[1] |
VIEIRA FR, MAGINA S, EVTUGUIN DV, BARROS-TIMMONS A. Lignin as a renewable building block for sustainable polyurethanes[J]. Materials, 2022, 15(17): 6182. DOI:10.3390/ma15176182 |
|
[2] |
HUANG DL, LI RJ, XU P, LI T, DENG R, CHEN S, ZHANG Q. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods[J]. Chemical Engineering Journal, 2020, 402: 126237. DOI:10.1016/j.cej.2020.126237 |
|
[3] |
FREUDENBERG K. Lignin: its constitution and formation from p-hydroxycinnamyl alcohols: lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure[J]. Science, 1965, 148(3670): 595-600. DOI:10.1126/science.148.3670.595 |
|
[4] | |
|
[5] |
LI F, ZHAO YQ, XUE L, MA FY, DAI SY, XIE SX. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487. DOI:10.1016/j.tibtech.2022.09.009 |
|
[6] |
LUBBERS RJM, DILOKPIMOL A, VISSER J, MÄKELÄ MR, HILDÉN KS, de VRIES RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi[J]. Biotechnology Advances, 2019, 37(7): 107396. DOI:10.1016/j.biotechadv.2019.05.002 |
|
[7] |
MALLINSON SJB, MACHOVINA MM, SILVEIRA RL, GARCIA-BORRÀS M, GALLUP N, JOHNSON CW, ALLEN MD, SKAF MS, CROWLEY MF, NEIDLE EL, HOUK KN, BECKHAM GT, DuBOIS JL, McGEEHAN JE. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion[J]. Nature Communications, 2018, 9: 2487. DOI:10.1038/s41467-018-04878-2 |
|
[8] |
MASAI E, KATAYAMA Y, FUKUDA M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(1): 1-15. DOI:10.1271/bbb.60437 |
|
[9] |
LIANG CY, LIN L. Environmental microorganisms driven lignin biodegradation and their roles in lignin utilization[J]. Microbiology China, 2020, 47(10): 3380-3392. (in Chinese) 梁丛颖, 林璐. 环境微生物介导的木质素代谢及其资源化利用研究进展[J]. 微生物学通报, 2020, 47(10): 3380-3392. |
|
[10] |
WENG CH, PENG XW, HAN YJ. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84. DOI:10.1186/s13068-021-01934-w |
|
[11] |
XIE SX, SYRENNE R, SUN S, YUAN JS. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel: from systems biology to synthetic design[J]. Current Opinion in Biotechnology, 2014, 27: 195-203. DOI:10.1016/j.copbio.2014.02.007 |
|
[12] |
ZHAO YQ, ZHANG H, ZHANG XY, XIE SX. Microbial depolymerization and valorization of lignin[J]. Acta Microbiologica Sinica, 2020, 60(12): 2717-2733. (in Chinese) 赵一全, 张慧, 张晓昱, 谢尚县. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12): 2717-2733. |
|
[13] |
XIE SX, SUN S, LIN FR, LI MZ, PU YQ, CHENG YB, XU B, LIU ZH, da COSTA SOUSA L, DALE BE, RAGAUSKAS AJ, DAI SY, YUAN JS. Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining[J]. Advanced Science, 2019, 6(13): 1801980. DOI:10.1002/advs.201801980 |
|
[14] |
CAJNKO MM, OBLAK J, GRILC M, LIKOZAR B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics[J]. Bioresource Technology, 2021, 340: 125655. DOI:10.1016/j.biortech.2021.125655 |
|
[15] |
LEE S, KANG M, BAE JH, SOHN JH, SUNG BH. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 209. DOI:10.3389/fbioe.2019.00209 |
|
[16] |
XIE SX, SUN QN, PU YQ, LIN FR, SUN S, WANG X, RAGAUSKAS AJ, YUAN JS. Advanced chemical design for efficient lignin bioconversion[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2215-2223. |
|
[17] |
CAI CG, XU ZX, ZHOU HR, CHEN ST, JIN MJ. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation[J]. Science Advances, 2021, 7(36): eabg4585. DOI:10.1126/sciadv.abg4585 |
|
[18] |
