微生物学通报  2024, Vol. 51 Issue (8): 2753−2770

扩展功能

文章信息

张文静, 吕若一, 修德冕, 蔡子雯, 王婧, 孙志刚, 司晓慧, 孙英健, 刘晓晔
ZHANG Wenjing, LÜ Ruoyi, XIU Demian, CAI Ziwen, WANG Jing, SUN Zhigang, SI Xiaohui, SUN Yingjian, LIU Xiaoye
畜禽金黄色葡萄球菌流行现状和中草药防控进展
Current situation of Staphylococcus aureus infection in livestock and poultry and progress in the prevention and control with Chinese herbal medicines
微生物学通报, 2024, 51(8): 2753-2770
Microbiology China, 2024, 51(8): 2753-2770
DOI: 10.13344/j.microbiol.china.230966

文章历史

收稿日期: 2023-11-16
接受日期: 2024-01-18
网络首发日期: 2024-04-11
畜禽金黄色葡萄球菌流行现状和中草药防控进展
张文静1 , 吕若一1 , 修德冕2 , 蔡子雯2 , 王婧2 , 孙志刚1 , 司晓慧1 , 孙英健1,2 , 刘晓晔1,2     
1. 北京农学院 兽医学(中医药)北京市重点实验室, 北京    102206;
2. 北京农学院 动物科学技术学院, 北京    102206
摘要: 金黄色葡萄球菌(Staphylococcus aureus)是常见的重要人畜共患条件致病菌,在社区和畜禽环境之间广泛传播,引发严重的兽医公共卫生问题。耐药金黄色葡萄球菌的频繁出现导致以抗生素为主的抗菌策略停滞不前,为响应我国减抗替抗政策,大批减抗替抗中草药抗菌药物已经投入临床前研究。本文通过归纳畜禽金黄色葡萄球感染情况、菌株耐药现状与耐药菌株流行特点,总结了畜禽金黄色葡萄球菌感染防控策略,并分析了中草药防控机制和靶点,为临床研究中草药抗菌策略提供研究内容。
关键词: 金黄色葡萄球菌    感染情况    耐药现状    中草药    
Current situation of Staphylococcus aureus infection in livestock and poultry and progress in the prevention and control with Chinese herbal medicines
ZHANG Wenjing1 , LÜ Ruoyi1 , XIU Demian2 , CAI Ziwen2 , WANG Jing2 , SUN Zhigang1 , SI Xiaohui1 , SUN Yingjian1,2 , LIU Xiaoye1,2     
1. Beijing Key Laboratory of Veterinary Medicine (Traditional Chinese Medicine), Beijing University of Agriculture, Beijing 102206, China;
2. School of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
Abstract: Staphylococcus aureus, a common major zoonotic opportunistic pathogen, spreads widely in the community and the livestock and poultry environment, seriously threatening veterinary public health. The frequent occurrence of drug-resistant strains of S. aureus has posed a challenge to the antimicrobial strategies based on antibiotics. In response to the Chinese policy of reducing and substituting antibiotics, a large number of Chinese herbal medicines as the alternatives of antibiotics have been put into clinical research. This paper summarized the S. aureus infection situation, current status of drug resistance, and epidemic characteristics of drug-resistant strains in livestock and poultry, summarized the prevention and control strategies. Furthermore, this paper analyzed the mechanisms and targets of Chinese herbal medicines in the prevention and control of this pathogen, providing research contents for clinical research on the antibacterial strategies of Chinese herbal medicines.
Keywords: Staphylococcus aureus    infection situation    current status of drug resistance    Chinese herbal medicine    

金黄色葡萄球菌(Staphylococcus aureus)引起的传染性疾病日趋严重,根据2023年我国CHINET网(http://www.chinets.com/)数据显示,临床致病菌中金黄色葡萄球菌占比率为9.2%,排名第三,是主要的临床致病菌。金黄色葡萄球菌常定殖于皮肤与黏膜,引起如猪子宫内膜炎[1]、奶牛乳腺炎[2]、肺炎[3]等畜禽疾病,并且金黄色葡萄球菌传播范围广泛,可以在动物、人类、环境三者之间传播,对社会公共卫生安全造成威胁。对于金黄色葡萄球菌感染,通常使用抗生素进行治疗,但随着长期大规模不合理使用抗生素,细菌逐渐产生耐药性[4]。研究表明,金黄色葡萄球菌耐药性的产生与耐药基因密切相关,并且耐药基因的出现推动了耐药菌株的不断发展,现已产生耐青霉素金黄色葡萄球菌(penicillin-resistant Staphylococcus aureus, PRSA)、耐甲氧西林金黄色葡萄球菌(methicillin- resistant Staphylococcus aureus, MRSA)和耐万古霉素金黄色葡萄球菌(vancomycin-resistant Staphylococcus aureus, VRSA),并且在不同时间、地区流行分型也不相同,这极大地增加了金黄色葡萄球菌防控难度[5]

为了更好地防控金黄色葡萄球菌感染并解决耐药菌临床用药,除了继续研发新型抗生素外,寻找其他用药策略也极为关键。近年来,在我国中草药扶持政策的大力支持下,大量中草药抗菌生物活性被发现[6-8],且中草药具有残留量低、耐药性低等优点,符合当下绿色防护理念。大量研究证明,中草药在耐药菌防控方面发挥了重要的作用,是很好的减抗替抗新型药物[9]

本文汇总我国畜禽金黄色葡萄球菌的感染情况和耐药现状,对其耐药菌株的流行特点进行归纳,为进一步防控金黄色葡萄球菌感染提供数据支撑。最后,本文对中草药针对耐药金黄色葡萄球菌的作用靶点进行分析,以期为研发中草药防控耐药菌提供理论基础。

1 畜禽金黄色葡萄球菌感染情况

金黄色葡萄球菌是畜牧业中常见的病原菌,可引起许多传染性疾病,其中奶牛乳腺炎是最常见的由金黄色葡萄球菌感染引起的疾病。据统计35%[10]的奶牛都患有奶牛乳腺炎,本文将我国河南、河北、上海等12个省、自治区、直辖市奶牛乳腺炎中金黄色葡萄球菌分离率进行汇总(图 1)[11-22]。由图 1可知,我国金黄色葡萄球菌分离率在10.00%−48.55%,各地金黄色葡萄球菌分离率均不一致,其中吉林省采集样本分离率最高,江苏省分离率最低,具有区域差异,这可能受养殖环境、奶牛自身因素、营养不良等因素影响[23-24]

图 1 我国不同地区奶牛乳腺炎金黄色葡萄球菌的分离率[11-22] Figure 1 Isolation rate of Staphylococcus aureus in mastitis of dairy cows in different regions of China[11-22].

除了奶牛感染金黄色葡萄球菌外,近年来,其他养殖动物感染金黄色葡萄球菌的病例也多有报道(表 1)。2018年内蒙古自治区呼和浩特市发现一例由金黄色葡萄球菌引起的猪上呼吸道感染病例[25]。2020年北京市某猪场发现因金黄色葡萄球菌感染引起腹泻、发热等症状,导致猪陆续死亡[26]。2021年西藏自治区报道了羊群被感染,导致羊内脏多处损伤[27]。2022年云南省昆明市发现鹅被感染的现象[28],在福建省发现鸡被感染的现象[29]。此外,在伴侣动物猫狗的子宫黏液、泪液等也检测出金黄色葡萄球菌[30]。由此可见,我国多种动物均有金黄色葡萄球菌感染情况,需进一步加强对金黄色葡萄球菌的监测。

表 1 其他动物感染金黄色葡萄球菌病例 Table 1 Other cases of Staphylococcus aureus infection in other animals
感染症状
Symptoms of infection
来源
Source
采集地点
Collection location
检测时间
Detection time
参考文献
Reference
流鼻涕继而咳嗽气喘
Runny nose followed by coughing and wheezing

Pig
内蒙古自治区呼和浩特市郊区
A suburb of Hohhot, Inner Mongolia Autonomous Region
2018年5月
May 2018
[25]
体温升高、毛粗乱,采食量下降,同时伴有腹泻和发抖症状
Elevated body temperature, coarse coat, decreased feed intake, and diarrhea and shivering are present

Pig
北京市
Beijing
2020年6月
June 2020
[26]
羊心包有积血,心脏、肝脏和肾脏肿大,肝脏边缘有部分坏死,肺脏发生肉变
There is hemopericardium, enlargement of the heart, liver, and kidneys, partial necrosis of the liver margins, and flesh changes of the lungs

Sheep
西藏自治区日喀则市
Shigatse, Xizang Autonomous Region
2021年4月
April 2021
[27]
精神不振、关节肿大、跛行、腹泻
Lack of energy, swollen joints, claudication, diarrhea

Goose
昆明市东川区
Dongchuan district, Kunming
2022年10月
October 2022
[28]
脚关节发炎肿胀充血,爪掌出现溃烂呈乌黑色痂,趾关节肿胀
The joints of the feet are inflamed, swollen and congested, the palms of the claws are ulcerated and blackened, and the joints of the toes are swollen

Chicken
福建省
Fujian Province
[29]
猫、狗
Cat and dog
沈阳市
Shenyang
2020–2021年
2020–2021
[30]
‒:未提及
‒: Not mentioned.
2 畜禽金黄色葡萄球菌耐药现状

