[1] |
LI BJ, WANG SM. Progress in detection technology of pathogenic microorganisms[J]. Modern Salt and Chemical Industry, 2021, 48(4): 37-38. (in Chinese) 李冰洁, 王思敏. 病原微生物检测技术进展[J]. 现代盐化工, 2021, 48(4): 37-38. |
|
[2] |
SUN YJ, WANG L, CAI J. Progress and prospects of rolling circle amplification[J]. Current Biotechnology, 2016, 6(2): 130-136. (in Chinese) 孙亚军, 王亮, 蔡俊. 滚环扩增技术最新研究动态及展望[J]. 生物技术进展, 2016, 6(2): 130-136. |
|
[3] |
XU C, LUO HJ, LI YF, HUANG H, LIANG WQ, HU S, HU CW, LUO HB. Application and progress of loop-mediated isothermal amplification technology[J]. Guangdong Agricultural Sciences, 2019, 46(4): 116-123. (in Chinese) 徐匆, 罗华建, 李艳芳, 黄皓, 梁卫驱, 胡珊, 胡楚维, 罗鸿斌. 环介导等温扩增技术的应用及研究进展[J]. 广东农业科学, 2019, 46(4): 116-123. |
|
[4] |
HUANG MQ, LI JS, QIU R, LI ZQ, GUO SH, CUI YH. Research progress of cross primer constant temperature amplification (CPA)[J]. Private Technology, 2018(9): 78-79. (in Chinese) 黄梦琦, 李婧姝, 邱孺, 李卓群, 郭诗华, 崔永红. 交叉引物恒温扩增技术(CPA)研究进展[J]. 民营科技, 2018(9): 78-79. |
|
[5] |
LI J, MACDONALD J, STETTEN FV. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification[J]. The Analyst, 2018, 144(1): 31-67. |
|
[6] |
ZHANG MY, LU PS, LI JN, LI JL, ZHENG WX, OUYANG SD. Preliminary establishment of a rapid diagnosis method for detecting SARS-CoV-2 nucleic acid through recombinase polymerase amplification combined with a lateral flow dipstick[J]. Chinese Journal of Zoonoses, 2022, 38(7): 577-581. (in Chinese) 张淼源, 卢佩珊, 李佳宁, 李佳乐, 郑炜欣, 欧阳岁东. 重组酶聚合酶侧流层析技术检测新冠病毒核酸快速诊断方法的初步建立[J]. 中国人兽共患病学报, 2022, 38(7): 577-581. |
|
[7] |
WANG XQ, ZHANG HY, GAO H, HE Y. Application of recombinase polymerase amplification technique for detection of pathogenic bacteria in foodborne[J]. Modern Food, 2023, 29(1): 11-14. (in Chinese) 王晓庆, 张海韵, 高晗, 贺燕. 重组酶聚合酶扩增技术在食源性致病菌检测中的应用[J]. 现代食品, 2023, 29(1): 11-14. |
|
[8] |
LIU L, DUAN JJ, WEI XY, HU H, WANG YB, JIA PP, PEI DS. Generation and application of a novel high-throughput detection based on RPA-CRISPR technique to sensitively monitor pathogenic microorganisms in the environment[J]. Science of the Total Environment, 2022, 838: 156048. DOI:10.1016/j.scitotenv.2022.156048 |
|
[9] |
LI FN, XIAO J, YANG HM, YAO Y, LI JQ, ZHENG HW, GUO Q, WANG XT, CHEN YY, GUO YJ, WANG YH, SHEN C. Development of a rapid and efficient RPA-CRISPR/Cas12a assay for Mycoplasma pneumoniae detection[J]. Frontiers in Microbiology, 2022, 13: 858806. DOI:10.3389/fmicb.2022.858806 |
|
[10] |
PIEPENBURG O, WILLIAMS CH, STEMPLE DL, ARMES NA. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7): e204. DOI:10.1371/journal.pbio.0040204 |
|
[11] |
GONG QF, ZHENG XF, FU HJ. Development and application of CRISPR gene editing technology[J]. Chinese Journal of Biochemistry and Molecular, 2023, 39(3): 332-340. (in Chinese) 巩琦凡, 郑晓飞, 付汉江. CRISPR基因编辑技术的发展及应用[J]. 中国生物化学与分子生物学报, 2023, 39(3): 332-340. |
