微生物学通报  2024, Vol. 51 Issue (2): 381−401

扩展功能

文章信息

刘勇, 赖佳, 孙小芳, 韦树谷, 曾华兰, 陈臣, 黄玲, 盛玉珍, 叶鹏盛
LIU Yong, LAI Jia, SUN Xiaofang, WEI Shugu, ZENG Hualan, CHEN Chen, HUANG Ling, SHENG Yuzhen, YE Pengsheng
根际微生态调控白菜根肿病发生的机制研究进展
Research progress in the mechanism of rhizosphere micro-ecology in regulating the occurrence of clubroot disease in Chinese cabbage
微生物学通报, 2024, 51(2): 381-401
Microbiology China, 2024, 51(2): 381-401
DOI: 10.13344/j.microbiol.china.230587

文章历史

收稿日期: 2023-07-18
接受日期: 2023-08-24
网络首发日期: 2023-09-15
根际微生态调控白菜根肿病发生的机制研究进展
刘勇1 , 赖佳1 , 孙小芳1 , 韦树谷1 , 曾华兰1 , 陈臣2 , 黄玲1 , 盛玉珍1 , 叶鹏盛1     
1. 四川省农业科学院经济作物研究所 蔬菜种质与品种创新四川省重点实验室, 四川  成都    610300;
2. 四川省蔬菜工程技术研究中心, 四川  彭州    611934
摘要: 白菜根肿病是由芸薹根肿菌(Plasmodiophora brassicae Woron)引起的一种常见土传病害,主要危害白菜的根部。根际是土壤-植物-微生物相互作用最活跃的关键微域,根际微生态系统中的微生物失衡是导致土传病害的重要因素,深入探究根际微生态与土传病害互作机制,有利于从根际微生物、抑病物质和功能代谢等方面挖掘防控土传病害安全高效的方法。本文综述了根际微生态与白菜根肿病的发生机制关系,从该病害的危害、发生的根际微生态机制及生防菌防治研究等方面综合分析了根际微生物调控白菜根肿病发生的机制,以期为白菜根肿病防控、促进土壤健康和维持根际微生态系统稳定提供理论依据。
关键词: 白菜    根肿病    根际微生态    生防微生物    
Research progress in the mechanism of rhizosphere micro-ecology in regulating the occurrence of clubroot disease in Chinese cabbage
LIU Yong1 , LAI Jia1 , SUN Xiaofang1 , WEI Shugu1 , ZENG Hualan1 , CHEN Chen2 , HUANG Ling1 , SHENG Yuzhen1 , YE Pengsheng1     
1. The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, Sichuan, China;
2. Sichuan Province Engineering Technology Research Center of Vegetables, Pengzhou 611934, Sichuan, China
Abstract: Chinese cabbage clubroot is a common soil-borne disease caused by Plasmodiophora brassicae Woron, which mainly damages the roots of Chinese cabbage. Rhizosphere is the most active key micro-domain of plant-soil-microbiome interaction, and the microbial imbalance in rhizosphere is a primary factor leading to soil-borne diseases. Deciphering the interaction mechanism between rhizosphere micro-ecology and soil-borne diseases is beneficial for finding safe and effective ways for the control of soil-borne diseases by rhizosphere microorganisms, disease-inhibiting substances, and functional metabolism. This paper introduced the relationship between rhizosphere micro-ecology and the occurrence of Chinese cabbage clubroot and expounded the mechanism of rhizosphere microorganisms in regulating the occurrence of clubroot disease in Chinese cabbage from the harm of the disease, rhizosphere microecology, and biocontrol strains. This review is expected to provide a theoretical basis for the control of clubroot disease in Chinese cabbage, improve soil health, and maintain the rhizosphere microecosystem stability.
Keywords: Chinese cabbage    clubroot disease    rhizosphere micro-ecology    biocontrol microorganisms    

白菜是中国人日常饮食中最重要的蔬菜之一,已有3 000多年的种植历史[1]。根肿病是由芸薹根肿菌(Plasmodiophora brassicae Woron)引起的土传病害,严重危害十字花科蔬菜[2],该病害在280年前被首次报道[3]。白菜极易受根肿病的影响,据调查,近3年白菜根肿病的发病率已增加到60%以上[4]。受根肿病感染的白菜根部肿胀、地上部分萎蔫且生长停滞,严重影响了其产量和品质[5]。根肿菌地理分布广、生理小种复杂、休眠孢子囊在土壤中存活时间长[6],给根肿病的防治带来极大挑战。针对白菜根肿病的防治技术,目前国内外学者从化学、生物和农业措施等方面进行防控研究,主要包括喷施化学药剂[7]、合理轮作和施肥[8]、土壤改良[9]、施用生物菌剂和生物有机肥[10-11]、培育抗病品种[12]等,均取得了一定的防治效果。利用轮作可维持生态系统中植物物种的多样性,改善根际微生物的多样性和结构,进而保护植物免受生物胁迫[8]。土壤改良剂对根肿病抗性较低白菜的生长及土壤的团聚体形成有明显的促进作用,对协调土壤环境、维持土壤结构稳定性、保持土壤的水分养分具有重要意义[9]。化学杀菌剂防治土传病害虽见效快、成本低,但长期大量使用会使病原菌的抗药性不断增加,而且存在农药残留和环境污染等问题[13]。生物防治利用生防菌和植物之间的互利关系,通过定殖诱导宿主抗性、抗菌、调控根际微生态、竞争生态位和营养等控制病原菌,是控制土传病害的一种特异性强、安全有效、可持续和环境友好的方法[14-15]