VANHOLME R, DEMEDTS B, MORREEL K, RALPH J, BOERJAN W. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905. DOI:10.1104/pp.110.155119 |
|
[19] |
KUATSJAH E, ZAHN M, CHEN XY, KATO R, HINCHEN DJ, KONEV MO, KATAHIRA R, ORR C, WAGNER A, ZOU YK, HAUGEN SJ, RAMIREZ KJ, MICHENER JK, PICKFORD AR, KAMIMURA N, MASAI EJ, HOUK KN, McGEEHAN JE, BECKHAM GT. Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(4): e2212246120. |
|
[20] |
LIAO YH, KOELEWIJN SF, van den BOSSCHE G, van AELST J, van den BOSCH S, RENDERS T, NAVARE K, NICOLAÏ T, van AELST K, MAESEN M, MATSUSHIMA H, THEVELEIN JM, van ACKER K, LAGRAIN B, VERBOEKEND D, SELS BF. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390. DOI:10.1126/science.aau1567 |
|
[21] |
BUGG TDH, AHMAD M, HARDIMAN EM, RAHMANPOUR R. Pathways for degradation of lignin in bacteria and fungi[J]. Natural Product Reports, 2011, 28(12): 1883-1896. DOI:10.1039/c1np00042j |
|
[22] |
BUGG TDH, WILLIAMSON JJ, RASHID GMM. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass[J]. Current Opinion in Chemical Biology, 2020, 55: 26-33. DOI:10.1016/j.cbpa.2019.11.007 |
|
[23] |
SUN ZH, FRIDRICH B, de SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. DOI:10.1021/acs.chemrev.7b00588 |
|
[24] |
ZHAO C, XIE SX, PU YQ, ZHANG R, HUANG F, RAGAUSKAS AJ, YUAN JS. Synergistic enzymatic and microbial lignin conversion[J]. Green Chemistry, 2016, 18(5): 1306-1312. DOI:10.1039/C5GC01955A |
|
[25] |
BECKHAM GT, JOHNSON CW, KARP EM, SALVACHÚA D, VARDON DR. Opportunities and challenges in biological lignin valorization[J]. Current Opinion in Biotechnology, 2016, 42: 40-53. DOI:10.1016/j.copbio.2016.02.030 |
|
[26] |
WOLF ME, HINCHEN DJ, DuBOIS JL, McGEEHAN JE, ELTIS LD. Cytochromes P450 in the biocatalytic valorization of lignin[J]. Current Opinion in Biotechnology, 2022, 73: 43-50. DOI:10.1016/j.copbio.2021.06.022 |
|
[27] |
BLEEM A, KUATSJAH E, PRESLEY GN, HINCHEN DJ, ZAHN M, GARCIA DC, MICHENER WE, KÖNIG G, TORNESAKIS K, ALLEMANN MN, GIANNONE RJ, McGEEHAN JE, BECKHAM GT, MICHENER JK. Discovery, characterization, and metabolic engineering of Rieske non-heme iron monooxygenases for guaiacol O-demethylation[J]. Chem Catalysis, 2022, 2(8): 1989-2011. DOI:10.1016/j.checat.2022.04.019 |
|
[28] |
KOHLER AC, MILLS MJL, ADAMS PD, SIMMONS BA, SALE KL. Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(16): E3205-E3214. |
|
[29] |
ELLIS ES, HINCHEN DJ, BLEEM A, BU LT, MALLINSON SJB, ALLEN MD, STREIT BR, MACHOVINA MM, DOOLIN QV, MICHENER WE, JOHNSON CW, KNOTT BC, BECKHAM GT, McGEEHAN JE, DuBOIS JL. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes[J]. JACS Au, 2021, 1(3): 252-261. DOI:10.1021/jacsau.0c00103 |
|
[30] |
MACHOVINA MM, MALLINSON SJB, KNOTT BC, MEYERS AW, GARCIA-BORRÀS M, BU LT, GADO JE, OLIVER A, SCHMIDT GP, HINCHEN DJ, CROWLEY MF, JOHNSON CW, NEIDLE EL, PAYNE CM, HOUK KN, BECKHAM GT, McGEEHAN JE, DuBOIS JL. Enabling microbial syringol conversion through structure-guided protein engineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13970-13976. |
|
[31] |
ELTIS LD, KARLSON U, TIMMIS KN. Purification and characterization of cytochrome P450 RR1 from Rhodococcus rhodochrous[J]. European Journal of Biochemistry, 1993, 213(1): 211-216. DOI:10.1111/j.1432-1033.1993.tb17750.x |
|
[32] |