目前,我国不仅存在金黄色葡萄球菌感染各种动物的病例,而且在临床治疗中表现出严重的耐药性。耐药性的产生与耐药基因的产生有密切关系。本文对近10年来分离自我国各种动物、人及食品的金黄色葡萄球菌的耐药性和相关耐药基因检出率进行汇总(表 2)。由表 2可知,来源于动物的金黄色葡萄球菌中四环素类tet族、大环内酯类erm族、氨基糖苷类aac(6')-aph(2'')等耐药基因检出率较高[27-36]。在来源于人的金黄色葡萄球菌中检测出氟喹诺酮类耐药基因grlA (100.0%)、大环内酯类耐药基因ermC (95.0%)、四环素类tetM (77.78%)、tetK (80.0%)等耐药基因[37]。另外在食品中也检测出大环内酯类、氨基糖苷类耐药基因[38-39],这很有可能是造成耐药菌在人畜之间传播的关键途径。

表 2 近10年耐药金黄色葡萄球菌耐药基因检出率 Table 2 In the past decade, the detection rate of drug-resistant Staphylococcus aureus resistance genes
来源
Source
耐药基因
Drug resistance gene
耐药基因检出率
Detection rate of drug resistance gene (%)
耐药情况
Drug resistance
参考文献
Reference

Cattle
blaZ 64.5 青霉素、头孢西丁、苯唑西林、克林霉素、庆大霉素、红霉素、替米考星
Penicillin, cefoxitin, oxacillin, clindamycin, gentamicin, erythromycin, timicoxin
[31-32]
grlA 95.7
gyrA 97.9
norA 97.9

Sheep
对氨苄西林、多黏菌素B、四环素、新霉素、卡那霉素、青霉素、克林霉素和红霉素
p-ampicillin, polymyxin B, tetracycline, neomycin, kanamycin, penicillin, clindamycin, and erythromycin
[27]

Pig

blaZ 96.9 林可霉素、青霉素、阿莫西林、氨苄西林、四环素、多黏菌素B、磺胺嘧啶
Lincomycin, penicillin, amoxicillin, ampicillin, tetracycline, polymyxin B, sulfadiazine
[33]
grlA 100.0
tetM 93.8
tetK 100.0
Lin(A) 89.2
sull 72.3
ermA 83.0
aac(6')-aph(2'') 100.0

Rabbit
tet 70.7 氨苄西林、青霉素、妥布霉素、红霉素、四环素、多西环素、万古霉素、头孢他啶、头孢氨苄、庆大霉素、丁胺卡那、卡那霉素
Ampicillin, penicillin, tobramycin, erythromycin, tetracycline, doxycycline, vancomycin, ceftazidime, cephalexin, gentamicin, amikacin, kanamycin
[34-35]
erm 53.7
aph(3')-Ⅲa 53.7
aac(6')-aph(2'') 92.7

Fowl
ermA 13.6 大观霉素、头孢他啶、卡那霉素、氨苄西林、阿莫西林、四环素、红霉素、阿奇霉素、链霉素、萘啶酸、磺胺复合物、氧氟沙星、环丙沙星、诺氟沙星
Spectinomycin, ceftazidime, kanamycin, ampicillin, amoxicillin, tetracycline, erythromycin, azithromycin, streptomycin, nalidixic acid, sulfonamide complex, ofloxacin, ciprofloxacin, norfloxacin
[28-29, 36]
aac(6')-aph(2'') 76.7
猫狗
Cat and dog
tetM 81.8 林可霉素、青霉素、四环素、氨苄西林、阿莫西林、阿奇霉素、多西环素、红霉素、泰乐菌素、杆菌肽、氟苯尼考、环丙沙星、恩诺沙星、氧氟沙星、头孢唑林、头孢噻夫、头孢喹肟、庆大霉素
Lincomycin, penicillin, tetracycline, ampicillin, amoxicillin, azithromycin, doxycycline, erythromycin, tylosin, bacitracin, florfenicol, ciprofloxacin, enrofloxacin, ofloxacin, cefazolin, cefotaxif, cefquinome, gentamicin
[30]
tetK 70.9
ermC 65.5
aac(6')-aph(2'') 82.7

Human
blaZ 60.0 青霉素、红霉素、四环素、克林霉素、环丙沙星、苯唑西林、头孢西丁、庆大霉素、氯霉素、复方新诺明、头孢唑啉
Penicillin, erythromycin, tetracycline, clindamycin, ciprofloxacin, oxacillin, cefoxitin, gentamicin, chloramphenicol, cotrimoxazole, cefazolin
[37]
grlA 100.0
gyrA 100.0
tetM 77.78
tetK 80.0
Lin(A) 30.0
ermA 80.6
ermC 95.0
食品
Food
ermA 14.3 红霉素、克林霉素、四环素、氯霉素、环丙沙星、庆大霉素、复方新诺明、青霉素、苯唑西林、头孢西丁
Erythromycin, clindamycin, tetracycline, Chloramphenicol, ciprofloxacin, gentamicin, cotrimoxazole, penicillin, oxacillin, cefoxitin
[38-39]
ermC 19.6
aph(3')-Ⅲa 5.4
aac(6')-aph(2'') 10.7
‒:未提及
‒: Not mentioned.

耐药基因快速传播也是导致金黄色葡萄球菌多重耐药现状的重要原因之一。目前,金黄色葡萄球菌对青霉素耐药最为严重,其次是红霉素、四环素、庆大霉素、氨苄西林等临床常用药物[27-39]。在本文所统计的菌株中均表现出对7种以上的抗生素存在不同程度的耐药,这种多重耐药的现状对临床选用抗生素治疗金黄色葡萄球菌感染造成了巨大挑战。

3 耐药金黄色葡萄球菌感染分析

耐药基因的出现同时也促进了金黄色葡萄球菌耐药菌株不断演变。本文对金黄色葡萄球菌耐药菌株的发现时间、产生原因、主要的流行分型及目前感染情况等流行特征进行了分析(图 2)。

图 2 金黄色葡萄球菌耐药菌株流行历史[40-50] Figure 2 Development of resistant strains of Staphylococcus aureus[40-50]. Resistant strains of Staphylococcus aureus are constantly evolving, and the epidemic typology is constantly changing. In the 1950s, phages 80/81, MLST/ST30, CC30 were used as popular types, and then ST239-t030-Ⅲ were mainly classified until 2016, and ST59-t437-Ⅳ were prevalent after 2016. 金黄色葡萄球耐药菌株不断发展,流行分型也不断变化. 20世纪50年代以噬菌体80/81、MLST/ST30、CC30为流行分型,直到2016年以ST239-t030-Ⅲ分型为主,2016年后以ST59-t437-Ⅳ分型为主

1942年发现第一株PRSA,该耐药株出现主要是由于blaZ耐药基因的广泛传播,噬菌体80/81、MLST/ST30、CC30分型是主要的流行分型[40]

1962年产生了第一株MRSA,其产生原因与细菌mecA耐药基因的出现及对β-内酰胺酶表达过量有关[41],MRSA的出现对畜牧业产生前所未有的挑战,尤其是奶牛业。奶牛一旦感染MRSA会引起产奶量及质量下降,造成巨大的经济损失[42]。根据我国CHINET网数据表明,在2016年之前ST239-t030-Ⅲ为主要流行分型,2016年之后以ST59-t437-Ⅳ为主要分型,并且流行分型具有地域差异性[43]。2004年,荷兰首次报道了猪源MRSA感染人的案例[44],此后,人们逐渐意识到MRSA是一种人畜共患条件致病菌。据统计,与家畜相关的耐甲氧西林金黄葡萄球菌(livestock-associated methicillin- resistant Staphylococcus aureus, LA-MRSA)在欧洲和北美国家的流行分型是ST398,而在中国则是ST9-t899[45]。随着耐药菌株不断进化,USA300 MRSA分离株正逐渐广泛流行,该流行菌株的出现加重了MRSA的感染数量及感染程度[46]

万古霉素是治疗超级耐药菌MRSA的最后一道防线,但近年来MRSA对万古霉素的敏感性也逐渐降低,甚至产生了耐药性。1996年,于一名日本肺癌患者的痰中检测出第一株万古霉素耐药的原代金黄色葡萄球菌菌株(heteroresistant vancomycin-intermediate Staphylococcus aureus, hVISA),但其耐药性的产生与耐药基因无关,主要是由于细胞壁增厚阻滞了万古霉素到达作用靶点[47]。随后,1997年,日本报道了第一株万古霉素中度耐药的金黄色葡萄球菌(vancomycin-intermediate resistant Staphylococcus aureus, VISA),其耐药机制尚不明确,但研究者从遗传分析中推测其可能与控制细菌细胞壁生物合成的决定簇和/或核糖体基因rpoB的突变密切相关[48]。2002年从一名慢性肾衰的美国糖尿病患者体内检测出第一株万古霉素高度耐药的金黄色葡萄球菌,VRSA被世界卫生组织确定为“高优先级抗生素耐药病原体”,该病原菌耐药性的产生主要是由于转座子Tn1546上编码的vanA操纵子和其他van基因簇遗传元件改变细胞壁结构,阻止了万古霉素对细胞壁合成的抑制作用[49]。据统计,2006–2020年,VRSA的感染率增加了3.5倍,VRSA的患病率在亚洲为5%,在欧洲为1%,在美洲为4%,在南美洲为3%,在非洲为16%[50]。2013年,我国发现第一株VISA,尚无VRSA的报道[51]