了解根际微生态控制病原菌的作用机制是开发稳定、高效的生物防治产品或方法的前提与关键。根际是指包括根在内的土壤环境系统及其周围区域,是植物和土壤的关键介质,直接受到根系分泌物和土壤微生物的影响[16]。植物根际是微生物多样性的主要栖息地,也被认为是地球上最复杂的生态系统之一[16]。众多研究表明,根际微生物多样性的失衡会导致土传病害的发生[17-19],一些土传病原菌,如水稻纹枯病菌(Rhizoctonia solani)[20]、青枯菌(Ralstonia solanacearum)[21]和尖孢镰刀菌(Fusarium oxysporum)[22]均被证实与土壤微生态失衡密切相关。施肥不当、土壤养分缺乏和根系分泌物积累等引起土壤微环境发生变化,导致根际土壤微生物选择性适应,富集某些特定微生物种群,打破土壤微生态平衡,最终引起植物病害[23-24]。土壤健康和有益微生物的多样性是作物健康生产和病害控制的关键因素[25-28]

随着生物信息学的快速发展,土壤中微生物群落的变化已成为评估植物潜在病害发生的有效途径[29-31],宏基因组学方法也为充分认识植物、土壤和微生物之间的互作提供了机会和清晰的技术路线[32-33]。因此,利用现代生物信息技术,深入探讨根际微生态与土传病害互作机制,掌握植物-病原菌-土壤之间相关性和根际微生态的抗病机制,开发特异性强、适用性强、广谱性高、安全高效的环境友好型生防菌,可以通过调节根际微生态有效控制土传病害的发生。本文着重从白菜根肿病的危害、发生的根际微生态机制及其生物防治研究进展等方面进行探讨,对于阐明白菜根肿病根际微生态防治机制和探索潜在生防菌具有重要意义,可为白菜根肿病的有效预防及生物防治提供参考。

1 白菜根肿病的危害 1.1 症状及病原

根肿病主要危害白菜根部,病原菌入侵根部导致组织增生肿大,引起主根或侧根形成数目和大小不等的肿瘤[34]。民间用“白菜地底下长萝卜”来形容根肿病。根肿出现在主根时肿瘤大似鸡蛋但数量少,出现在侧根时肿瘤小似粟粒但数量多,出现在须根时肿瘤则成串。肿瘤有手指形、纺锤形和圆筒形等不同的形态[35-37]。肿瘤多发生在主根及侧根[6],初期时肿瘤表面光滑,后期常变粗糙,发生龟裂,严重时受害部位还会受软腐细菌等病原菌侵染,最终使植株腐烂死亡,散发臭气[38]。感染根肿病的植株根部肿大成瘤甚至腐烂,使得维管束输导系统不通畅,根系的生长和吸收能力受损,导致植株对水分和营养吸收困难;在植株整个生育期均可感病,且侵染越早发病越严重;苗期感病造成植株枯死,成株期感病,初期症状不明显,后期植株生长缓慢、明显矮小,叶片表现下垂、萎蔫、变黄,严重时全株枯死[39-40]

白菜根肿病病原是鞭毛菌亚门根肿菌属(Plasmodiophora)芸薹根肿菌(P. brassicae),是专性寄生菌,该菌有9个生理小种,我国有2个生理小种[41-43]。该病菌由原生质团构成其营养体,通过形成休眠孢子囊进行传播。休眠孢子囊单胞,略带灰色或无色,呈鱼卵块状排列密生于寄主细胞内,球形、卵圆形或椭圆形,大小(4.6‒6.0) μm×(1.6‒4.6) μm[34]。休眠孢子囊抗逆性很强,可长期存活在土壤中。在适宜环境条件时,休眠孢子囊萌发产生游动孢子,形状有球形、纺锤形和梨形等,长2.8‒5.9 µm,直径2.5‒3.5 μm;游动孢子的顶端有2根长短不等的鞭毛着生,在水中短距离游动后从根毛侵入寄主细胞;随后从根部皮层进入形成层,造成寄主形成根部肿瘤;同时产生大量休眠孢子囊,当根瘤腐烂后,休眠孢子囊进入土壤中越冬[44]。休眠孢子囊萌发的适宜温度是18‒25 ℃,环境潮湿有利于其萌发及游动孢子的侵入[34, 45]

1.2 病原菌的生活史

芸薹根肿菌的生活史分为在土壤中存活、感染寄主根毛和皮质感染3个不同阶段[46-47]。受根肿菌感染的白菜根部碎裂产生游动孢子囊原质团,这些游动孢子囊可以在根毛和表皮细胞中形成簇;每个游动孢子囊含有4‒16个游动孢子,萌发后释放游动孢子,游动孢子穿透根毛,称为初侵染阶段;随后,在宿主根毛中,病原体的多核初级原生质体形成,生长直至释放次级游动孢子,这些游动孢子通过感染宿主根毛再次穿透根皮层[47] (图 1)。

图 1 芸薹根肿菌侵染循环图 Figure 1 The infection cycle of Plasmodiophora brassicae.
1.3 发生与危害

根肿病危害白菜、油菜、甘蓝等十字花科蔬菜较为严重,其病原菌在土壤中存活时间可长达15‒20年[46],给病害防控带来长期挑战并造成一定的困难。根肿病广泛分布于全球,在热带国家温和潮湿的山区尤为普遍,侵染超过300种十字花科植物,给全球十字花科作物的产量和品质造成严重损失[47]。据报道,1736年在英格兰和南欧的地中海西部最早发现根肿病,1872年因在苏联边境地区大量发生而引起重视[10]。目前,北美、欧洲和亚洲的日本等超过60个国家和地区的十字花科植物均受根肿病危害,每年导致全球10%‒15%的产量损失[48-49]