FETHEROLF MM, LEVY-BOOTH DJ, NAVAS LE, LIU J, GRIGG JC, WILSON A, KATAHIRA R, BECKHAM GT, MOHN WW, ELTIS LD. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25771-25778. |
|
[33] |
PRIEFERT H, RABENHORST J, STEINBÜCHEL A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate[J]. Journal of Bacteriology, 1997, 179(8): 2595-2607. DOI:10.1128/jb.179.8.2595-2607.1997 |
|
[34] |
CHEN HP, CHOW M, LIU CC, LAU A, LIU J, ELTIS LD. Vanillin catabolism in Rhodococcus jostii RHA1[J]. Applied and Environmental Microbiology, 2012, 78(2): 586-588. DOI:10.1128/AEM.06876-11 |
|
[35] |
SEGURA A, BÜNZ PV, D'ARGENIO DA, ORNSTON LN. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter[J]. Journal of Bacteriology, 1999, 181(11): 3494-3504. DOI:10.1128/JB.181.11.3494-3504.1999 |
|
[36] |
NAIDU D, RAGSDALE SW. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica[J]. Journal of Bacteriology, 2001, 183(11): 3276-3281. DOI:10.1128/JB.183.11.3276-3281.2001 |
|
[37] |
ABE T, MASAI EJ, MIYAUCHI K, KATAYAMA Y, FUKUDA M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6[J]. Journal of Bacteriology, 2005, 187(6): 2030-2037. DOI:10.1128/JB.187.6.2030-2037.2005 |
|
[38] |
PEREZ JM, KONTUR WS, GEHL C, GILLE DM, MA YJ, NILES AV, UMANA G, DONOHUE TJ, NOGUERA DR. Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics[J]. Applied and Environmental Microbiology, 2021, 87(8): e02794-e02720. |
|
[39] |
JOHNSON CW, ABRAHAM PE, LINGER JG, KHANNA P, HETTICH RL, BECKHAM GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440[J]. Metabolic Engineering Communications, 2017, 5: 19-25. DOI:10.1016/j.meteno.2017.05.002 |
|
[40] |
BELL SG, XU F, FORWARD I, BARTLAM M, RAO ZH, WONG LL. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris[J]. Journal of Molecular Biology, 2008, 383(3): 561-574. DOI:10.1016/j.jmb.2008.08.033 |
|
[41] |
YOSHIKATA T, SUZUKI K, KAMIMURA N, NAMIKI M, HISHIYAMA S, ARAKI T, KASAI D, OTSUKA Y, NAKAMURA M, FUKUDA M, KATAYAMA Y, MASAI EJ. Three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6[J]. Applied and Environmental Microbiology, 2014, 80(23): 7142-7153. DOI:10.1128/AEM.02236-14 |
|
[42] |
VENTURI V, ZENNARO F, DEGRASSI G, OKEKE BC, BRUSCHI CV. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358[J]. Microbiology, 1998, 144(4): 965-973. DOI:10.1099/00221287-144-4-965 |
|
[43] |
NISHIMURA M, ISHIYAMA D, DAVIES J. Molecular cloning of Streptomyces genes encoding vanillate demethylase[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(9): 2316-2319. DOI:10.1271/bbb.60180 |
|
[44] |
BELL SG, TAN ABH, JOHNSON EOD, WONG LL. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2[J]. Molecular BioSystems, 2010, 6(1): 206-214. |
|
[45] |
BELL SG, HOSKINS N, XU F, CAPROTTI D, RAO ZH, WONG LL. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris[J]. Biochemical and Biophysical Research Communications, 2006, 342(1): 191-196. DOI:10.1016/j.bbrc.2006.01.133 |
|
[46] |
GARCÍA-HIDALGO J, RAVI K, KURÉ LL, LIDÉN G, GORWA-GRAUSLUND M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation[J]. AMB Express, 2019, 9(1): 34. DOI:10.1186/s13568-019-0759-8 |
|
[47] |
FERRARO DJ, GAKHAR L, RAMASWAMY S. Rieske business: structure-function of Rieske non-heme oxygenases[J]. Biochemical and Biophysical Research Communications, 2005, 338(1): 175-190. DOI:10.1016/j.bbrc.2005.08.222 |
|
[48] |