4 中草药防控耐药金黄色葡萄球菌的策略

金黄色葡萄球菌具有传播范围广、突变速度快、多重耐药等特点,如何有效抑制耐药金黄色葡萄球菌已成为现在的研究热点。当前,用于治疗多重耐药金黄色葡萄球菌感染的新抗菌药物利奈唑胺[52],或半合成药物如替加环素、达巴万星、奥利万星、伊克拉普林、塞红霉素和德拉沙星[53]在临床治疗中得到了应用。除了使用新抗生素治疗外,抗生素联合使用均被证实具有很好的抑菌效果。如夫西地酸联合多西环素使用[54],头孢喹肟和恩诺沙星、庆大霉素、卡那霉素合用[55],万古霉素与左氧氟沙星、利福平、磷霉素[56]或亚胺培南[57]联合使用。但依靠原有的抗生素来解决细菌耐药性问题远远不够,仍须探索新的用药策略。目前,大量减抗替抗的中草药抗菌药物被证实有良好的效果,为解决细菌耐药性提供了新的选择。因此,本文对中草药防控耐药金黄色葡萄球菌的策略进行了归纳总结,为研发新型抗生素提供理论基础。

4.1 直接抗菌作用

4.1.1 中草药抑制耐药金黄色葡萄球菌生物膜的形成

一些中草药被证实可以改变MRSA细胞膜的通透性,使得药物更好地进入胞内,导致胞内DNA、RNA外泄,从而抑制了细菌的生长,如地榆皂苷Ⅱ[58]、桂千金子提取物[59]。但细菌生物膜的形成可增强细菌对药物的抵抗力并且降低宿主细胞的免疫反应[60],因此,有效抑制金黄色葡萄球菌生物膜的形成是耐药菌防控的一个关键靶点。生物膜的形成主要有黏附、聚集、成熟和扩散4个过程[61],一些中草药活性成分可在金黄色葡萄球菌生物膜形成的不同阶段发挥抑制作用。大蒜素、香芹酚和黄芩素通过降低生物膜ica家族基因转录水平,进而抑制多糖细胞间黏附素的合成,阻滞了细菌生物膜黏附过程[62-64]。丁香酚可以抑制细菌黏附fnbAfnbB基因的表达,从而阻碍了细菌定殖,干扰金黄色葡萄球菌生物膜的形成[65]

4.1.2 中草药抑制耐药金黄色葡萄球菌毒力因子的表达

在耐药危机的大背景下,抗毒素的药物研发备受关注。金黄色葡萄球菌具有α-溶血素[66]、酚可溶性蛋白[67]、去角质毒素[68]、肠毒素[69]、毒性休克毒素-1[70]、表皮剥落性毒素[66]等致病性毒素,这些毒素可导致发热、中毒、肺炎、皮炎等炎症,严重时可引起脓血症、败血症等疾病(表 3)。五味子酮、黄芩苷、儿茶素、山奈酚、槲皮素、芍药苷衍生物对α-溶血素具有抑制作用,小鼠肺炎模型表明,药物作用后小鼠肺部的损伤程度明显减轻,并且降低了炎症因子TNF-α、IL-1β和IL-6的含量[71-73]。青蒿琥酯和茶黄素-3, 3′-二甲酸酯还被证实是通过Agr调控系统来抑制α-溶血素的合成[74-75]。香茅醛、桃柁酚可抑制肠毒素的分泌,并且可以限制金黄色葡萄球菌的生长[76-77]。姜黄素、山莨菪碱和单月桂酸甘油酯对毒性休克综合征毒素-1有抑制作用,并且可以抑制干扰素的表达[78]。因此,通过抑制金黄色葡萄球菌的毒素,可以减小细菌的致病力及对宿主的侵袭力。

表 3 金黄色葡萄球葡萄球菌毒素以及引起的相关疾病 Table 3 Staphylococcus aureus toxins and related diseases
毒素
Toxin
功能
Function
相关疾病
Associated disease
中草药活性成分
Active ingredient in Chinese herbal medicine
参考文献
Reference
α-溶血素
α-hemolysin
裂解细胞、参与细胞信号传导、增殖、免疫调节、溶血
Lysed cells, involved in cell signaling, proliferation, immunomodulation, hemolysis
败血症、肺炎
Sepsis, pneumonia
五味子酮、黄芩苷、儿茶素、山奈酚、槲皮素、青蒿琥酯、茶黄素-3, 3′-二甲酸酯、芍药苷衍生物
Schizandra ketone, baicalin, catechin, kaempferol, quercetin, artesunate, theaflavin-3, 3′-diplus ester, paeoniflorin derivative
[66, 71-75]
酚可溶性蛋白
Phenol soluble protein
诱导炎症反应、影响免疫细胞功能、参与细菌免疫逃逸
Inducing inflammatory response, affects immune cell function, and participates in bacterial immune escape
皮炎、肺炎、脓毒症、骨髓炎
Dermatitis, pneumonia, sepsis, osteomyelitis
[67]
去角质毒素
Exfoliating toxins
内皮细胞破裂
Endothelial cells rupture
糖尿病足溃疡
Diabetic foot ulcers
[68]
肠毒素
Enterotoxin
T淋巴细胞激活剂、致敏
T lymphocyte activator, sensitization
支气管扩张、食物中毒
Bronchiectasis, food poisoning
香茅醛、桃柁酚
Citronellal, totarol
[69, 76-77]
毒性休克毒素-1
Toxic shock syndrome toxin-1
致热原性超抗原
Pyrogenic superantigen
发热、脱屑性皮疹、休克
Fever, desquamative rash, shock
姜黄素、山莨菪碱、单月桂酸甘油酯
Curcumin, hyoscyamine, glyceryl monolaurate
[70, 78]
表皮剥落性毒素
Exfoliating epidermal toxins
识别并水解皮肤中的桥粒蛋白
Recognizes and hydrolyzes desmosomlein in the skin
里特氏病
Ritter’s disease
[66]
‒:未提及
‒: Not mentioned.

4.1.3 中草药活性成分抑制金黄色葡萄球菌分选酶A

细菌分选酶A是一种细菌细胞膜锚定酶,在毒力因子锚定到细菌细胞壁过程中起关键作用,实验证明缺少该酶可降低金黄色葡萄球菌的毒力并增加宿主对病原菌的敏感性[79]。许多中草药的提取物经酶活试验和细菌侵袭试验被证明可以靶向抑制分选酶A (sorting enzyme A, SrtA)。例如,土木香提取物与金黄色葡萄球菌SrtA共孵育后可有效降低酶的催化活性,并且加入土木香提取物还可降低细菌对宿主细胞的侵袭[80]。扁桃酸是桃树叶和柳树叶的提取物,经过分子对接表明扁桃酸通过氢键与SrtA稳定结合,酶活试验表明其可降低酶催化活性[81]。黄连根茎提取物小檗碱以及白桦提取物中的β-谷甾醇-3-O-吡喃葡萄糖苷都是SrtA潜在抑制剂[82]

4.2 抗菌增效作用

中草药除了可以直接发挥抗菌作用外,还与某些抗生素具有协同作用。中草药不仅可以增加抗菌效果,还可以有效减缓细菌耐药性。中药单体原花青素与头孢噻呋钠联合用药后,最小抑菌浓度从32 μg/mL降低到4 μg/mL,小鼠大腿肌肉感染金黄色葡萄球菌模型表明,联合用药抗菌效果优于单独用药[83],在体内外均有抗菌增效的作用。黄芩素与阿莫西林联用24 h后可观察到细菌全部死亡且防突变浓度降低,有效减缓金黄色葡萄球菌耐药性的发生[84]。此外,生物碱类、类黄酮类化合物可以帮助利血平规避细菌外排泵的作用,降低药物的外排,从而增加了药物的抑菌作用[85]

4.3 扶正宿主作用

中草药不仅可以直接抗菌,还可以通过激活宿主的免疫能力或调控宿主细胞代谢而发挥抗菌作用[86-87]。秘鲁树皮中活性成分贝达奎林可激活宿主先天免疫来增加杀菌能力[88]。牡荆素通过抑制活性氧(reactive oxygen species, ROS)的产生缓解内质网应激,通过MAPK和NF-κB信号通路抑制细胞凋亡[89]。虎杖甙抑制TLR2介导的MAPK/NF-κB激活,从而下调促炎细胞因子的水平[90]。雷公藤红素可以靶向与脯氨酸代谢过程中的Δ1-吡咯啉-5-羧酸脱氢酶结合,激活宿主的氧化应激,还阻断了细菌脯氨酸的合成与分解,进而抑制了细菌的生长[91]。宿主导向性抗菌药物的研发是新趋势,可以发现药物-病原体-宿主之间的潜在机制,为更好地防控耐药菌提供新思路。

5 中草药在养殖场中的应用

随着对中草药资源的不断开发及研究的深入,越来越多的中草药作为抗生素替代品和饲料添加剂在畜禽养殖中得到应用,据统计,目前兽用中药有1 000余种,其中含有60多种兽医专用中药[92]。例如,2011年批准上市的博落回散具有抗金黄色葡萄球菌、肠杆菌的作用[93]。功苋止痢散被批准用于治疗大肠杆菌感染引起的仔猪湿热泻痢。苦参、木槿皮、白鲜、土茯苓、青蒿、虎杖、黄柏、穿心莲、大蒜素、马齿苋等中草药在临床研究中被发现抑制细菌感染作用显著[94-95]。中草药饲料添加剂能够显著促进畜禽生长,增强免疫力,降低肉料比,提高生产性能[96]。目前也有许多中草药饲料添加剂批准上市,如以黄芩为主要成分的金肥素、以甘草为主要成分的清根素、以姜黄为主要成分的加富强等。此外,一些中草药的残渣、非药用部位也作为饲料添加剂进行使用,如豆蔻渣可以提高蛋鸡的鸡蛋质量[97],极大地提高了经济效益。