在中国,根肿病最早发生于1936年的台湾,之后逐步蔓延至如今的西南和长江中下游等地,年危害面积约占十字花科作物种植面积的三分之一,为320万‒400万hm2,发病率为35%‒100%,造成20%‒90%的产量损失[10]。中国是大白菜的主要生产国[50],在中国的西南[51]、东北和中部[52-53]大白菜年均种植面积达267万hm2。近年来,根肿病严重威胁白菜生产[54],在病害发生严重的年份,白菜受害面积达900万hm2,造成平均产量损失20%‒30%[53, 55]。重庆、湖北、四川、湖南、云南和浙江等地受此病害影响最大,严重地块产量损失大于60%[56-57]

2 发生的根际微生态机制 2.1 土壤理化性质

温度、湿度、光照以及土壤的物理和化学特性等环境因子较大地影响植物、病原菌和生防菌之间的相互作用,进而引起寄主植物的生理变化并影响病害发展[58]。土壤的类型、容重大小、温度、pH[59]、土壤含水量[60]和营养元素[61] (钙、钾、氮、硅和硼等)含量都会影响芸薹根肿菌的侵染。研究表明在未施用生物杀菌剂时,根肿病在泥炭土和沙质土发病最严重,而在矿质土则较低,使用生物杀菌剂时根肿病的严重程度也与土壤类型有明显相关性[62]。前人研究发现,土壤接种芸薹根肿菌休眠孢子3周后,泥质土和矿质土中根肿病发病较重,无土栽培混合基质中发病较轻,砂性土则处于两者之间[63]。一般而言,根肿病在严重淹水和压实的土壤发病较重,而排水良好的土壤则不利于该病的发生,这可能是因为土壤孔隙度的大小影响了游动孢子的运动[64]

土壤温度在9‒30 ℃条件下根肿菌都能生长发育,18‒25 ℃为根肿病的适宜发病温度[51, 65],21 ℃为根肿菌休眠孢子的最佳侵染温度[66]。5‒10 ℃条件下,根肿病菌侵染力弱,发病轻甚至不发病;15‒30 ℃条件下随温度升高根肿病发病率增加;但在35 ℃条件下发病率降低[67];当温度达到45 ℃时,根肿菌休眠孢子则失活[68]。土壤含水量极大地影响根肿病的发生。研究发现,根肿菌以土壤含水量60%‒80%最为适宜发病[69]。土壤含水量低于40%有利于控制根肿病的发生[60],在温室试验中,当土壤中根肿菌休眠孢子密度为105 CFU/g,土壤水分为40%、60%和80%时,根肿病发病率随土壤水分的增加而升高;但在土壤含水量为40%时,无论土壤中根肿菌休眠孢子密度为多少,白菜根肿病发病率仍很低[59]。周瑚等[69]研究表明,土壤含水量低于20%时根肿病基本不发病,而在60%时发病最严重,高于80%时又不发病。土壤pH是影响根肿菌休眠孢子萌发和寿命的关键因素,进而影响根肿菌根毛感染和定殖[70-71]。根肿菌喜好偏酸性的土壤,其休眠孢子在酸性土壤中萌发较快,碱性pH可以减少根毛感染及抑制休眠孢子萌发[72]。研究发现,当土壤pH值在5.4‒7.7的范围内根肿病均可发病,在pH值为5.0‒6.0时发病严重,高于7.0时发病率降低[67],pH值大于7.7时则不易发病[73-74],大于9.0时病害则完全不发生。因此,根肿病通常在偏酸性土壤、排水不好、通气性差、腐殖质含量低和土壤结构不良的低洼地块发病较重[66]

土壤中营养元素较大地影响根肿病的侵染和病情发展[75]。钙一方面引起宿主抵抗病原菌的生理变化,另一方面还影响宿主和病原菌的代谢互作、信号转导,进而影响病情发展[76]。研究发现,长期施用富含钙的有机质使土壤pH值升高,进而影响土壤微生物,抑制了根肿病的发生[77]。张赛莉等[78]肥效试验结果表明,单独或混合施用过磷酸钙和镁肥都可以抑制根肿病的发生。研究发现,在长期缺钾的环境中根肿病发生减少,证明钾也许是根肿菌孢子和寄主生长的必需元素[39, 79-80]。刘建荣等[81]在根肿病防治试验中得出,腐熟农家肥和高锰酸钾配合使用对根肿病的发生有较好的抑制作用。也有研究发现,与患病根际土壤相比,健康根际土壤的有效钾含量显著增加(P < 0.05)[1]。氮对根肿病的影响在早期有所报道,较多的硝态氮可使其与铵态氮转化的某些辅酶缺乏,进而影响病原菌活性;另外,植物在大量硝态氮的刺激下可产生较多的组蛋白,减少病原菌中RNA聚合酶合成,并最终抑制病原菌致病所需基因产物形成[61, 63]。Aigu等[82]研究发现,根肿病发病率和硝酸盐浓度呈负相关关系。Murakami等[83]研究发现,根肿病病情指数在施用氰胺钙处理中显著降低。吴国萍等[84]通过分析两年不同地区的土壤有效氮含量的变化,发现油菜根肿病的发病率随土壤有效氮含量增加而降低,表明有效氮不足的土壤有利于油菜根肿病的发生。王双[85]研究表明,根肿菌休眠孢子萌发率在一定范围内随硅的浓度升高而降低,其在根毛中的发育也受到一定抑制。硼的施用可使植物细胞壁和质膜结构的稳定性增强,阻碍病原菌侵染皮层,影响根肿菌的发育;硼还可能通过增加细胞质的pH值来抑制芸薹根肿菌繁殖,或诱导合成次生代谢产物抵抗病原菌[63]。据报道,青蒿与紫茎泽兰处理土壤后白菜产量分别提高166.70%和266.70%,对白菜根肿病的平均防治效果分别为45.90%和50.20%,均显著高于球茎甘蓝处理的增产效果25.90%及其防治效果3.40%[86]。紫茎泽兰的增产效果最高,这可能是因为土壤有效地利用了其降解后释放的大量营养元素,进而提高大白菜的产量。

