEN XX, LI RY, ZAN QJ. Contamination of polybrominated diphenyl ethers (PBDEs) in urban mangroves of Southern China[J]. Science of the Total Environment, 2019, 646: 390-399. DOI:10.1016/j.scitotenv.2018.07.278 |
|
[42] |
ZHANG YQ, TANG CX, DONG Y, WU CC, BAO LJ, ZENG EY. Effects of cooking on oral bioaccessibility of PBDEs, MeO-PBDEs, and OH-PBDEs in fish (tilapia) and chicken egg[J]. Science of the Total Environment, 2020, 748: 142310. DOI:10.1016/j.scitotenv.2020.142310 |
|
[43] |
PIETRON W, PAJUREK M, MIKOLAJCZYK S, MASZEWSKI S, WARENIK-BANY M, PISKORSKA- PLISZCZYNSKA J. Exposure to PBDEs associated with farm animal meat consumption[J]. Chemosphere, 2019, 224: 58-64. DOI:10.1016/j.chemosphere.2019.02.067 |
|
[44] |
CHARLES D, BERG V, NOST TH, WILSGAARD T, BERGDAHL IA, HUBER S, AYOTTE P, AVERINA M, SANDANGER T, RYLANDER C. Polybrominated diphenyl ethers in type 2 diabetes mellitus cases and controls: repeated measurements prior to and after diagnosis[J]. International Journal of Hygiene and Environmental Health, 2023, 249: 114148. DOI:10.1016/j.ijheh.2023.114148 |
|
[45] |
CHEN YR, LV JY, FU L, WU Y, ZHOU S, LIU SW, ZHENG LJ, FENG WR, ZHANG L. Metabolome-wide association study of four groups of persistent organic pollutants and abnormal blood lipids[J]. Environment International, 2023, 173: 107817. DOI:10.1016/j.envint.2023.107817 |
|
[46] |
QIU YW, ZENG EY, QIU HL, YU KF, CAI SQ. Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels[J]. Science of the Total Environment, 2017, 579: 1885-1893. DOI:10.1016/j.scitotenv.2016.11.192 |
|
[47] |
WANG XG, LI N, HAN YN, MA M, WU XH, LI C, WANG DC. Research progress on immunotoxic mechanism of dioxins and dioxin⁃like pollutants[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 138-148. (in Chinese) 王鑫格, 李娜, 韩颖楠, 马梅, 吴兴华, 李翀, 王殿常. 二噁英及类二噁英污染物致免疫毒性作用机制研究进展[J]. 生态毒理学报, 2023, 18(1): 138-148. |
|
[48] |
DU XD, LI HL, LIANG JH, WANG R, HUANG KB, HAYAT W, CAI LM, TAO XQ, DANG Z, LU GN. Hydrogen-donor-controlled polybrominated dibenzofuran (PBDF) formation from polybrominated diphenyl ether (PBDE) photolysis in solutions: competition mechanisms of radical-based cyclization and hydrogen abstraction reactions[J]. Environmental Science & Technology, 2023, 57(20): 7777-7788. |
|
[49] |
MIZUKAWA H, NOMIYAMA K, NAKATSU S, IWATA H, YOO J, KUBOTA A, YAMAMOTO M, ISHIZUKA M, IKENAKA Y, NAKAYAMA SMM, KUNISUE T, TANABE S. Organohalogen compounds in pet dog and cat: do pets biotransform natural brominated products in food to harmful hydroxlated substances?[J]. Environmental Science & Technology, 2016, 50(1): 444-452. |
|
[50] |
XU XH, WANG GQ, LI YJ, ZHANG YF. Biotransformation kinetics and pathways of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated and methoxylated derivatives (6-OH-BDE-47 and 6-MeO-BDE-47) in earthworms ( Eisenia fetida)[J]. Science of the Total Environment, 2023, 855: 158934. DOI:10.1016/j.scitotenv.2022.158934 |
|
[51] |
LIU HL, TANG S, ZHENG XM, ZHU YT, MA ZY, LIU CS, HECKER M, SAUNDERS DMV, GIESY JP, ZHANG XW, YU HX. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2015, 49(3): 1823-1833. |
|
[52] |
LI P, GAO H, DONG LX, LIU LM, ZHOU GY, LUO C, TIAN ZY, XIA T, WANG AG, ZHANG S. Perinatal low-dose PBDE-47 exposure hampered thyroglobulin turnover and induced thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats[J]. Journal of Hazardous Materials, 2020, 392: 122265. DOI:10.1016/j.jhazmat.2020.122265 |
|
[53] |
JI FF, SREENIVASMURTHY SG, WEI JT, SHAO XJ, LUAN HM, ZHU L, SONG JX, LIU LF, LI M, CAI ZW. Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis[J]. Journal of Hazardous Materials, 2019, 378: 120738. DOI:10.1016/j.jhazmat.2019.06.015 |
|
[54] |
WEI JT, LI XN, XIANG L, SONG YY, LIU YC, JIANG YY, CAI ZW. Metabolomics and lipidomics study unveils the impact of polybrominated diphenyl ether-47 on breast cancer mice[J]. Journal of Hazardous Materials, 2020, 390: 121451. DOI:10.1016/j.jhazmat.2019.121451 |