6 讨论与展望

我国当前畜牧业金黄色葡萄球菌感染情况多发,以奶牛感染最为严重,多种动物均有感染现象,可能与病原菌在动物间不断传播演化有关[98]。多数耐药菌株对7种以上抗生素耐药,耐药性不断加剧,这与耐药基因的产生密切相关。此外,药物残留也是很重要的一环,需要加强对其监管,我国已于2008年成立动物源细菌耐药性检测系统,目前,已经检测出50多种金黄色葡萄球菌耐药基因[99]。金黄色葡萄球菌耐药株不断演变,从1942年至今依次出现了PRSA、MRSA与VRSA等耐药菌株,其中以MRSA感染最为严重。

继续使用传统抗生素治疗金黄色葡萄球菌感染已经有些不合时宜,开发新型抗生素以及找到新抑菌靶点极为关键。中草药在防控耐药金黄色葡萄球菌方面具有良好的应用前景,可以通过有效抑制细菌生物膜的形成、抑制毒力因子的表达、抑制细菌关键酶活性直接杀菌,并且与传统抗生素联合抗菌效果更好,还可以调控宿主功能来增加宿主抵抗病原菌感染的能力。除了使用中草药代替治疗外,抗体-抗生素缀合物(antibody-antibiotic conjugates, AAC)[100]、抗菌肽(antimicrobial peptides, AMP)[101]、特异性抗体[102]、噬菌体[103]等先进技术也在金黄色葡萄球菌感染治疗中发挥了重要作用。与此同时,也要加强畜禽感染金黄色葡萄球菌的预防工作,基因工程疫苗、亚单位疫苗、核酸疫苗[104-106]均被证实可以有效防控金黄色葡萄球菌的感染。总之,未来需要将金黄色葡萄球菌检测手段、预防策略和传统、新型药物联合治疗综合一体,不断探究防控金黄色葡萄球菌的更多用药策略和更完善的临床治疗方案,最终达到金黄色葡萄球菌的综合防控,推动畜牧业向安全、绿色方向发展。

中草药在兽用抗生素和饲料添加剂方面取得了一定的研究成果,但仍面临着有效成分不明确、用药剂量大、靶向性差、药物作用机制复杂,毒理学评价欠缺、提取工艺步骤烦琐、研发速度慢、成果转化慢等问题。今后应该着力开发药食同源、兽医专用中草药,以及中草药非药用部位生物活性的开发,从而为兽用中草药提供更丰富的资源,同时减轻与人用药物资料的争夺。此外,还须应用大数据筛选平台和化学合成提取工艺来优化有效成分的结构,结合先进的组学技术进行深度的机制研究。另外,国家部门也应该制定中草药生产标准、统一的提取技术及全面的药效检测指标,以便规范我国中草药资源的合理性研发及应用。