总而言之,土壤理化性质极大地影响白菜的生理变化和根肿病的发展,多种因子综合作用共同影响白菜根肿病的发生,且在一定程度上发挥着不同的作用,土壤pH和温湿度可能对根肿病影响最大。大多数研究表明,在一定范围内,白菜根肿病发病率与土壤pH、有效氮含量和钙、钾、硅、硼含量呈负相关关系,与土壤水分和土壤容重大小呈正相关关系。因此,土壤在低pH值、高有效氮、高钙、高钾、高硅、高硼和含水量低的环境因子条件下可以有效抑制白菜根肿病的发生。土壤改良正是利用添加生物质炭、生石灰、腐殖酸钠和玉肥等来改善土壤容重、土壤持水量和pH值等土壤理化性质,从而提高土壤团聚体稳定性和土壤肥力,改变土壤微生物群落,改善根际环境,促进有益微生物生长,进而降低根肿病对白菜造成的损失[9]。土壤中的氮、磷和钾养分是白菜生长所需的基本肥效成分,有机质的含量是土壤微生态中不可或缺的碳源,是土壤肥效发挥的基础。土壤理化性质关系着土壤养分平衡,在不同环境条件下,对作物病害的防治效果会有较大差异,这使得许多防治措施受到了一定的限制。因此,在对白菜根肿病进行防治时,关键的是既要确定在何种条件下对根肿菌的防治是成功的,更要确定在何种条件下是无效的。

2.2 根系分泌物

根系分泌物是植物衍生的代谢物,主要由糖类、黄酮类、有机酸类和次生代谢物等组成[87]。根系分泌物影响土壤中碳和养分循环,并作为营养物质和信号来构建根系相关的微生物群落,通过化感自毒作用[88-89]、招募根际微生物[90-92]和改变根际微生态环境[93-94]等影响土传病害的发生。

根系分泌物可以直接或通过调节根际微生物在寄主植物识别病原菌及抗病性防御反应中发挥重要作用。植株根系分泌物中的抗毒抗菌物质能够直接对病原微生物的生长繁殖产生抑制作用[66, 95],同时选择性富集土壤中的有益微生物,稳定土壤微生态系统,为作物提供良好的土壤生长环境;根系分泌物富集的有益微生物中有些具有一定的诱抗作用,帮助植株进一步抵御病虫害的侵袭[96]。大量研究发现,植株在受到病原微生物威胁时能产生大量的防御化合物,作为重要的防御物质分泌到土壤中,引起土壤理化性质的变化,恶化天敌的生存环境,抑制病原菌的生长繁殖,起到自我保护的作用[66, 97]。研究表明,大白菜和油菜的根系分泌物培养的根肿菌休眠孢子的萌发率分别为10.00%和9.50%,而在营养液和无菌蒸馏水中培养的孢子萌发率分别只有4.00%和3.00[72]。盆栽试验研究结果表明,与单作大白菜相比,大白菜与洋葱轮作系统中根肿病发病率降低了33.33%,病情指数降低了37.50 (P < 0.05);与对照处理组相比,添加洋葱根系分泌物显著降低了根肿病的发病率和病情指数(P < 0.05),分别降低了37.04%和27.78%[98]。洋葱根分泌物降低了白菜根肿病菌次级原生质团的数量和病菌PRO1基因的表达,在大白菜-洋葱轮作系统中可能对抑制根肿病起重要作用[98]

根系分泌物也会影响根际微生物的多样性和土壤微生态群落结构的稳定,植株根系分泌物为根际微生物提供碳源及大部分能量,同时也影响微生物的积累、生长发育与代谢[99]。土壤pH值和根系分泌物组成导致植物生长不同阶段土壤微生物群落的变化[100]。研究发现,油菜之前种植大豆,根肿病发病率和病情指数分别降低了40.00%和50.00%,这可能是因为大豆根系分泌物显著募集了鞘氨醇单胞菌属(Sphingomonas)、芽孢杆菌属(Bacillus)、链霉菌属(Streptomyces)和木霉菌属(Trichoderma)等根际微生物,从而抑制了根肿菌的生长发育;但连续种植十字花科作物显著积累了植物病原菌,包括根肿菌、油壶菌弯孢霉(Olpidium)和炭疽菌(Colletotrichum sp.) (P < 0.05)[24]

总而言之,不同作物释放的根系分泌物对白菜根肿病的影响不同。在无合适活寄主的情况下,洋葱、大豆等作物根系分泌物诱导根肿菌休眠孢子的萌发,导致游动孢子死亡,从而减少了土壤中芸薹根肿菌的含量,降低了根肿病的严重程度;而白菜、油菜等作物的根系分泌物显著积累了芸薹根肿菌,促进了根肿病的发生。根系分泌物的数量和质量受温度、光照和土壤湿度等外界环境影响较大,也和作物类型与植株年龄相关[101]。同时,植株根系分泌物中有许多代谢物质,这些物质对根肿菌休眠孢子的影响不同。因此,今后应加强以下方面的研究:(1) 积极收集提取根系分泌物,完善未知组分的分离和鉴定;(2) 利用多组学技术深入探讨研究土壤理化性质-根际微生物-根系分泌物互作及其防控白菜根肿病的作用机制。