|
[12] |
KELLNER MJ, KOOB JG, GOOTENBERG JS, ABUDAYYEH OO, ZHANG F. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012. DOI:10.1038/s41596-019-0210-2 |
|
[13] |
LI SY, CHENG QX, WANG JM, LI XY, ZHANG ZL, GAO S, CAO RB, ZHAO GP, WANG J. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20. |
|
[14] |
CHEN JS, MA EB, HARRINGTON LB, Da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. DOI:10.1126/science.aar6245 |
|
[15] |
KUANG RR, LEI R, JIANG L, DUAN WJ, LI XL, FU N, FAN ZF, LI Y, WU PS. Establishment of RPA/CRISPR-Cas12a rapid detection for Leptosphaeria lindquistii[J]. Plant Protection, 2022, 48(6): 69-76, 89. (in Chinese) 邝瑞瑞, 雷荣, 江丽, 段维军, 李雪莲, 符娜, 范在丰, 李远, 吴品珊. 向日葵黑茎病菌RPA/CRISPR-Cas12a快速检测方法的建立[J]. 植物保护, 2022, 48(6): 69-76, 89. |
|
[16] |
LEI R, SUN XW, JIANG L, WANG ZH, LI GQ, LI Y, LIAO XL, WU PS. Development of rapid detection for Phytophthora syringae based on RPA/CRISPR- Cas12a[J]. Plant Quarantine, 2022, 36(3): 31-38. (in Chinese) 雷荣, 孙夕雯, 江丽, 王振华, 李国庆, 李远, 廖晓玲, 吴品珊. 丁香疫霉菌RPA/CRISPR-Cas12a快速检测方法的建立[J]. 植物检疫, 2022, 36(3): 31-38. |
|
[17] |
ZHANG XY, HUANG J, YANG W, FU YY, CHEN ZW, ZHENG XY, ZHU NY, LI Y, YU XP. Rapid detection of decapod iridescent virus 1 by recombinase polymerase amplification combined with CRISPR-Cas12a[J]. Microbiology China, 2021, 48(12): 4980-4988. (in Chinese) 张徐俞, 黄俊, 杨稳, 付媛媛, 陈正伟, 郑晓叶, 朱凝瑜, 李业, 俞晓平. 重组酶聚合酶扩增结合CRISPR-Cas12a快速检测十足目虹彩病毒1方法的建立[J]. 微生物学通报, 2021, 48(12): 4980-4988. DOI:10.13344/j.microbiol.china.210331 |
|
[18] |
XU BW, ZHOU ABX, LIN ZD, LIANG JZ, LUO BZ. Establishment of RPA-CRISPR-Cas12a rapid detection method for African swine fever virus[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023(14): 86-90, 137-139. (in Chinese) 徐博文, 周傲白雪, 林志达, 梁基壮, 罗宝正. 非洲猪瘟病毒的RPA-CRISPR-Cas12a快速检测方法的建立[J]. 黑龙江畜牧兽医, 2023(14): 86-90, 137-139. |
|
[19] |
WANG YN, CHEN CG. Advances in the research of recombinase polymerase amplification technology[J]. Medical Journal of Chinese PLA, 2021, 46(5): 504-511. (in Chinese) 王亚楠, 陈昌国. 重组酶聚合酶扩增技术研究进展[J]. 解放军医学杂志, 2021, 46(5): 504-511. |
|
[20] |
JIANG T, HU XY, LIN CH, XIA ZX, YANG WS, ZHU Y, XU HM, TANG H, SHEN JL. Rapid visualization of Clostridioides difficile toxins A and B by multiplex RPA combined with CRISPR-Cas12a[J]. Frontiers in Microbiology, 2023, 14: 1119395. DOI:10.3389/fmicb.2023.1119395 |
|
[21] |
XIA LP, YIN JX, ZHUANG JJ, YIN WH, ZOU ZY, MU Y. Adsorption-free self-priming direct digital dual-crRNA CRISPR/Cas12a-assisted chip for ultrasensitive detection of pathogens[J]. Analytical Chemistry, 2023, 95(10): 4744-4752. DOI:10.1021/acs.analchem.2c05560 |
|
[22] |
SUN Z, LIN KF, ZHAO ZH, WANG Y, HONG XX, GUO JG, RUAN QY, LU LY, LI X, ZHANG R, YANG CY, LI BA. An automated nucleic acid detection platform using digital microfluidics with an optimized Cas12a system[J]. Science China Chemistry, 2022, 65(3): 630-640. DOI:10.1007/s11426-021-1169-1 |