REFERENCES
[1]
LI BH, LING XH, XIN HY, TU K, LI JH. Identification, pathogenicity and drug resistance of Staphylococcus aureus causing sow endometritis[J]. Progress in Veterinary Medicine, 2021, 42(8): 135-138. (in Chinese)
李宝红, 凌欣华, 辛海云, 涂柯, 李剑豪. 致母猪子宫内膜炎金黄色葡萄球菌鉴定及致病性与耐药性检测[J]. 动物医学进展, 2021, 42(8): 135-138. DOI:10.3969/j.issn.1007-5038.2021.08.026
[2]
ZHANG XL. Antibiotic resistance of Staphylococcus aureus in dairy cattle mastitis and isolation, identification and application of bacteriophage[D]. Tai'an: Master's Thesis of Shandong Agricultural University, 2022 (in Chinese).
张雪丽. 奶牛乳腺炎中金黄色葡萄球菌耐药性分析及噬菌体的分离鉴定与应用[D]. 泰安: 山东农业大学硕士学位论文, 2022.
[3]
SU LY, WANG L, WU JQ, GUAN SH, WANG DC, WANG L. Therapeutic effect of tectorigenin as MgrA inhibitor on Staphylococcus aureus-induced pneumonia in mice[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(7): 2617-2626. (in Chinese)
苏立燕, 王莉, 吴佳岂, 关舒函, 王大成, 王琳. 鸢尾黄素作为MgrA抑制剂对小鼠金黄色葡萄球菌肺炎的治疗作用[J]. 中国畜牧兽医, 2021, 48(7): 2617-2626.
[4]
LIU XY, LIU F, DING SY, SHEN JZ, ZHU K. Sublethal levels of antibiotics promote bacterial persistence in epithelial cells[J]. Advanced Science, 2020, 7(18): 1900840. DOI:10.1002/advs.201900840
[5]
LEE AS, de LENCASTRE H, GARAU J, KLUYTMANS J, MALHOTRA-KUMAR S, PESCHEL A, HARBARTH S. Methicillin-resistant Staphylococcus aureus[J]. Nature Reviews Disease Primers, 2018, 4: 18033. DOI:10.1038/nrdp.2018.33
[6]
QIE S, XU YY, BAI YY, LIU YJ, TIAN YL, YANG L, LIU XY, DONG H. The active ingredient of the essential oil of Elsholtzia stauntoni Benth and the effect on traumatic infections caused by Staphylococcus aureus[J]. Journal of Beijing University of Agriculture, 2023, 38(1): 60-65. (in Chinese)
郄帅, 徐媛媛, 白媛媛, 刘印佳, 田晔林, 杨柳, 刘晓晔, 董虹. 木香薷挥发油对金黄葡萄球菌的抑制作用[J]. 北京农学院学报, 2023, 38(1): 60-65.
[7]
ZHANG H, LI QY, HE SW, HOU SL, XU YY, LIU XY, DONG H. Advance in chemical constituents and pharmacological activities of Saxifraga stolonifera[J]. Progress in Veterinary Medicine, 2021, 42(1): 94-99. (in Chinese)
张慧, 李秋月, 贺尚文, 侯思鲁, 徐媛媛, 刘晓晔, 董虹. 虎耳草化学成分及药理活性研究进展[J]. 动物医学进展, 2021, 42(1): 94-99. DOI:10.3969/j.issn.1007-5038.2021.01.016
[8]
ZHANG WJ, SHEN HR, TAN Y, YANG Y, ZHANG WJ, YOU CX. Research progress on chemical constituents and bioactivities of Tagetes minuta L. volatile oil[J]. Biological Chemical Engineering, 2023, 9(1): 171-178. (in Chinese)
张文静, 沈惠冉, 谭燕, 杨玥, 张文娟, 尤春雪. 印加孔雀草挥发油化学成分及生物活性研究进展[J]. 生物化工, 2023, 9(1): 171-178. DOI:10.3969/j.issn.2096-0387.2023.01.041
[9]
MIKLASIŃSKA-MAJDANIK M, KĘPA M, WOJTYCZKA RD, IDZIK D, WĄSIK TJ. Phenolic compounds diminish antibiotic resistance of Staphylococcus Aureus clinical strains[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2321. DOI:10.3390/ijerph15102321
[10]
PENG Z. Isolation, identification and drug resistance analysis of Staphylococcus from dairy cow mastitis in Henan Province[D]. Zhengzhou: Master's Thesis of Henan Agricultural University, 2021 (in Chinese).
彭展. 河南地区奶牛乳腺炎葡萄球菌的分离鉴定及耐药性分析[D]. 郑州: 河南农业大学硕士学位论文, 2021.
[11]
TAO XL. Investigation and drug sensitivity analysis of pathogenic bacteria infection of dairy cow mastitis in Linying County, Henan Province[J]. Chinese Journal of Veterinary Medicine, 2020, 56(3): 107-108. (in Chinese)
陶晓丽. 河南省临颍县奶牛乳房炎病原菌感染情况调查与药敏分析[J]. 中国兽医杂志, 2020, 56(3): 107-108.
[12]
DU WW. Detection of drug resistance and study on drug resistance genes of Staphylococcus aureus from milk in Hebei Province[D]. Baoding: Master's Thesis of Hebei Agricultural University, 2015 (in Chinese).
杜伟伟. 河北省乳源金黄色葡萄球菌耐药性检测及耐药基因的研究[D]. 保定: 河北农业大学硕士学位论文, 2015.
[13]
ZHU N, ZHAO YK, CHEN H, WANG FL, WANG S, LI YB. Isolation and identification drug resistance analysis of pathogen of dairy cow mastitis[J]. China Dairy Cattle, 2020(9): 31-35. (in Chinese)
朱宁, 赵艳坤, 陈贺, 王富兰, 王帅, 李应彪. 上海地区奶牛乳房炎病原菌的分离鉴定及耐药性分析[J]. 中国奶牛, 2020(9): 31-35.
[14]
GAO XW, WANG J, CUI HX, LI N, QUAN XJ, TIAN LM. Isolation, identification and drug resistance analysis of main pathogenic bacteria of dairy cow mastitis in Changchun area[J]. Jilin Animal Husbandry and Veterinary Medicine, 2016, 37(2): 9-11. (in Chinese)
高晓伟, 王静, 崔鹤馨, 李男, 权心娇, 田来明. 长春地区奶牛乳房炎主要病原菌的分离鉴定及耐药性分析[J]. 吉林畜牧兽医, 2016, 37(2): 9-11. DOI:10.3969/j.issn.1672-2078.2016.02.003
[15]
ZHAO QY, AN L, XING FS, GUO KK, QING SZ, ZHANG WM. Isolation, identification and drug sensitivity test of pathogens bacteria from dairy cows with clinical mastitis in Shaanxi Province[J]. Journal of Domestic Animal Ecology, 2016, 37(1): 68-72. (in Chinese)
赵秋云, 安乐, 邢福珊, 郭抗抗, 卿素珠, 张为民. 陕西地区临床型奶牛乳房炎病原菌的分离鉴定及耐药性分析[J]. 家畜生态学报, 2016, 37(1): 68-72. DOI:10.3969/j.issn.1673-1182.2016.01.014
[16]
SONG SY. Investigation and research on antibiotics resistance of bacteria obtained from subclinical mastitis in a dairy farm in Fushun[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022(3): 56-59. (in Chinese)
宋淑英. 抚顺某奶牛场隐性乳房炎病原菌耐药性的调查研究[J]. 现代畜牧兽医, 2022(3): 56-59.
[17]
MING X, ZUO XX, XU Y, BAO X, ZHANG JQ, YANG ZP, ZHU GQ, LU Y. Isolation and identification, drug resistance and conserved antigen analysis of mastitis pathogens in dairy cows in a cattle farm in Jiangsu[J]. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 2019, 40(6): 54-60. (in Chinese)
明旭, 左晓昕, 徐悦, 鲍熹, 张金秋, 杨章平, 朱国强, 卢宇. 江苏某牛场奶牛乳房炎病原菌的分离鉴定、耐药性及保守抗原分析[J]. 扬州大学学报(农业与生命科学版), 2019, 40(6): 54-60.
[18]
LI GJ. Isolation and identification of the main pathogens of mastitis in dairy cows in Ulanqab area and drug resistance research[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2018(10): 122-124. (in Chinese)
李国俊. 乌兰察布地区奶牛乳房炎主要病原菌的分离鉴定及耐药性研究[J]. 黑龙江畜牧兽医, 2018(10): 122-124.
[19]
YIN JH, LI MY, WU X, HE JZ. Isolation, identification and drug resistance analysis of pathogenic bacteria of subclinical bovine mastitis from dairy farm in Xinjiang[J]. Chinese Journal of Veterinary Medicine, 2023, 59(5): 86-90. (in Chinese)
尹金花, 李玫毅, 吴兴, 贺建忠. 新疆某牛场奶牛隐性乳房炎病原菌的分离鉴定和耐药性分析[J]. 中国兽医杂志, 2023, 59(5): 86-90.
[20]
WU LJ, LI JL, CHEN XB, WAN PM, SHAO ZY, HE B, YANG WH, CHEN J, JIN EG, PAN ZB, TONG WW, ZHOU Y, LIU W. Study on the isolation, identification and drug resistance of main pathogenic bacteria in dairy cow mastitis[J]. Hubei Agricultural Sciences, 2019, 58(21): 145-149. (in Chinese)
吴利军, 李佳琳, 陈夏冰, 万平民, 邵志勇, 何斌, 杨文海, 陈洁, 金尔光, 潘中宝, 童伟文, 周源, 刘武. 奶牛乳房炎主要病原菌的分离鉴定及耐药性研究[J]. 湖北农业科学, 2019, 58(21): 145-149.
[21]
YANG R, LI YL, LI JL, LI XT, DENG B, DANG XL. Isolation, identification and drug resistance analysis of pathogenic bacteria from clinical mastitis of dairy cows in Ya'an, Sichuan[J]. Chinese Journal of Veterinary Medicine, 2009, 45(4): 41-42. (in Chinese)
杨锐, 李英伦, 李金良, 李旭廷, 邓兵, 党晓林. 四川雅安临床型奶牛乳房炎病原菌分离鉴定及耐药性分析[J]. 中国兽医杂志, 2009, 45(4): 41-42. DOI:10.3969/j.issn.0529-6005.2009.04.021
[22]
CAI Y, ZHANG CH, TIAN B, HU HW, FENG HX, CHANG YC, ZHANG Y, CHE TJ. Isolation, identification and drug resistance analysis of Staphylococcus aureus for dairy cow mastitis in some region of Gansu[J]. China Dairy Cattle, 2014(21): 32-34. (in Chinese)
蔡元, 张成虎, 田斌, 胡宏伟, 冯海霞, 常运朝, 张莹, 车团结. 甘肃省部分地区奶牛乳腺炎金黄色葡萄球菌的分离鉴定及耐药性分析[J]. 中国奶牛, 2014(21): 32-34. DOI:10.3969/j.issn.1004-4264.2014.21.011
[23]
WANG HH. Etiology and prevention of mastitis in dairy cows in modern pasture[J]. Modern Animal Husbandry Science & Technology, 2018(5): 77. (in Chinese)
王洪海. 现代化牧场奶牛乳腺炎的病因及防治[J]. 现代畜牧科技, 2018(5): 77.
[24]
XU HT. Causes, harm and control measures of mastitis in dairy cows[J]. The Chinese Livestock and Poultry Breeding, 2017, 13(4): 133. (in Chinese)