2.3 根际微生物

根际土壤是植物和土壤微生物的关键媒介,其中发生了大量化学和生物化学相互作用[102]。在过去5年中,许多研究结果证实,根际微生物群是抵御土传病原菌入侵的第一道防线[103-105]。根际微生物通过生态位排斥和竞争营养[106]、定殖和产生次生代谢产物[107]、直接拮抗等来抑制病原菌[108],从而抑制土传真菌病害的发生。此外,有益根际微生物还可诱导植物产生免疫抗性[109-110]

假单胞菌属(Pseudomonas)、溶杆菌属(Lysobacter)、芽孢杆菌属和木霉菌属是目前证实对土传真菌病害防效较好的生防菌。田间试验表明,大豆、洋葱和小麦与白菜轮作显著增加土壤细菌的丰富度和多样性(P < 0.05),降低了真菌的丰富度和多样性[111]。大豆、洋葱和小麦与白菜轮作处理中根肿病病情指数显著低于大蒜与白菜轮作对照组(P < 0.05),溶杆菌属的相对丰度也显著高于对照组,这可能是因为溶杆菌可以产生抗真菌化合物,抑制白菜根肿菌休眠孢子的繁殖,从而控制根肿病的发生[44]。另一项田间研究证明,苜蓿链霉菌(Streptomyces alfalfae) XY25T通过改变白菜根际微生物群落,使担子菌门(Basidiomycota)相对丰度显著降低,草螺菌属(Herbaspirillum)相对丰度显著增加,降低了真菌多样性,对根肿病起到了显著的抑制作用[112-113]。田间施用哈茨木霉(Trichoderma harzianum)处理中白菜根际微生物群落中链格孢属(Alternaria)、镰孢菌属(Fusarium)、假单胞菌属和Delftia属相对丰度显著降低,芽孢杆菌属、马赛菌属(Massilia)、粘液杆菌属(Mucilaginibacter)和鞘氨醇单胞菌属相对丰度显著增加,根肿病发病率降低了45.40% (P < 0.05),根肿病田间防效达到63.00%[114]。盆栽试验研究表明,白菜连作根际土壤富集假单胞菌属、葡萄球菌属(Staphylococcus)和阿克曼菌属(Akkermansia)等使得根际土壤微生物种群较少,而大豆与白菜轮作的根际土壤中增加了根瘤菌(Rhizobium sp.)、鞘氨醇单胞菌等有益微生物菌的群落多样性,显著增加了小被孢霉属(Mortierella)的丰度,显著降低了白菜根肿病病情指数[115]。田间试验表明,氟啶胺通过改变根际微生物群落使白菜根肿病病情指数降低到0.95,防治效果达98.72%[116]。周金华[117]在研究根肿病特性及其生物防治时证实,黄白链霉菌(Streptomyces alboflavus) SP12和娄彻氏链霉菌(Streptomyces roche) D74通过提高植物抗性及改善根际微生物群落结构来防治白菜根肿病。

以上研究结果表明,根际微生物较大地影响芸薹根肿菌的侵染。当白菜受到根肿菌侵害时,土壤理化性质、根系分泌物和根际微生物三者相互作用共同影响根肿病的发生(图 2)[13]。根际微生物在三者中起主导作用,同时也会随土壤理化性质和根系分泌的变化而发生变化,最终使白菜根际微生态达到稳定、健康和动态平衡的状态,直接或间接抑制根肿菌[13, 118]。然而,目前大多数根际微生物的功能还有待发现,它们和抑病物质的相关性及根系互作机理等方面仍需深入研究,进而揭示白菜根肿病根际微生态作用机制:(1) 芸薹根肿菌对白菜的持续影响富集了哪些根际微生物;(2) 植物分泌物在富集这些微生物中的作用;(3) 富集的根际微生物通过什么机制保护白菜抵御根肿病。

图 2 根际微生态调控白菜根肿病发生机制 Figure 2 Mechanism of rhizosphere microecology regulating clubroot disease of Chinese cabbage.
3 生防菌防治

针对白菜根肿病的防治技术,国内外学者研究从化学、生物和农业措施等方面进行防控,主要包括喷施化学药剂、合理轮作和施肥、土壤改良、施用生物菌剂和生物有机肥、培育抗病品种等,均取得了一定的防治效果。

微生物介导的生物防治为可持续农业提供了一种理想的解决方案,以满足日益增长的农业需求。土传病害的生物防治方法主要是利用生防真菌(如木霉菌、酵母菌)、生防细菌(如芽孢杆菌、假单胞菌)和生防放线菌(如链霉菌、非链霉菌)等生防菌或复合菌系或生防菌结合底物(即生物有机肥)进行防治[13]。生防菌和植物之间存在互利关系,它们在植物的某些部位定殖而不引起任何明显的病征,并且它们还与病原菌竞争生存空间和营养[119-120]。生防菌通过直接或间接机制保护植物免受生物胁迫和非生物胁迫[55, 121],主要包括通过定殖诱导宿主抗性、抗菌和竞争生态位和营养。直接作用机制是通过获取必需的大量营养元素(氮和磷)、微量营养元素(铁)和产生某些激素(赤霉素、生长素和细胞分裂素)[122-124],间接作用机制是生防菌通过产生抗菌物质[125-127]或挥发性有机化合物(volatile organic compounds, VOCs)[128-129],一方面直接拮抗作用抑制植物病原菌(细菌、真菌、线虫、原生生物和病毒)的生长[130],并与病原菌竞争铁;另一方面诱导植物抗性[131-132]