ERICKSON E, BLEEM A, KUATSJAH E, WERNER AZ, DuBOIS JL, McGEEHAN JE, ELTIS LD, BECKHAM GT. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion[J]. Nature Catalysis, 2022, 5: 86-98. DOI:10.1038/s41929-022-00747-w |
|
[49] |
ARAKI T, TANATANI K, KAMIMURA N, OTSUKA Y, YAMAGUCHI M, NAKAMURA M, MASAI EJ. The syringate O-demethylase gene of Sphingobium sp. strain SYK-6 is regulated by DesX, while other vanillate and syringate catabolism genes are regulated by DesR[J]. Applied and Environmental Microbiology, 2020, 86(22): e01712-e01720. |
|
[50] |
HARADA A, KAMIMURA N, TAKEUCHI K, YU HY, MASAI EJ, SENDA T. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6[J]. The FEBS Journal, 2017, 284(12): 1855-1867. DOI:10.1111/febs.14085 |
|
[51] |
KWEON O, KIM SJ, BAEK S, CHAE JC, ADJEI MD, BAEK DH, KIM YC, CERNIGLIA CE. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases[J]. BMC Biochemistry, 2008, 9: 11. DOI:10.1186/1471-2091-9-11 |
|
[52] |
LI SY, DU L, BERNHARDT R. Redox partners: function modulators of bacterial P450 enzymes[J]. Trends in Microbiology, 2020, 28(6): 445-454. DOI:10.1016/j.tim.2020.02.012 |
|
[53] |
MASAI EJ, SASAKI M, MINAKAWA Y, ABE T, SONOKI T, MIYAUCHI K, KATAYAMA Y, FUKUDA M. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate[J]. Journal of Bacteriology, 2004, 186(9): 2757-2765. DOI:10.1128/JB.186.9.2757-2765.2004 |
|
[54] |
JUNG ST, LAUCHLI R, ARNOLD FH. Cytochrome P450: taming a wild type enzyme[J]. Current Opinion in Biotechnology, 2011, 22(6): 809-817. DOI:10.1016/j.copbio.2011.02.008 |
|
[55] |
McINTOSH JA, FARWELL CC, ARNOLD FH. Expanding P450 catalytic reaction space through evolution and engineering[J]. Current Opinion in Chemical Biology, 2014, 19: 126-134. DOI:10.1016/j.cbpa.2014.02.001 |
|
[56] |
KARLSON U, DWYER DF, HOOPER SW, MOORE ER, TIMMIS KN, ELTIS LD. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate[J]. Journal of Bacteriology, 1993, 175(5): 1467-1474. DOI:10.1128/jb.175.5.1467-1474.1993 |
|
[57] |
XUE L, ZHAO YQ, LI L, RAO XR, CHEN XJ, MA FY, YU HB, XIE SX. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630[J]. Applied and Environmental Microbiology, 2023, 89(10): e0052223. DOI:10.1128/aem.00522-23 |
|
[58] |
NELSON DR. Cytochrome P450 diversity in the tree of life[J]. Biochimica et Biophysica Acta Proteins and Proteomics, 2018, 1866(1): 141-154. DOI:10.1016/j.bbapap.2017.05.003 |
|
[59] |
KOVALEVA EG, LIPSCOMB JD. Versatility of biological non-heme Fe(Ⅱ) centers in oxygen activation reactions[J]. Nature Chemical Biology, 2008, 4: 186-193. DOI:10.1038/nchembio.71 |
|
[60] |
BRUNEL F, DAVISON J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase[J]. Journal of Bacteriology, 1988, 170(10): 4924-4930. DOI:10.1128/jb.170.10.4924-4930.1988 |
|
[61] |
KAMIMURA N, TAKAHASHI K, MORI K, ARAKI T, FUJITA M, HIGUCHI Y, MASAI EJ. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism[J]. Environmental Microbiology Reports, 2017, 9(6): 679-705. DOI:10.1111/1758-2229.12597 |
|
[62] |
LANFRANCHI E, TRAJKOVIĆ M, BARTA K, de VRIES JG, JANSSEN DB. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas rieske monooxygenase[J]. Chembiochem: a European Journal of Chemical Biology, 2019, 20(1): 118-125. DOI:10.1002/cbic.201800594 |
|
[63] |
ZHANG ZH, WANG Y, ZHENG P, SUN JB. Promoting lignin valorization by coping with toxic C1 byproducts[J]. Trends in Biotechnology, 2021, 39(4): 331-335. DOI:10.1016/j.tibtech.2020.09.005 |