|
[23] |
HUANG BC, LOU YF, ZENG ZH, KAN XC, SHI XP, WU Y, GUO L, WANG MZ, HUANG XX, TIAN XM, WANG XJ. A Cas12a-based fluorescent microfluidic system for rapid on-site human papillomavirus diagnostics[J]. Applied Microbiology and Biotechnology, 2023, 107(20): 6287-6297. DOI:10.1007/s00253-023-12728-5 |
|
[24] |
ZHANG WS, PAN JB, LI F, ZHU M, XU MT, ZHU HY, YU YY, SU GX. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection[J]. Analytical Chemistry, 2021, 93(8): 4126-4133. DOI:10.1021/acs.analchem.1c00013 |
|
[25] |
MAO GB, LUO X, YE SL, WANG X, HE J, KONG JL, DAI JB, YIN W, MA YX. Fluorescence and colorimetric analysis of African swine fever virus based on the RPA-assisted CRISPR/Cas12a strategy[J]. Analytical Chemistry, 2023, 95(20): 8063-8069. DOI:10.1021/acs.analchem.3c01033 |
|
[26] |
ZUO XW, LEI L, LIU HB, TAO XQ. Research progress on detecting aflatoxins in foods using fluorescence immunoassay[J]. Food and Fermentation Industries, 2019, 45(1): 236-245. (in Chinese) 左晓维, 雷琳, 刘河冰, 陶晓奇. 荧光免疫分析法检测食品中黄曲霉毒素的研究进展[J]. 食品与发酵工业, 2019, 45(1): 236-245. |
|
[27] |
LIN LY, ZHA GC, WEI HG, ZHENG YZ, YANG PK, LIU YQ, LIU MQ, WANG ZH, ZOU XH, ZHU H, LUO QL, LI JQ, LIN M. Rapid detection of Staphylococcus aureus in food safety using an RPA-CRISPR-Cas12a assay[J]. Food Control, 2023, 145: 109505. DOI:10.1016/j.foodcont.2022.109505 |
|
[28] |
WANG LY, FU JY, CAI G, CHENG XY, ZHANG D, SHI SB, ZHANG YP. Rapid and visual RPA-Cas12a fluorescence assay for accurate detection of dermatophytes in cats and dogs[J]. Biosensors, 2022, 12(8): 636. DOI:10.3390/bios12080636 |
|
[29] |
CHARLEBOIS I, GRAVEL C, ARRAD N, BOISSINOT M, BERGERON MG, LECLERC M. Impact of DNA sequence and oligonucleotide length on a polythiophene-based fluorescent DNA biosensor[J]. Macromolecular Bioscience, 2013, 13(6): 717-722. DOI:10.1002/mabi.201200469 |
|
[30] |
LIU H, ZENG HJ, TANG XM, XU DH, LUO JW, WANG JB. Rapid detection of transgenic plant exogenous CP4-EPSPS gene based on RPA-CRISPR-Cas12a and polythiophene chromogenic technology[J]. Journal of Food Safety & Quality, 2022, 13(23): 7758-7764. (in Chinese) 刘华, 曾海娟, 唐雪明, 徐丹红, 雒嘉伟, 王金斌. 基于RPA-CRISPR-Cas12a和聚噻吩显色技术快速检测转基因植物外源基因 CP4-EPSPS[J]. 食品安全质量检测学报, 2022, 13(23): 7758-7764. |
|
[31] |
JIANG W, HE C, BAI L, CHEN YF, JIA JW, PAN AH, LV BB, TANG XM, WU X. A rapid and visual method for nucleic acid detection of Escherichia coli O157: H7 based on CRISPR/Cas12a-PMNT[J]. Foods, 2023, 12(2): 236. DOI:10.3390/foods12020236 |
|
[32] |
RICKWOOD D, HAMES D. Translated by ZHAO DJ et al. Gel Electrophoresis of Nucleic Acids: A Practical Approach[M]. Beijing: Science Press, 1989 (in Chinese). RICKWOOD D, HAMES D. 赵大健, 等译. 核酸的凝胶电泳: 实践方法[M]. 北京: 科学出版社, 1989.