3.1 生防真菌

木霉属是目前应用最多的防治土传真菌病害的生防菌。木霉属因其广谱性高、适应性强、多机制等特点在病害防治中发挥着重要作用,如哈茨木霉、长枝木霉(Trichoderma longibrachiatum)、绿色木霉(Trichoderma viride)和钩状木霉(Trichoderma hamatum)都是土传真菌的拮抗菌[133-134]。研究表明,田间条件下生物炭和哈茨木霉单一或结合施用白菜根肿病发病率均降低,产量提高;同时,土壤理化性质得到改善,其配合施用效果显著高于单施,平均防治效果达51.34%[10]。魏艳丽等[135]通过盆栽试验研究结果表明,8 mg/L臭氧水消毒土壤3 d后,再使用木霉菌处理土壤和白菜种子可显著消减根际土壤中的芸薹根肿菌,对根肿病的防效为91.71%,并使白菜鲜重增加41.83%。田间施用哈茨木霉改变了白菜根际微生物群落中细菌和真菌的相对丰度和多样性,根肿病发病率降低了45.40% (P < 0.05),田间防效达到63.00%[114]。绿色木霉使白菜根肿菌休眠孢子的萌发率降至25.30%,并在温室条件下使白菜根部肿瘤增生减少56.70%[136]

3.2 生防细菌

生防细菌种类和数量多、繁殖速度快、作用范围广,在适宜的条件下能迅速占据生态位并定殖,与植物建立密切联系。从根际土壤中可分离到大多数生防细菌,有利于其在土壤中的定殖,植物根际促生菌(plant growth promoting rhizobacteria, PGPR)在促进植物生长和抑制病原菌等方面研究较多,其中芽孢杆菌和假单胞菌在防治土传病害中应用广泛[13]。据报道,田间条件下生物炭和枯草芽孢杆菌(Bacillus subtilis)单一或结合施用时白菜根肿病发病率均降低,产量提高;同时还能改善土壤理化性质,其配合施用效果显著高于单施,平均防治效果达45.84%,若再配施哈茨木霉菌,平均防治效果可达73.84%[10]。研究表明,枯草芽孢杆菌NCD-2在温室试验中使根肿病的发病率和严重程度分别降低47.70%和51.60%,这可能是因为枯草芽孢杆菌NCD-2产生的抗菌代谢产物丰原素在抑制白菜根肿病和降低其发病率中发挥重要作用[126]。另一项研究则证实,在温室盆栽和大田条件下,枯草芽孢杆菌XF-1产生的丰原素一方面增强了植株对白菜根肿菌感染的抑制作用[57],使根毛感染率降低83.90% (P < 0.05);另一方面,通过茉莉酸和水杨酸信号通路增强了植物防御激活[14]。盆栽试验研究结果表明,蜡状芽孢杆菌(Bacillus cereus) MZ-12对白菜根肿菌的休眠孢子萌发有抑制作用,抑制效果为73.40%,同时也可使白菜根部肿瘤形成减少64.00%[137]。此外,在一项田间试验中,施用适宜浓度的假单胞菌能有效地减轻大白菜根肿病的严重程度,但对其产量无影响[138]

3.3 生防放线菌

生防放线菌能产生抗菌物质及细胞裂解酶等起到抗菌作用,在防治土传真菌方面受到高度重视[139],由于链霉菌具有易分离或产生特殊抗生素等优势,所以在生物防治方面的研究较多。盆栽试验研究表明,黄白链霉菌SP12和娄彻氏链霉菌D74可显著降低根肿病的发病率与病情指数,发病率分别降低50.0%和41.7%,病情指数分别降低20.3%和19.4%[140]。王靖等[141]从白菜根际土壤中分离到菌株灰红链霉菌(Streptomyces griseoruber) A316及链霉菌A10,该两菌株对白菜根肿病的室内盆栽防效分别为72.80%和67.20%,而大田小区试验中防效依次达68.50%和56.70%,且可分别使白菜单位面积产量增加96.10%和64.90%。另一项田间试验表明,施用苜蓿链霉菌XY25T可以缓解土壤酸化,增加土壤有机质和氮、磷、钾等含量,并增强转化酶、脲酶、过氧化氢酶和碱性磷酸酶活性;在白菜生长过程中,细菌多样性先降低后升高,真菌多样性逐渐降低,对白菜根肿病的防效为69.4%,起到了显著的抑制作用[112]

3.4 复合菌系

直接利用单一生防菌在特定环境条件下对白菜根肿病防治有一定效果,但是应用到实际生产中很难达到预期效果,利用复合菌系防治白菜根肿病也许更为有效。Zhang等[55]在田间试验中评估了生防细菌作为单一菌株、属间/属内复合菌系以及微生物菌群对白菜产量和根肿病的影响,结果表明,抗生溶杆菌(Lysobacter antibioticus) 13-6、辣椒溶杆菌(Lysobacter capsici) ZST1-2和蜡状芽孢杆菌(Bacillus cereus) BT-23组成的菌群处理组白菜产量较三者单一施用处理组均显著增加,较感病对照组增加146.50%,根肿病防效为65.78%,较三者单一施用处理组分别增加15.55%、7.09%和31.59%;抗生溶杆菌13-6和蜡状芽孢杆菌BT-23属间复合菌剂处理组白菜产量显著高于两者单一施用处理组,根肿病防效为58.32%,较两者单一施用处理组分别增加8.09%和24.13%;但抗生溶杆菌13-6和辣椒溶杆菌ZST1-2属内复合菌剂处理组白菜产量与两者单一施用处理组均无显著差异,根肿病防效为45.54%,较两者单一施用处理组分别降低4.69%和13.15%。然而另一项田间试验则发现,哈茨木霉和枯草芽孢杆菌复合菌剂对根肿病的防效为40.17%,较两者单施分别降低4.00%和0.17%[10]