许辉堂. 奶牛乳腺炎发病原因、危害及防治措施[J]. 中国畜禽种业, 2017, 13(4): 133. DOI:10.3969/j.issn.1673-4556.2017.04.113
[25]
ZHAO J, HAN ZJ, CHEN AJ, NA R. Isolation and Identification of Staphylococcus aureus infection from upper respiratory tract infection in sows[J]. Journal of Animal Science and Veterinary Medicine, 2021, 40(2): 1-4, 7. (in Chinese)
赵健, 韩志金, 陈爱军, 那仁满都呼. 母猪上呼吸道感染金黄色葡萄球菌的分离鉴定[J]. 畜牧兽医杂志, 2021, 40(2): 1-4, 7.
[26]
LIU HY, ZHANG QL, LI YP, QI YJ, ZHANG W, FU CX. Diagnosis of a case of mixed infection of Staphylococcus aureus, porcine circovirus type 2 and type 3[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(6): 92-95, 138. (in Chinese)
刘海莹, 张启龙, 栗云鹏, 齐雅洁, 张玮, 傅彩霞. 1例猪金黄色葡萄球菌与猪圆环病毒2型和3型混合感染的诊断[J]. 黑龙江畜牧兽医, 2022(6): 92-95, 138.
[27]
MA HC, DONG HL, FAN SJ, WANG BJ, ZOU MH, YUAN ZJ, WANG DJ, WANG J, DAWA QD, ZENG JY, WU QX. Isolation and identification and drug susceptibility analysis of Staphylococcus aureus from Tibetan sheep in Shigatse[J]. Chinese Journal of Veterinary Medicine, 2023, 59(8): 77-81. (in Chinese)
马弘财, 董海龙, 樊世杰, 王冰杰, 邹明昊, 元振杰, 王冬经, 旺加, 达瓦琼达, 曾江勇, 吴庆侠. 日喀则藏羊源金黄色葡萄球菌的分离鉴定和药物敏感性分析[J]. 中国兽医杂志, 2023, 59(8): 77-81.
[28]
LÜ SY, JIANG L, WANG X, LI K, CHANG ZS, XIN AG. Isolation, identification, diagnosis and treatment of Staphylococcus aureus from goose[J]. Yunnan Journal of Animal Science and Veterinary Medicine, 2023(4): 1-3. (in Chinese)
吕顺燕, 江琳, 王喜, 李珂, 常志顺, 信爱国. 鹅源金黄色葡萄球菌分离鉴定及其诊治分析[J]. 云南畜牧兽医, 2023(4): 1-3. DOI:10.3969/j.issn.1005-1341.2023.04.001
[29]
CEN MZ, ZHANG HH. Isolation and susceptibility testing of a case of Staphylococcus aureus infection in chickens[J]. Xinjiang Farm Research of Science and Technology, 2022, 45(5): 44-47. (in Chinese)
岑明珠, 张辉华. 一例鸡金黄色葡萄球菌感染的分离与药敏试验[J]. 新疆农垦科技, 2022, 45(5): 44-47. DOI:10.3969/j.issn.1001-361X.2022.05.020
[30]
XING Q. Virulence gene detection and drug resistance analysis of pet derived Staphylococcus aureus isolates in Shenyang area[D]. Shenyang: Shenyang Agricultural University, 2022 (in Chinese).
邢俏. 沈阳地区宠物源金黄色葡萄球菌分离株毒力基因检测及耐药性分析[D]. 沈阳: 沈阳农业大学, 2022.
[31]
LI N, CHANG JW, MA Q, MA L, MAO YN, KANG XY, WANG X, WANG GQ. Distribution and molecular typing of drug resistance genes of bovine origin Staphylococcus aureus in Ningxia[J]. Chinese Journal of Veterinary Science, 2022, 42(6): 1220-1229. (in Chinese)
李娜, 常佳伟, 马强, 马靓, 毛彦妮, 康馨匀, 王鑫, 王桂琴. 宁夏地区牛源金黄色葡萄球菌耐药基因分布及分子分型[J]. 中国兽医学报, 2022, 42(6): 1220-1229.
[32]
NING KM, ZHOU RS, LI MX. Analyses of antimicrobial resistance and hemolysis of Staphylococcus aureus from raw milk in Hunan Province[J]. Progress in Veterinary Medicine, 2023, 44(5): 57-64. (in Chinese)
宁柯铭, 周汝顺, 黎满香. 湖南部分地区乳源金黄色葡萄球菌耐药性及溶血性分析[J]. 动物医学进展, 2023, 44(5): 57-64. DOI:10.3969/j.issn.1007-5038.2023.05.011
[33]
ZHANG XD. Isolation and identification of pig-derived Staphylococcus aureus and antimicrobial resistance analysis and virulence factor distribution[D]. Changsha: Master's Thesis of Hunan Agricultural University, 2020 (in Chinese).
张小冬. 猪源金黄色葡萄球菌的分离鉴定及耐药性分析和毒力因子分布研究[D]. 长沙: 湖南农业大学硕士学位论文, 2020.
[34]
DENG ZB, YU T, GENG Y, WANG KY, KUN QF, DENG ML, CHEN C, ZHANG YW. Antibiotic resistance phenotype and genes detection of Staphylococcus aureus isolated from rabbit[J]. Chinese Journal of Preventive Veterinary Medicine, 2016, 38(1): 45-48. (in Chinese)
邓钊宾, 余滔, 耿毅, 汪开毓, 坤清芳, 邓梦玲, 陈成, 张雨薇. 兔源金黄色葡萄球菌的耐药性及耐药基因分析[J]. 中国预防兽医学报, 2016, 38(1): 45-48. DOI:10.3969/j.issn.1008-0589.2016.01.11
[35]
HOU J, YANG ZX, ZHAO W, WANG X, YAN SQ. Isolation and antimicrobial resistance identification and analysis of a Staphylococcus aureus strain from rabbit lung[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(3): 341-346. (in Chinese)
侯景, 杨泽晓, 赵位, 王翔, 晏仕强. 1株兔肺源金黄色葡萄球菌的分离鉴定及耐药分析[J]. 西北农业学报, 2020, 29(3): 341-346.
[36]
LIU Q, QIN X, LIU DD, WANG JM, WANG JH, FANG FG, PAN L, WANG Y, ZHOU J. Resistance genetic testing and molecular typing of multidrug-resistant Staphylococcus aureus in poultry[J]. Microbiology China, 2018, 45(7): 1500-1507. (in Chinese)
刘茜, 秦祥, 刘丹丹, 王佳明, 王菊花, 方富贵, 潘玲, 王勇, 周杰. 禽源多重耐药金黄色葡萄球菌耐药基因检测及分子分型[J]. 微生物学通报, 2018, 45(7): 1500-1507. DOI:10.13344/j.microbiol.china.170768
[37]
ZHUGE SY, MA HF, SU AR, LAN L, ZENG XY, QU C. Antibiotic resistance spectrum and molecular typing of Staphylococcus aureus isolated from catering employees[J]. Modern Preventive Medicine, 2021, 48(15): 2846-2849, 2880. (in Chinese)
诸葛石养, 马海芳, 苏爱荣, 蓝兰, 曾献莹, 瞿聪. 从业人员金黄色葡萄球菌分离株耐药表型和分子分型研究[J]. 现代预防医学, 2021, 48(15): 2846-2849, 2880.
[38]
LUO M, LIU Q. Mechanism analysis of drug resistance of foodborne Staphylococcus aureus[J]. Chinese Journal of Pathogenic Biology, 2022, 17(6): 685-688. (in Chinese)
罗曼, 刘倩. 食源性金黄色葡萄球菌耐药机制分析[J]. 中国病原生物学杂志, 2022, 17(6): 685-688.
[39]
LI H, YAN L, CHEN WW, XUE CG, YANG ZS. Study on drug resistance and genetic characteristics of foodborne Staphylococcus aureus in China[J]. Chinese Journal of Food Hygiene, 2023, 35(6): 801-806. (in Chinese)
李辉, 闫琳, 陈伟伟, 薛成玉, 杨祖顺. 我国食源性金黄色葡萄球菌耐药及遗传特征情况研究[J]. 中国食品卫生杂志, 2023, 35(6): 801-806.
[40]
McGUINNESS WA, MALACHOWA N, DeLEO FR. Vancomycin resistance in Staphylococcus aureus[J]. The Yale Journal of Biology and Medicine, 2017, 90(2): 269-281.
[41]
RUNGELRATH V, DeLEO FR. Staphylococcus aureus, antibiotic resistance, and the interaction with human neutrophils[J]. Antioxidants & Redox Signaling, 2021, 34(6): 452-470.
[42]
YANG JH, ZHU Y. Diagnosis and prevention of dairy cow mastitis Staphylococcal aureus[J]. Animal Husbandry and Veterinary Science (Electronic Edition), 2022(24): 192-194. (in Chinese)
杨金洪, 朱勇. 奶牛乳腺炎金黄色葡萄球菌病诊断与防治[J]. 畜牧兽医科学(电子版), 2022(24): 192-194.
[43]
HOU ZR, LIU L, WEI JH, XU BJ. Progress in the prevalence, classification and drug resistance mechanisms of methicillin-resistant Staphylococcus aureus[J]. Infection and Drug Resistance, 2023, 16: 3271-3292. DOI:10.2147/IDR.S412308
[44]
CRESPO-PIAZUELO D, LAWLOR PG. Livestock- associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation[J]. Irish Veterinary Journal, 2021, 74(1): 21. DOI:10.1186/s13620-021-00200-7
[45]
TKADLEC J, LE AV, BRAJEROVA M, SOLTESOVA A, MARCISIN J, DREVINEK P, KRUTOVA M. Epidemiology of methicillin-resistant Staphylococcus aureus in Slovakia, 2020-emergence of an epidemic USA300 clone in community and hospitals[J]. Microbiology Spectrum, 2023, 11(4): e0126423. DOI:10.1128/spectrum.01264-23
[46]
JAIN M, STITT G, SON L, ENIOUTINA EY. Probiotics and their bioproducts: a promising approach for targeting methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus[J]. Microorganisms, 2023, 11(10): 2393. DOI:10.3390/microorganisms11102393
[47]
GARDETE S, TOMASZ A. Mechanisms of vancomycin resistance in Staphylococcus aureus[J]. The Journal of Clinical Investigation, 2014, 124(7): 2836-2840. DOI:10.1172/JCI68834
[48]
WALTERS MS, EGGERS P, ALBRECHT V, TRAVIS T, LONSWAY D, HOVAN G, TAYLOR D, RASHEED K, LIMBAGO B, KALLEN A. Vancomycin-resistant Staphylococcus aureus—delaware, 2015[J]. MMWR Morbidity and Mortality Weekly Report, 2015, 64(37): 1056. DOI:10.15585/mmwr.mm6437a6
[49]
PÉRICHON B, COURVALIN P. VanA-type vancomycin-resistant Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(11): 4580-4587. DOI:10.1128/AAC.00346-09
[50]
WU QX, SABOKROO N, WANG YJ, HASHEMIAN M, KARAMOLLAHI S, KOUHSARI E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates[J]. Antimicrobial Resistance and Infection Control, 2021, 10(1): 101. DOI:10.1186/s13756-021-00967-y
[51]