|
[55] |
ABAFE OA, HARRAD S, ABDALLAH MA. Novel insights into the dermal bioaccessibility and human exposure to brominated flame retardant additives in microplastics[J]. Environmental Science & Technology, 2023, 57(29): 10554-10562. |
|
[56] |
QI X, YIN H, ZHU MH, SHAO PL, DANG Z. Understanding the role of biochar in affecting BDE-47 biodegradation by Pseudomonas plecoglossicida: an integrated analysis using chemical, biological, and metabolomic approaches[J]. Water Research, 2022, 220: 118679. DOI:10.1016/j.watres.2022.118679 |
|
[57] |
TANG SY, YIN H, ZHOU S, CHEN SN, PENG H, LIU ZH, DANG Z. Simultaneous Cr(VI) removal and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium[J]. Chemosphere, 2016, 150: 24-32. DOI:10.1016/j.chemosphere.2016.02.010 |
|
[58] |
LIU Y, GONG AJ, QIU LN, LI JR, LI FK. Biodegradation of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa[J]. International Journal of Environmental Research and Public Health, 2015, 12(9): 11829-11847. DOI:10.3390/ijerph120911829 |
|
[59] |
HUANG ZP, CHEN YC, HU YY. The role of nanoscale zerovalent iron particles in the biosorption and biodegradation of BDE-47 by Pseudomonas stutzeri under aerobic conditions[J]. International Biodeterioration & Biodegradation, 2016, 112: 51-58. |
|
[60] |
TANG SY, YIN H, CHEN SN, PENG H, CHANG JJ, LIU ZH, DANG Z. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: isolation, identification and cell changes during degradation process[J]. Journal of Hazardous Materials, 2016, 308: 335-342. DOI:10.1016/j.jhazmat.2016.01.062 |
|
[61] |
XIE MM, WU ZN, WANG X, GU J, CHEN L, WANG YY. Isolation, identification, and the degradation characteristics of a BDE-47 degrading strain[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 915-920. (in Chinese) 谢苗苗, 吴志能, 王曦, 顾捷, 陈林, 王莹莹. 一株2, 2′, 4, 4′-四溴联苯醚(BDE-47)厌氧降解菌的筛选鉴定及降解特性[J]. 应用与环境生物学报, 2018, 24(4): 915-920. |
|
[62] |
CHEN J, WANG C, SHEN ZJ, GAO GF, ZHENG HL. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments[J]. Science of the Total Environment, 2017, 575: 390-399. DOI:10.1016/j.scitotenv.2016.10.040 |
|
[63] |
GUO H, XIA HL, WANG SQ, ZHAO XY. Isolation of an aerobic bacterial strain GH10 capable of PBDEs-degradation and its bio-degradation behaviors[J]. Journal of Safety and Environment, 2015, 15(4): 216-221. (in Chinese) 郭浩, 夏慧丽, 王书琪, 赵晓祥. 多溴联苯醚好氧降解菌GH10的筛选及降解特性研究[J]. 安全与环境学报, 2015, 15(4): 216-221. |
|
[64] |
HUANG T, DUAN XC, TAO XQ, XIE YY, DANG Z, LU GN. Identification of an aerobic strain efficiently degrading 2, 2', 4, 4'-tetrabromodiphenyl ether and itsbiodegradation pathway[J]. Chinese Journal of Environmental Engineering, 2017, 37(12): 4705-4714. (in Chinese) 黄婷, 段星春, 陶雪琴, 谢莹莹, 党志, 卢桂宁. 2, 2′, 4, 4′-四溴联苯醚高效好氧降解菌的鉴定及其降解路径[J]. 环境科学学报, 2017, 37(12): 4705-4714. |
|
[65] |
ZHANG K, GUANG Y, LUO HB, CHEN W, CHEN J, GE S. Isolation, identification and degradation characteristics of decabromo diphenylethers (BDE-99)-degrading strain[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3287-3294. (in Chinese) 张可, 关允, 罗鸿兵, 陈伟, 陈佳, 格桑. 一株五溴联苯醚(BDE-99)降解菌的分离、鉴定及降解特性[J]. 环境工程学报, 2017, 11(5): 3287-3294. |
|
[66] |
ZHANG YD, MAO GN, LIU RD, ZHOU XZ, BARTLAM M, WANG YY. Transcriptome profiling of Stenotrophomonas sp. strain WZN-1 reveals mechanisms of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) biotransformation[J]. Environmental Science & Technology, 2022, 56(16): 11288-11299. |
|
[67] |
CHEN YN, CHEN YR, LI YP, ZENG GM, MA S, YUAN XZ, YAN M, WU YX, ZHANG JC. Remediation methods for 2, 2′, 4, 4′-tetrabromodiphenyl ether contaminated soil: CN106424129B[P]. 2019-12-06 (in Chinese). 陈耀宁, 陈艳容, 黎媛萍, 曾光明, 马騻, 袁兴中, 晏铭, 伍艳馨, 张嘉超. 修复2, 2′, 4, 4′-四溴联苯醚污染土壤的方法: CN106424129B[P]. 2019-12-06.