一些研究表明,由于广泛的宿主范围和高度的物种复杂性,仅使用生防菌不能产生较好的防治效果。然而,当这些拮抗菌株与有机肥、生物有机肥和生物质炭联合使用时,生物防治效果可显著增加[10, 56]。解国玲等[10]研究表明,田间条件下,生物炭和哈茨木霉菌、枯草芽孢杆菌结合施用显著降低白菜根肿病发病率,提高白菜产量,平均防治效果达到73.84%,显著高于单施。江瑶[56]开展了微生物菌剂防治白菜根肿病的田间小区研究,结果表明枯草芽孢杆菌、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)结合有机肥施用,对抑制根肿病的发生、侵染及致病具有较好的作用,枯草芽孢杆菌+有机肥处理的防治效果达81.52%,解淀粉芽孢杆菌+有机肥处理的防治效果达到75.00%,白菜生物产量和经济产量显著提高,增产幅度为10%‒30%。

综上所述,单一的生防菌在特定的环境条件下对白菜根肿病防治有一定效果,然而复合菌剂的施用对白菜根肿病的防效较单施既有显著增加的也有降低的。造成此结果的原因可能是不同生防菌之间存在互利共生和相互拮抗关系。因此,生防菌属内复合菌系对白菜根肿病的防效可能因它们之间的拮抗关系而降低,属间复合菌系对白菜根肿病的防效则可能因它们之间的互利共生或相互拮抗关系而增加或降低。另外,生防菌与有机肥、生物有机肥和生物质炭联合使用时其防治效果可显著增加,这可能是因为生物炭和有机肥、生物有机肥的添加对微生物和土壤养分起到了调节作用,有助于促进生防菌的繁殖并延长其生存期,从而抑制根肿菌的侵染,降低发病率。生防菌的应用限制了根际微生物对资源的竞争,因为不同微生物在根际占据着不同生态位。然而,微生物群落如何影响根肿病的发展仍属未知,需要进一步深入研究。

4 展望

土传病害的发生是作物与土壤系统相互作用的综合表现,涉及土壤微生物群落多样性的变化、化感物质的积累、土壤养分的失衡和土壤理化性质的退化。这些变化相互影响、共同作用,最终导致土传病害的发生[142-143]。根肿菌是十字花科作物上非常关注的问题[38, 144],由于其地理分布广、宿主范围广、物种复杂和抗性强,白菜根肿病的绝对防控极具挑战性[55]。施用农药会造成环境污染并引起公众健康问题,因此迫切需要生态友好的防治方法。

生物防治是控制土传病害的一种有发展前途的方法[15]。微生物群落是影响土壤健康的重要生物指标。同时,土壤微生物多样性、组成和功能是维持长期生态系统平衡和控制植物土传病害暴发的重要因素。植物和根际土壤是不同微生物群落的栖息地,这些微生物群落及其相互作用在维持微生物群落的稳定性和植物健康方面起着关键作用。植物、土壤和微生物之间的相互作用非常复杂,这导致根际中形成不同的微生物适应性、种群动态和功能能力[145]。研究表明,土壤理化性质的恶化、土壤微生物区系的失衡和根际微生物多样的变化会导致青枯病(R. solanacearum)、黑胫病(Phytophthora nicotianae)和枯萎病(Fusarium vascular)等土传病害的发生[26, 146]。因此,以健康土壤为核心,从土壤健康、土壤培肥等角度,从生防菌系向微生物群落、代谢产物等生态系统防治延伸,结合合理施肥、轮作倒茬等多方面进行生物防治,发展健康的土壤环境和多样的微生物菌群对土传病害的生态防控具有重要意义[13]。白菜根肿病的防治不能归因于单一的细菌或真菌类群,这种防治很可能由微生物群落网络控制[55, 111, 113-114]。因此,以内生菌和根际细菌形式的宿主特异性生物防治剂(biological control agents, BCAs)进行生物防治,为可持续农业提供了巨大的机会[55]

目前,有关白菜根肿病防治的研究文献较多,但研究多集中在喷施化学药剂、合理轮作和施肥、土壤改良、施用生物菌剂和生物有机肥、培育抗病品种等方面,且主要从这些措施对白菜产量和根肿病防治效果的影响方面进行了详细研究。本研究团队长期从事白菜抗病育种研究,多年来对白菜类蔬菜抽薹性进行了鉴定评价,获得了极耐抽薹种质资源80份[147],其中部分种质资源对根肿病具有较强的抗性。通过多年的努力,本团队创制出抗根肿病的不同类型白菜新材料并用于抗根肿病白菜新品种选育,制定了《大白菜生产技术规程》[148],对苗期和定植后白菜根肿病的防治提出了相应措施。然而,病原菌、宿主植物和土壤微生物之间的相互作用对于特定病害抑制的发生和持续是必要的。病原菌抗性、生态适应性和微生物竞争等因素均会影响拮抗菌的防治效果[13]。但是不同的根际微生物种群互作将产生多样的抑菌物质,有助于抵御土传病原菌的侵害[13]。上述研究已证实,根系分泌物作为植物-微生物组的关键媒介,能够响应根肿菌并招募有益微生物,但根肿菌、有益微生物和根系分泌物在病害防治过程中的确切关系目前尚不清楚,根肿菌对白菜的持续影响富集了哪些微生物,植物分泌物在富集这些微生物中的作用,以及富集的微生物通过什么机制保护白菜抵御根肿病等有待于进一步研究。