QIAN X, XIE J. Recent progress on the studies of vancomycin-resistant Staphylococcus aureus[J]. Chinese Journal of Hospital Pharmacy, 2014, 34(15): 1314-1319. (in Chinese)
钱鑫, 谢娟. 耐万古霉素金黄色葡萄球菌的研究进展[J]. 中国医院药学杂志, 2014, 34(15): 1314-1319.
[52]
KUANG H, BI HX, LI XR, LÜ X, LIU YB. Inhibition of S. aureus biofilm formation by linezolid alleviates sepsis-induced lung injury caused by S. aureus infection through direct inhibition of icaA activity[J]. The New Microbiologica, 2023, 46(3): 285-295.
[53]
KASELA M, OSSOWSKI M, DZIKOŃ E, IGNATIUK K, WLAZŁO Ł, MALM A. The epidemiology of animal-associated methicillin-resistant Staphylococcus aureus[J]. Antibiotics, 2023, 12(6): 1079. DOI:10.3390/antibiotics12061079
[54]
XIAO Y. Effect of fusidic acid combined with doxycycline on the antibacterial effect of Staphylococcus aureus and the selection window of anti-drug resistance mutation[D]. Yichun: Master's Thesis of Yichun University, 2022 (in Chinese).
肖瑶. 夫西地酸联合多西环素对金黄色葡萄球菌的抗菌作用及防耐药突变选择窗的影响[D]. 宜春: 宜春学院硕士学位论文, 2022.
[55]
GAO LL, CHEN JP, CHEN Y, XU T, YANG X, YANG YH. Effect of cefquinime combined with three antibiotics on the mutation selection window of Staphylococcus aureus[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2019(8): 131-134, 138. (in Chinese)
高玲琳, 陈俊朴, 陈云, 徐腾, 杨鑫, 杨雨辉. 头孢喹肟分别与3种抗生素联用对金黄色葡萄球菌突变选择窗的影响研究[J]. 黑龙江畜牧兽医, 2019(8): 131-134, 138.
[56]
YU T. Study on the concentration of vancomycin alone and in combination on the anti-drug resistance mutation concentration of Staphylococcus aureus[D]. Hefei: Master's Thesis of Anhui Medical University, 2012 (in Chinese).
喻婷. 万古霉素单用及联合用药对金黄色葡萄球菌防耐药突变浓度的研究[D]. 合肥: 安徽医科大学硕士学位论文, 2012.
[57]
TOTSUKA K, SHISEKI M, KIKUCHI K, MATSUI Y. Combined effects of vancomycin and imipenem against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo[J]. Journal of Antimicrobial Chemotherapy, 1999, 44(4): 455-460. DOI:10.1093/jac/44.4.455
[58]
ZHANG ZH, WU JC, YU YS, ZHANG MF, ZHANG KJ, ZENG ZX, ZHUO YP, YANG YJ, CHEN X. Antimicrobial activity and mechanism of action of elm saponin Ⅱ against methicillin-resistant Staphylococcus aureus[J]. Drug Evaluation Research, 2024, 47(1): 103-108. (in Chinese)
张子桦, 吴金婵, 余咏诗, 张淼菲, 张凯嘉, 曾芝璇, 卓燕萍, 杨烨健, 陈鑫. 地榆皂苷Ⅱ对耐甲氧西林金黄色葡萄球菌的抗菌活性及作用机制研究[J]. 药物评价研究, 2024, 47(1): 103-108.
[59]
WANG HL, TAN ZY, FENG ZW, PANG LJ, HUANG YX, CHEN SY, WEI JB. Preliminary study on the antibacterial effect and mechanism of Guiqian goldenrod extract on Staphylococcus aureus in vitro[J]. Journal of Guangxi Medical University, 2021, 38(12): 2252-2258. (in Chinese)
王鹤龄, 谭珍媛, 冯钟文, 庞丽君, 黄瑀莘, 陈思韵, 韦锦斌. 桂千金子提取物对金黄色葡萄球菌体外抗菌作用及机制的初步研究[J]. 广西医科大学学报, 2021, 38(12): 2252-2258.
[60]
ZHANG L, CHEN L, MIAO Y, LAN SJ, WU X, FENG WY, SHEN SS, MA ZG, TIAN QF, BAI CS, JIN ZH, HUANG XK, SONG Y, LI L. Antibiotic treatment strategies for Staphylococcus aureus biofilms[J]. Shandong Animal Husbandry and Veterinary Medicine, 2024, 45(2): 76-78. (in Chinese)
张蕾, 陈亮, 苗艳, 兰世捷, 吴宪, 冯万宇, 沈思思, 马志刚, 田秋丰, 白长胜, 金振华, 黄宣凯, 宋岩, 李莉. 金黄色葡萄球菌生物膜的抗生素治疗策略[J]. 山东畜牧兽医, 2024, 45(2): 76-78.
[61]
GROSSMAN AB, BURGIN DJ, RICE KC. Quantification of Staphylococcus aureus biofilm formation by crystal violet and confocal microscopy[J]. Methods in Molecular Biology, 2021, 2341: 69-78.
[62]
ZHUO XY, YANG ZY. Mechanism of allicin against Staphylococcus aureus biofilm formation[J]. Guangdong Chemical Industry, 2022, 49(7): 35-38. (in Chinese)
卓小月, 杨志勇. 大蒜素抗金色黄葡萄球菌生物膜形成机制[J]. 广东化工, 2022, 49(7): 35-38.
[63]
DAI YY, LI C, YUAN ZW, LI XY, HE JZ, YIN LZ. Carvacrol inhibits the formation of Staphylococcus aureus biofilm[C]//Proceedings of the 15th Symposium of the Veterinary Pharmacology and Toxicology Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine. Proceedings of the 15th Symposium of the Veterinary Pharmacology and Toxicology Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine, 2019: 50 (in Chinese).
戴雨芸, 李超, 袁中伟, 李欣越, 何泾正, 尹立子. 香芹酚抑制金黄色葡萄球菌生物被膜的形成[C]//中国畜牧兽医学会兽医药理毒理学分会. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集, 2019: 50.
[64]
ZHANG MJ, XIE MJ. Inhibition of Staphylococcus aureus biofilm by baicalein[J]. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34(3): 334-340. (in Chinese)
张洺嘉, 谢明杰. 黄芩素抑制金黄色葡萄球菌生物被膜的形成[J]. 中国生物化学与分子生物学报, 2018, 34(3): 334-340.
[65]
YU J, ZHENG SM, ZHANG WH, ZHOU RG, ZHAO G, LI JG. Study on inhibitory effect and mechanism of eugenol against Staphylococcus aureus and its drug-resistant bacteria that causes pressure sores[J]. Drugs & Clinic, 2023, 38(9): 2184-2194. (in Chinese)
于杰, 郑淑媚, 张文海, 周瑞刚, 赵钢, 李金贵. 丁香酚对压疮致病菌金黄色葡萄球菌及其耐药菌的抑菌作用及机制[J]. 现代药物与临床, 2023, 38(9): 2184-2194.
[66]
AHMAD-MANSOUR N, LOUBET P, POUGET C, DUNYACH-REMY C, SOTTO A, LAVIGNE JP, MOLLE V. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments[J]. Toxins, 2021, 13(10): 677.
[67]
ZHOU Y, LIU H, ZHAO YF, WEI M, HOU J, LI P, WANG Y. Research progress on staphylococcal virulence factors phenol-soluble modulins[J]. Microbiology China, 2022, 49(3): 1158-1166. (in Chinese)
周颖, 刘焕, 赵玉峰, 魏明, 侯进, 李萍, 汪洋. 葡萄球菌致病毒力因子酚溶性调节蛋白的研究进展[J]. 微生物学通报, 2022, 49(3): 1158-1166. DOI:10.13344/j.microbiol.china.210580
[68]
JOSEPH WS, KOSINSKI MA, ROGERS LC. Parenteral vancomycin in the treatment of MRSA-associated diabetic foot infections: an unnecessary risk[J]. The International Journal of Lower Extremity Wounds, 2023. DOI:10.1177/15347346231207553
[69]
JOHNSON HM, RUSSELL JK, PONTZER CH. Staphylococcal enterotoxin superantigens[J]. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 1991, 198(3): 765-771.
[70]
CHU MJ. Research progress of Staphylococcus aureus toxic shock toxin-1[J]. International Journal of Laboratory Medicine, 2021, 42(12): 1521-1524, 1536. (in Chinese)
褚敏君. 金黄色葡萄球菌中毒性休克毒素-1的研究进展[J]. 国际检验医学杂志, 2021, 42(12): 1521-1524, 1536.
[71]
LI H, LI C, SHI C, SAMEEH MY, Al-ASMARI F, CUI H, LIN L. Transcriptome analysis reveals the inhibitory mechanism of phloretin on virulence expression of Staphylococcus aureus and its application in cooked chicken[J]. International Journal of Food Microbiology, 2024, 415: 110647.
[72]
HE SW, DENG Q, LIANG BB, YU FK, YU XH, GUO DW, LIU XY, DONG H. Suppressing alpha-hemolysin as potential target to screen of flavonoids to combat bacterial coinfection[J]. Molecules, 2021, 26(24): 7577.
[73]
LIU XY, ZHANG YF, LI ZS, ZHANG PP, SUN YJ, WU YJ. Paeoniflorin derivative in paeoniae Radix aqueous extract suppresses alpha-toxin of Staphylococcus aureus[J]. Frontiers in Microbiology, 2021, 12: 649390.
[74]
QIAN Y, XIA L, WEI L, LI D, JIANG WW. Artesunate inhibits Staphylococcus aureus biofilm formation by reducing alpha-toxin synthesis[J]. Archives of Microbiology, 2021, 203(2): 707-717.
[75]
GOC A, SUMERA W, RATH M, NIEDZWIECKI A. Inhibitory effect of theaflavin-3, 3'-digallate can involve its binding to the "stem" domain of α-hemolysin of Staphylococcus aureus[J]. European Journal of Microbiology & Immunology, 2023, 13(3): 83-87.
[76]
ZHANG M. Inhibition of citronellal on the growth and toxinization of Staphylococcus aureus and its application[D]. Guangzhou: Master's Thesis of South China University of Technology, 2022 (in Chinese).
张卯. 香茅醛对金黄色葡萄球菌生长和产毒的抑制作用及其应用[D]. 广州: 华南理工大学硕士学位论文, 2022.
[77]
SHI C. Study on the activity and mechanism of action of totarol against Staphylococcus aureus[D]. Changchun: Master's Thesis of Jilin University, 2017 (in Chinese).
史册. 桃柁酚抗金黄色葡萄球菌的活性及机制研究[D]. 长春: 吉林大学硕士学位论文, 2017.
[78]
LIN YC, SCHLIEVERT PM, ANDERSON MJ, FAIR CL, SCHAEFERS MM, MUTHYALA R, PETERSON ML. Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivo[J]. PLoS One, 2009, 4(10): e7499.