|
|
[68] |
YU YY, YIN H, PENG H, LU GN, DANG Z. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: cells viability, pathway, toxicity assessment, and microbial function prediction[J]. Science of the Total Environment, 2019, 668: 958-965. DOI:10.1016/j.scitotenv.2019.03.078 |
|
[69] |
WANG GG, LIU Y, TAO W, ZHAO XD, WANG HX, LOU YD, LI N, LIU YX. Assessing microbial degradation degree and bioavailability of BDE-153 in natural wetland soils: implication by compound-specific stable isotope analysis[J]. Environmental Pollution, 2020, 260: 114014. DOI:10.1016/j.envpol.2020.114014 |
|
[70] |
CHANG YT, LO T, CHOU HL, LAIO YF, LIN CC, CHEN HT. Anaerobic biodegradation of decabromodiphenyl ether (BDE-209)-contaminated sediment by organic compost[J]. International Biodeterioration & Biodegradation, 2016, 113: 228-237. |
|
[71] |
CAI M, DU KJ. Catabolic pathways for the degradation of polybrominated diphenyl ethers (PBDEs)[J]. Materials Reports, 2016, 30(11): 97-102, 109. (in Chinese) 才满, 杜克久. 多溴联苯醚降解的代谢途径[J]. 材料导报, 2016, 30(11): 97-102, 109. |
|
[72] |
WANG GG, GUO PX, LIU Y, LI CY, WANG X, WANG HX. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: implication by compound-specific stable isotope analysis[J]. Journal of Environmental Management, 2023, 335: 117622. DOI:10.1016/j.jenvman.2023.117622 |
|
[73] |
GU CG, WANG L, JIN ZH, FAN XL, GAO ZY, YANG XL, SUN C, JIANG X. Congener-specificity, dioxygenation dependency and association with enzyme binding for biodegradation of polybrominated diphenyl ethers by typical aerobic bacteria: experimental and theoretical studies[J]. Chemosphere, 2023, 314: 137697. DOI:10.1016/j.chemosphere.2022.137697 |
|
[74] |
WU Z, XIE M, LI Y, GAO G, BARTLAM M, WANG YJAE. Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area[J]. AMB Express, 2018, 8: 1-12. DOI:10.1186/s13568-017-0531-x |
|
[75] |
YANG YG, XU MY, HE ZL, GUO J, SUN GP, ZHOU JZ. Microbial electricity generation enhances decabromodiphenyl ether (BDE-209) degradation[J]. PLoS One, 2013, 8(8): e70686. DOI:10.1371/journal.pone.0070686 |
|
[76] |
LI ZW, WANG JH. Analysis of the functional gene of degrading BDE-47 by Acinetobacter pittii GB-2 based on transcriptome sequencing[J]. Gene, 2022, 844: 146826. DOI:10.1016/j.gene.2022.146826 |
|
[77] |
CAO YJ, YIN H, PENG H, TANG SY, LU GN, DANG Z. Biodegradation of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd 2+[J]. Environmental Science and Pollution Research, 2017, 24(12): 11415-11424. DOI:10.1007/s11356-017-8763-5 |
|
[78] |
WANG LL, TANG LT, WANG R, WANG XY, YE JS, LONG Y. Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses[J]. Environmental Science and Pollution Research, 2016, 23(6): 5166-5178. DOI:10.1007/s11356-015-5762-2 |
|
[79] |
CHEN J, ZHOU HC, WANG C, ZHU CQ, TAM NFY. Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil[J]. Journal of Hazardous Materials, 2015, 300: 84-92. DOI:10.1016/j.jhazmat.2015.06.053 |
|
[80] |
SU Q, YU J, FANG KQ, DONG PY, LI ZY, ZHANG WZ, LIU MX, XIANG LJ, CAI JX. Microbial removal of petroleum hydrocarbons from contaminated soil under arsenic stress[J]. Toxics, 2023, 11(2): 143. DOI:10.3390/toxics11020143 |