|
[64] |
BERMAN MH, FRAZER AC. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers[J]. Applied and Environmental Microbiology, 1992, 58(3): 925-931. DOI:10.1128/aem.58.3.925-931.1992 |
|
[65] |
KAUFMANN F, WOHLFARTH G, DIEKERT G. O-demethylase from Acetobacterium dehalogenans: substrate specificity and function of the participating proteins[J]. European Journal of Biochemistry, 1998, 253(3): 706-711. DOI:10.1046/j.1432-1327.1998.2530706.x |
|
[66] |
FURUYA T, SHITASHIMA Y, KINO K. Alteration of the substrate specificity of cytochrome P450 CYP199A2 by site-directed mutagenesis[J]. Journal of Bioscience and Bioengineering, 2015, 119(1): 47-51. DOI:10.1016/j.jbiosc.2014.05.028 |
|
[67] |
JIANG YH, WANG CL, MA NN, CHEN J, LIU CF, WANG F, XU JK, CONG ZQ. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system[J]. Catalysis Science & Technology, 2020, 10(5): 1219-1223. |
|
[68] |
PAULINO BN, SALES A, FELIPE L, PASTORE GM, MOLINA G, BICAS JL. Recent advances in the microbial and enzymatic production of aroma compounds[J]. Current Opinion in Food Science, 2021, 37: 98-106. DOI:10.1016/j.cofs.2020.09.010 |
|
[69] |
SALES A, PAULINO BN, PASTORE GM, BICAS JL. Biogeneration of aroma compounds[J]. Current Opinion in Food Science, 2018, 19: 77-84. DOI:10.1016/j.cofs.2018.03.005 |
|
[70] |
de GONZALO G, COLPA DI, HABIB MHM, FRAAIJE MW. Bacterial enzymes involved in lignin degradation[J]. Journal of Biotechnology, 2016, 236: 110-119. DOI:10.1016/j.jbiotec.2016.08.011 |
|
[71] |
SCHUTYSER W, RENDERS T, van den BOSCH S, KOELEWIJN SF, BECKHAM GT, SELS BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. DOI:10.1039/C7CS00566K |
|
[72] | |
|
[73] |
XIE NZ, LIANG H, HUANG RB, XU P. Biotechnological production of muconic acid: current status and future prospects[J]. Biotechnology Advances, 2014, 32(3): 615-622. DOI:10.1016/j.biotechadv.2014.04.001 |
|
[74] |
SKOOG E, SHIN JH, SAEZ-JIMENEZ V, MAPELLI V, OLSSON L. Biobased adipic acid: the challenge of developing the production host[J]. Biotechnology Advances, 2018, 36(8): 2248-2263. DOI:10.1016/j.biotechadv.2018.10.012 |
|
[75] |
TUMEN-VELASQUEZ M, JOHNSON CW, AHMED A, DOMINICK G, FULK EM, KHANNA P, LEE SA, SCHMIDT AL, LINGER JG, EITEMAN MA, BECKHAM GT, NEIDLE EL. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7105-7110. |
|
[76] |
NOTONIER S, WERNER AZ, KUATSJAH E, DUMALO L, ABRAHAM PE, HATMAKER EA, HOYT CB, AMORE A, RAMIREZ KJ, WOODWORTH SP, KLINGEMAN DM, GIANNONE RJ, GUSS AM, HETTICH RL, ELTIS LD, JOHNSON CW, BECKHAM GT. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4, 6-dicarboxylic acid[J]. Metabolic Engineering, 2021, 65: 111-122. DOI:10.1016/j.ymben.2021.02.005 |
|
[77] |
MORAWSKI B, SEGURA A, ORNSTON LN. Substrate range and genetic analysis of Acinetobacter vanillate demethylase[J]. Journal of Bacteriology, 2000, 182(5): 1383-1389. DOI:10.1128/JB.182.5.1383-1389.2000 |
|
[78] |
ALI KHAN B, MAHMOOD T, MENAA F, SHAHZAD Y, YOUSAF AM, HUSSAIN T, RAY SD. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals[J]. Current Pharmaceutical Design, 2018, 24(43): 5181-5187. |
|
[79] |
KAMIMURA N, GOTO T, TAKAHASHI K, KASAI D, OTSUKA Y, NAKAMURA M, KATAYAMA Y, FUKUDA M, MASAI E. A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde[J]. Scientific Reports, 2017, 7: 44422. DOI:10.1038/srep44422 |