|
|
[33] |
TIAN XZ, YI YX, XU J, LUO ZQ, XING N, WANG ZB, CHEN SN, YE X, SHEN YL. Development of rapid detection technology for HPV16 based on CRISPR-Cas12a[J]. Journal of Biological Regulators Homeostatic Agents, 2022, 36(5): 1661-1668. |
|
[34] |
HUANG J, LIU YJ, YANG XN, LI Y. RPA-Cas12a-LFD based nucleic acid detection for feline herpesvirus-1 and preliminary application[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1638-1643. (in Chinese) 黄坚, 刘韵佳, 杨晓农, 李妍. 猫疱疹病毒1型RPA-Cas12a-LFD检测方法的建立及初步应用[J]. 畜牧兽医学报, 2022, 53(5): 1638-1643. |
|
[35] |
LIU H, WANG JB, HU XW, TANG XM, ZHANG C. A rapid and high-throughput Helicobacter pylori RPA-CRISPR/Cas12a-based nucleic acid detection system[J]. Clinica Chimica Acta, 2023, 540: 117201. DOI:10.1016/j.cca.2022.12.013 |
|
[36] |
HE YL, WANG JG, ZHAO SS, GAO J, CHANG YY, ZHAO XT, NIE BH, YANG QX, ZHANG JL, LI MJ. Establishment and application of RPA-CRISPR/Cas12a detection system for potato virus Y[J]. Chinese Bulletin of Botany, 2022, 57(3): 308-319. (in Chinese) 何雨龙, 王佳歌, 赵珊珊, 高锦, 常英英, 赵喜亭, 聂碧华, 杨清香, 张江利, 李明军. 马铃薯Y病毒RPA-CRISPR/Cas12a检测技术体系的建立与应用[J]. 植物学报, 2022, 57(3): 308-319. |
|
[37] |
GONG L, WANG XW, LI Z, HUANG GC, ZHANG W, NIE J, WU CY, LIU DS. Integrated trinity test with RPA-CRISPR/Cas12a-fluorescence for real-time detection of respiratory syncytial virus A or B[J]. Frontiers in Microbiology, 2022, 13: 819931. DOI:10.3389/fmicb.2022.819931 |
|
[38] |
LUAN T, GONG J, LUAN H, LIU WY, YANG Q, ZHU Y, WANG CL, LIU SG, ZHANG WJ, LI G. Establishment of a visual method for detection of Actinobacillus pleuropneumoniae based on CRISPR-Cas12a[J]. Chinese Journal of Preventive Veterinary Medicine, 2021(8): 843-847. (in Chinese) 栾天, 龚俊, 栾慧, 刘文宇, 杨亲, 祝瑶, 王春来, 刘思国, 张万江, 李刚. 利用CRISPR/Cas12a技术快速检测胸膜肺炎放线杆菌方法的建立[J]. 中国预防兽医学报, 2021(8): 843-847. |
|
[39] |
HAO J, XIE LF, YANG TM, HUO ZP, LIU GF, LIU YH, XIONG WG, ZENG ZL. Naked-eye on-site detection platform for Pasteurella multocida based on the CRISPR-Cas12a system coupled with recombinase polymerase amplification[J]. Talanta, 2023, 255: 124220. DOI:10.1016/j.talanta.2022.124220 |
|
[40] |
ANG YH, HU S, YANG Y. Advances in detection technologies of pathogenic fungi[J]. Letters in Biotechnology, 2020, 31(01): 117-123, 128. (in Chinese) 王月华, 胡珊, 杨英. 病原真菌的检测技术进展[J]. 生物技术通讯, 2020, 31(01): 117-123, 128. |
|
[41] |
LI S, WANG XC, YU YH, CAO SG, LIU J, ZHAO PP, LI JH, ZHANG XC, LI X, ZHANG N, SUN M, CAO LL, GONG PT. Correction: establishment and application of a CRISPR-Cas12a-based RPA-LFS and fluorescence for the detection of Trichomonas vaginalis[J]. Parasites & Vectors, 2022, 15(1): 429. |
|
[42] |
JIAO J, KONG KK, HAN JM, SONG SW, BAI TH, SONG CH, WANG MM, YAN ZL, ZHANG HT, ZHANG RP, FENG JC, ZHENG XB. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay[J]. Plant Biotechnology Journal, 2021, 19(2): 394-405. DOI:10.1111/pbi.13474 |
|
[43] |
ZHANG QX, ZHONG ZY, GUO QY, HE HX, BAI JD. Recent advances of pathogens detection based on CRISPR-Cas system[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(8): 3190-3199. (in Chinese) 张庆勋, 钟震宇, 郭青云, 何宏轩, 白加德. 基于CRISPR-Cas系统的病原体检测研究进展[J]. 中国畜牧兽医, 2022, 49(8): 3190-3199. |
|