|
[81] |
WANG Y, CHEN SY, YANG X, HUANG XF, YANG YH, HE EK, WANG SQ, QIU RL. Degradation of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: the effect of metal ions[J]. Chemical Engineering Journal, 2017, 317: 613-622. DOI:10.1016/j.cej.2017.02.070 |
|
[82] |
LIU LL, LIU RH, CHEN YL, LIN KY. Microbial degradation of BDE-209 coupled with Fe/C electrolysis[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 6161-6166. (in Chinese) 刘莉莉, 刘瑞红, 陈轶伦, 林匡飞. 铁碳微电解与微生物共作用降解BDE-209[J]. 环境工程学报, 2015, 9(12): 6161-6166. DOI:10.12030/j.cjee.20151282 |
|
[83] |
LI P, MA RL, DONG LX, LIU LM, ZHOU GY, TIAN ZY, ZHAO Q, XIA T, ZHANG S, WANG AG. Autophagy impairment contributes to PBDE-47-induced developmental neurotoxicity and its relationship with apoptosis[J]. Theranostics, 2019, 9(15): 4375-4390. DOI:10.7150/thno.33688 |
|
[84] |
TI QQ, GU CG, CAI J, FAN XL, ZHANG YP, BIAN YR, SUN C, JIANG X. Understanding the role of bacterial cellular adsorption, accumulation and bioavailability regulation by biosurfactant in affecting biodegradation efficacy of polybrominated diphenyl ethers[J]. Journal of Hazardous Materials, 2020, 393: 122382. DOI:10.1016/j.jhazmat.2020.122382 |
|
[85] |
TANG SY, BAI JQ, YIN H, YE JS, PENG H, LIU ZH, DANG Z. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis[J]. Chemosphere, 2014, 114: 255-261. DOI:10.1016/j.chemosphere.2014.05.009 |
|
[86] |
MA J, ZHANG Q, CHEN F, LU SJ, WANG YF, LIANG HG. Simultaneous removal of copper and biodegradation of BDE-209 with soil microbial fuel cells[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105593. DOI:10.1016/j.jece.2021.105593 |
|
[87] |
YANG MY, JIN XQ, HUANG WN, SHEN Q, SUN CY. Humic acid induced indirect photolysis of polybrominated diphenyl ethers under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108002. DOI:10.1016/j.jece.2022.108002 |
|
[88] |
XIANG LL, HARINDINTWALI JD, WANG F, BIAN YR, ZHAO ZL, WANG ZQ, WANG Y, MEI Z, JIANG X, SCHAFFER A, XING BS. Manure- and straw-derived biochars reduce the ecological risk of PBDE and promote nitrogen cycling by shaping microbiomes in PBDE-contaminated soil[J]. Chemosphere, 2023, 312: 137262. DOI:10.1016/j.chemosphere.2022.137262 |
|
[89] |
XIANG LL, SHENG HJ, GU CG, MARC RG, WANG Y, BIAN YR, JIANG X, WANG F. Biochar combined with compost to reduce the mobility, bioavailability and plant uptake of 2, 2′, 4, 4′-tetrabrominated diphenyl ether in soil[J]. Journal of Hazardous Materials, 2019, 374: 341-348. DOI:10.1016/j.jhazmat.2019.04.048 |
|
[90] |
CHEN YN, MA S, LI YP, YAN M, ZENG GM, ZHANG JC, ZHANG J, TAN XB. Microbiological study on bioremediation of 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9709-9718. DOI:10.1007/s00253-016-7798-8 |
|
[91] |
LUO HY, WAN Y, LI J, CAI YH, DANG Z, YIN H. MgxCu-biochar activated peroxydisulfate triggers reductive species for the reduction and enhanced electron-transfer degradation of electron-deficient aromatic pollutants[J]. Journal of Hazardous Materials, 2023, 452: 131267. DOI:10.1016/j.jhazmat.2023.131267 |
|