|
[80] |
UPADHYAY P, LALI A. Protocatechuic acid production from lignin-associated phenolics[J]. Preparative Biochemistry & Biotechnology, 2021, 51(10): 979-984. |
|
[81] |
OKAI N, MASUDA T, TAKESHIMA Y, TANAKA K, YOSHIDA KI, MIYAMOTO M, OGINO C, KONDO A. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase[J]. AMB Express, 2017, 7(1): 130. DOI:10.1186/s13568-017-0427-9 |
|
[82] |
KAKKAR S, BAIS S. A review on protocatechuic acid and its pharmacological potential[J]. ISRN Pharmacology, 2014, 2014: 952943. |
|
[83] |
OTSUKA Y, NAKAMURA M, SHIGEHARA K, SUGIMURA K, MASAI E, OHARA S, KATAYAMA Y. Efficient production of 2-pyrone 4, 6-dicarboxylic acid as a novel polymer-based material from protocatechuate by microbial function[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 608-614. DOI:10.1007/s00253-005-0203-7 |
|
[84] |
ROSINI E, D'ARRIGO P, POLLEGIONI L. Demethylation of vanillic acid by recombinant LigM in a one-pot cofactor regeneration system[J]. Catalysis Science & Technology, 2016, 6(21): 7729-7737. |
|
[85] |
PYNE ME, NARCROSS L, MELGAR M, KEVVAI K, MOOKERJEE S, LEITE GB, MARTIN VJJ. An engineered Aro1 protein degradation approach for increased cis, cis-muconic acid biosynthesis in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2018, 84(17): e01095-e01018. |
|
[86] |
WU WH, DUTTA T, VARMAN AM, EUDES A, MANALANSAN B, LOQUÉ D, SINGH S. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals[J]. Scientific Reports, 2017, 7: 8420. DOI:10.1038/s41598-017-07895-1 |
|
[87] |
LI Y, CHEN FS, YANG CX. Application progress of omics technology on lignin degrading enzyme system mining[J]. Food and Fermentation Industries, 2021, 47(16): 294-299. (in Chinese) 李艳, 陈复生, 杨趁仙. 组学技术在木质素降解酶系挖掘中的应用进展[J]. 食品与发酵工业, 2021, 47(16): 294-299. |
|
[88] |
TAKEMORI S, KOMINAMI S. The role of cytochromes P-450 in adrenal steroidogenesis[J]. Trends in Biochemical Sciences, 1984, 9(9): 393-396. DOI:10.1016/0968-0004(84)90223-8 |
|
[89] |
SONG Z, GAO X, WU M, LU FP, QIN HM. Structure, function, and application of cytochrome P450 enzymes[J]. Microbiology China, 2020, 47(7): 2245-2254. (in Chinese) 宋展, 高鑫, 吴冕, 路福平, 秦慧民. 细胞色素P450酶的结构、功能与应用研究进展[J]. 微生物学通报, 2020, 47(7): 2245-2254. |
|
[90] |
GUENGERICH FP. Cytochrome P450 research and The Journal of Biological Chemistry[J]. The Journal of Biological Chemistry, 2019, 294(5): 1671-1680. DOI:10.1074/jbc.TM118.004144 |
|
[91] |
JUMPER J, EVANS R, PRITZEL A, GREEN T, FIGURNOV M, RONNEBERGER O, TUNYASUVUNAKOOL K, BATES R, ŽÍDEK A, POTAPENKO A, BRIDGLAND A, MEYER C, KOHL SAA, BALLARD AJ, COWIE A, ROMERA-PAREDES B, NIKOLOV S, JAIN R, ADLER J, BACK T, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596: 583-589. DOI:10.1038/s41586-021-03819-2 |
|
[92] |
YANG AM, ZHAO L, WU YW. Chemical synthesis and biological function of lipidated proteins[J]. Topics in Current Chemistry, 2015, 362: 137-182. |
|
[93] |
ŠREJBER M, NAVRÁTILOVÁ V, PALONCÝOVÁ M, BAZGIER V, BERKA K, ANZENBACHER P, OTYEPKA M. Membrane-attached mammalian cytochromes P450: an overview of the membrane's effects on structure, drug binding, and interactions with redox partners[J]. Journal of Inorganic Biochemistry, 2018, 183: 117-136. DOI:10.1016/j.jinorgbio.2018.03.002 |
|