[79]
TAN C, WANG J, HU YF, WANG P, ZOU LL. Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection[J]. Antonie Van Leeuwenhoek, 2017, 110(1): 133-143.
[80]
TANG FY, LI WH, DENG XM. Inhibitory effects of inulae Radix extracts against sortase A acitivity of Staphylococcus aureus[J]. Journal of Jilin Agricultural University, 2018, 40(2): 219-222. (in Chinese)
汤法银, 李文华, 邓旭明. 土木香提取物对金黄色葡萄球菌分选酶A抑制作用[J]. 吉林农业大学学报, 2018, 40(2): 219-222.
[81]
GOU YH, HE JZ, LI C, LI XY, FAN W, YIN LZ. Inhibition mechanism of mandelic acid on the activity of sortase A of Staphylococcus aureus[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(4): 622-628. (in Chinese)
苟玉虹, 何泾正, 李超, 李欣越, 范维, 尹立子. 扁桃酸对金黄色葡萄球菌分选酶A活性的抑制机制[J]. 云南农业大学学报(自然科学), 2020, 35(4): 622-628.
[82]
SI L, LI P, LIU X, LUO L. Chinese herb medicine against Sortase A catalyzed transformations, a key role in gram-positive bacterial infection progress[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(sup1): 184-196.
[83]
HAO HX. Preliminary study on the effect and mechanism of proanthocyanidins and ceftiofur sodium against drug-resistant Staphylococcus aureus[D]. Urumqi: Master's Thesis of Xinjiang Agricultural University, 2021 (in Chinese).
郝红侠. 原花青素协同头孢噻呋钠抗耐药金黄色葡萄球菌作用及机制初步研究[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2021.
[84]
QIAN MY. Study on the synergistic antibacterial mechanism of amoxicillin and baicalein against drug-resistant Staphylococcus aureus and the development of its compound preparation[D]. Beijing: Doctorial Dissertation of China Agricultural University, 2017 (in Chinese).
钱民怡. 阿莫西林与黄芩素对耐药金黄色葡萄球菌的协同抗菌机制研究及其复方制剂的研制[D]. 北京: 中国农业大学博士学位论文, 2017.
[85]
LI J, YANG JY, YANG Y, LI HJ. Drug combinations: the research trend of antibiotics in the future[J]. Chinese Journal of Antibiotics, 2021, 46(7): 633-637. (in Chinese)
李静, 杨靖亚, 杨怡, 李会杰. 联合用药: 未来抗菌药物研发的趋势[J]. 中国抗生素杂志, 2021, 46(7): 633-637.
[86]
LIU XY, MAO CS, ZHU K. Progress on host-acting antibacterial drugs[J]. Chinese Journal of Animal Infectious Diseases, 2021, 29(4): 52-60. (in Chinese)
刘晓晔, 毛畅思, 朱奎. 宿主导向抗菌药物的研究进展[J]. 中国动物传染病学报, 2021, 29(4): 52-60.
[87]
SONG LY, HU X, REN XM, LIU J, LIU XY. Antibacterial modes of herbal flavonoids combat resistant bacteria[J]. Frontiers in Pharmacology, 2022, 13: 873374.
[88]
THINGORE C, KSHIRSAGAR V, JUVEKAR A. Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using rosmarinic acid in mice[J]. Metabolic Brain Disease, 2021, 36(2): 299-313.
[89]
GIRAUD-GATINEAU A, COYA JM, MAURE A, BITON A, THOMSON M, BERNARD EM, MARREC J, GUTIERREZ MG, LARROUY-MAUMUS G, BROSCH R, GICQUEL B, TAILLEUX L. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection[J]. eLife, 2020, 9: e55692.
[90]
CHEN Y, YANG J, HUANG Z, YIN BY, UMAR T, YANG C, ZHANG XQ, JING HY, GUO S, GUO MY, DENG GZ, QIU CW. Vitexin mitigates Staphylococcus aureus-induced mastitis via regulation of ROS/ER stress/NF-κB/MAPK pathway[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022: 7977433.
[91]
YUAN ZW, WANG J, QU QW, ZHU ZX, XU M, ZHAO MM, SUN CX, PENG HX, HUANG XY, DONG Y, DONG CL, ZHENG YD, YUAN SG, LI YH. Celastrol combats methicillin-resistant Staphylococcus aureus by targeting Δ1-pyrroline-5-carboxylate dehydrogenase[J]. Advanced Science, 2023, 10(25): e2302459.
[92]
GONG XH, LI HJ, ZHAO FH, ZHANG XY, FAN Q, ZHANG L, GU JH. A brief discussion on the development of new resources of veterinary Chinese medicine[J]. Chinese Journal of Veterinary Drug, 2022, 56(12): 54-61. (in Chinese)
龚旭昊, 李慧杰, 赵富华, 张秀英, 范强, 张璐, 顾进华. 浅议兽用中药新资源的开发[J]. 中国兽药杂志, 2022, 56(12): 54-61.
[93]
HE XF, HE K, WEI CX, ZHANG XY, YANG Y, ZHAO XY, ZHU HM, ZHANG J. Research progress on biological characteristics of extract of Macleaya cordata and its application in livestock and poultry breeding[J]. Feed Research, 2023, 46(6): 133-136. (in Chinese)
何晓芳, 何康, 韦春秀, 张新月, 杨赟, 赵欣怡, 朱红梅, 张晶. 博落回提取物的生物学特性及其在畜禽养殖中的研究进展[J]. 饲料研究, 2023, 46(6): 133-136.
[94]
FANG SJ. Product quality and safety supervision of eggs and poultry and the application of antibacterial and antiviral Chinese herbal medicines[J]. Chinese Journal of Traditional Veterinary Science, 2021(10): 85-87. (in Chinese)
方胜杰. 蛋禽产品质量安全监管及抗菌抑病毒中草药的应用[J]. 中兽医学杂志, 2021(10): 85-87.
[95]
WANG CX. Application of Chinese herbal feed additives in animal husbandry production[J]. Today Animal Husbandry and Veterinary Medicine, 2023, 39(10): 74-76. (in Chinese)
王春霞. 中草药饲料添加剂在畜牧生产中的应用[J]. 今日畜牧兽医, 2023, 39(10): 74-76.
[96]
QIN QX, CHENG LL, ZHAO JJ, SHEN JZ. Effect of Chinese herbal feed additives on multiple properties of animals[J]. China Feed, 2024(1): 71-76. (in Chinese)
秦千禧, 程林丽, 赵军杰, 沈建忠. 中草药饲料添加剂对动物多种性能的影响[J]. 中国饲料, 2024(1): 71-76.
[97]
YU FK, YU XH, LIU RC, GUO DW, DENG Q, LIANG BB, LIU XY, DONG H. Dregs of Cardamine hupingshanensis as a feed additive to improve the egg quality[J]. Frontiers in Nutrition, 2022, 9: 915865.
[98]
YANG YQ. Isolation and identification of Staphylococcus aureus in rabbit respiratory tract and antimicrobial resistance analysis in some areas of Shandong[D]. Tai'an: Master's Thesis of Shandong Agricultural University, 2022 (in Chinese).
杨雲清. 山东部分地区家兔呼吸道金黄色葡萄球菌的分离鉴定及耐药性分析[D]. 泰安: 山东农业大学硕士学位论文, 2022.
[99]
LI JX, SONG XJ, WANG ML, LIN XY, CHEN J, SUN SF, ZOU BG. Isolation and identification of co-infection in chicken farms and antimicrobial susceptibility testing[J]. China Animal Industry, 2021(12): 48-51. (in Chinese)
李佳璇, 宋祥军, 王苗利, 蔺晓月, 陈静, 孙圣福, 邹本革. 养鸡场混合感染的分离鉴定与药敏试验[J]. 中国畜牧业, 2021(12): 48-51.
[100]
MARIATHASAN S, TAN MW. Antibody-antibiotic conjugates: a novel therapeutic platform against bacterial infections[J]. Trends in Molecular Medicine, 2017, 23(2): 135-149.
[101]
MOLCHANOVA N, HANSEN PR, FRANZYK H. Advances in development of antimicrobial peptidomimetics as potential drugs[J]. Molecules, 2017, 22(9): 1430.
[102]
CHENG XW, TIAN W, LI XG. Research progress of bacteriophages in the treatment of bacterial diseases[J]. Shandong Animal Husbandry and Veterinary Medicine, 2023, 44(9): 83-86. (in Chinese)
程晓薇, 田伟, 李相安. 噬菌体在细菌性疾病治疗中的研究进展[J]. 山东畜牧兽医, 2023, 44(9): 83-86.
[103]
PECK M, ROTHENBERG ME, DENG R, LEWIN-KOH N, SHE GH, KAMATH AV, CARRASCO-TRIGUERO M, SAAD O, CASTRO A, TEUFEL L, DICKERSON DS, LEONARDELLI M, TAVEL JA. A phase 1, randomized, single- ascending-dose study to investigate the safety, tolerability, and pharmacokinetics of DSTA4637S, an anti-Staphylococcus aureus thiomab antibody- antibiotic conjugate, in healthy volunteers[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(6): e02588-18.
[104]
CAMUSSONE CM, REIDEL IG, MOLINERI AI, CICOTELLO J, MIOTTI C, SUAREZ ARCHILLA GA, CURTI CC, VEAUTE C, CALVINHO LF. Efficacy of immunization with a recombinant S. aureus vaccine formulated with liposomes and ODN-CpG against natural S. aureus intramammary infections in heifers and cows[J]. Research in Veterinary Science, 2022, 145: 177-187.
[105]
CÔTÉ-GRAVEL J, MALOUIN F. Symposium review: features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies[J]. Journal of Dairy Science, 2019, 102(5): 4727-4740.
[106]
FURSOVA K, SOROKIN A, SOKOLOV S, DZHELYADIN T, SHULCHEVA I, SHCHANNIKOVA M, NIKANOVA D, ARTEM'EVA O, ZINOVIEVA N, BROVKO F. Virulence factors and phylogeny of Staphylococcus aureus associated with bovine mastitis in Russia based on genome sequences[J]. Frontiers in Veterinary Science, 2020, 7: 135.
畜禽金黄色葡萄球菌流行现状和中草药防控进展
张文静 , 吕若一 , 修德冕 , 蔡子雯 , 王婧 , 孙志刚 , 司晓慧 , 孙英健 , 刘晓晔