本文对白菜根肿病的危害、发生的根际微生态机制及生防菌防治等方面进行了综述。同时,提出一些适宜控制该病害的建议:(1) 分离和鉴定与白菜根肿病相关的细菌、内生菌和根际细菌,利用这些生防菌在根际和植物部位具有良好的适应和定殖能力来防控该病害;(2) 多种微生物的联合应用或拮抗菌与有机肥、生物有机肥和生物质炭等的配合施用可以有助于开发一个复杂的土壤微生物网络,重组根际微生物群落,从而控制白菜根肿病;(3) 在防治机理、微生态调控、专用配方、使用方法等方面进行深入研究,利用生物技术工具对生防菌进行基因改造,以提高其生物防治效果。另外,虽然生防菌的分离是一项费力且耗时的工作,但是白菜根肿病生物防治在以下方面还需要进一步的研究:(1) 通过高通量测序、宏基因组学、代谢组学和蛋白组学等技术及更加综合的网络关系分析来揭示微生物-土壤-作物系统的生态互作关系;(2) 验证富集的根际微生物组是否能够抑制白菜根肿菌;(3) 掌握这些微生物类群抑制白菜根肿菌生长的机制;(4) 在实验室研发并从实践中挖掘针对性强、价格低、稳定高效、适用于农田生产的生态产品;(5) 提出控制白菜根肿病的有效生物防治方法。通过采取上述策略再结合合理施肥、轮作倒茬等其他防治措施,相信可以在不久的将来实现对白菜根肿病的持久生物防治。

REFERENCES
[1]
NI HP, ZONG R, SUN JJ, WU YX, YU L, LIU YY, LIU J, JU RC, SUN XL, ZHENG YL, TAN LK, LIU LM, DONG YC, LI T, ZHANG YM, TU Q. Response of bacterial community to the occurrence of clubroot disease in Chinese cabbage[J]. Frontiers in Microbiology, 2022, 13: 922660. DOI:10.3389/fmicb.2022.922660x63|2018|||
[2]
STREHLOW B, de MOL F, STRUCK C. Risk potential of clubroot disease on winter oilseed rape[J]. Plant Disease, 2015, 99(5): 667-675. DOI:10.1094/PDIS-05-14-0482-RE
[3]
HEO SH, JANG SJ, CHOI JS, JANG CS, SONG JY, KIM HG. Chinese cabbage clubroot pathogen, Plasmodiophora brassicae, is genetically stable[J]. Mycobiology, 2009, 37(3): 225. DOI:10.4489/MYCO.2009.37.3.225
[4]
HASAN J, MEGHA S, RAHMAN H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management[J]. Genome, 2021, 64(8): 735-760. DOI:10.1139/gen-2020-0089
[5]
HAN XM, ZHAI BR, NIU QJ. Research progress on resistance of Chinese cabbage to clubroot[J]. Xiandai Horticulture, 2022, 45(19): 87-89. (in Chinese)
韩雪梅, 翟炳仁, 牛巧菊. 大白菜抗根肿病研究进展[J]. 现代园艺, 2022, 45(19): 87-89. DOI:10.3969/j.issn.1006-4958.2022.19.033
[6]
PENG YL. Clubroot distribution, pathotype of Plasmodiophora brassicae in Sichuan and clubroot resistance[D]. Chengdu: Doctoral Dissertation of Sichuan Agricultural University, 2018 (in Chinese).
彭宇龙. 四川省根肿病分布、根肿菌小种及根肿病抗性研究[D]. 成都: 四川农业大学博士学位论文, 2018.
[7]
HU JK, HUANG R, TAN GJ, DING YH, HUA JL, LI XS, BAO ZM, HUANG RR. Comparison of control effects of different medicaments and disease-tolerant variety on clubroot disease of Chinese cabbage[J]. Acta Agriculturae Jiangxi, 2018, 30(6): 49-51, 56. (in Chinese)
胡建坤, 黄蓉, 檀根甲, 丁云花, 华菊玲, 李信申, 鲍周明, 黄瑞荣. 大白菜根肿病不同药剂防治与品种应用效果比较[J]. 江西农业学报, 2018, 30(6): 49-51, 56.
[8]
ZHANG JH, AHMED W, ZHOU XH, YAO B, HE ZL, QIU Y, WEI FJ, HE YL, WEI LF, JI GH. Crop rotation with marigold promotes soil bacterial structure to assist in mitigating clubroot incidence in Chinese cabbage[J]. Plants, 2022, 11(17): 2295. DOI:10.3390/plants11172295
[9]
ZHANG YH, WANG PF, ZHANG Q, TIAN T, LI YH, XU JQ, ZHANG GP, SHI J. Effect of biochar based amendment on soil aggregate structure and the growth of Chinese cabbage (Brassica bara L.) with different resistance[J]. Journal of Safety and Environment, 2022, 22(2): 1019-1026. (in Chinese)
张应华, 王鹏飞, 张秋, 田滔, 李永荟, 许俊强, 张国平, 史静. 生物质炭基改良剂对土壤团聚体结构和不同根肿病抗性白菜生长的影响[J]. 安全与环境学报, 2022, 22(2): 1019-1026.
[10]
XIE GL, ZHANG ZH, WU LT, LIU JW, XU QJ, FU KJ, NIE Q, ZHANG JL, LIN C, CHEN WH, SU YB. Effect of biochar application combined with microbial agent on prevention and control of Plasmodiophora brassicae of Chinese cabbage[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(1): 105-111. (in Chinese)
解国玲, 张智浩, 吴流通, 刘佳伟, 徐权杰, 付克剑, 聂强, 张继来, 林春, 陈文华, 苏友波. 生物炭配施微生物菌剂对白菜根肿病防控效果研究[J]. 西南农业学报, 2023, 36(1): 105-111.
[11]
AHMED A, MUNIR S, HE PF, LI YM, HE PB, WU YX, HE YQ. Biocontrol arsenals of bacterial endophyte: an imminent triumph against clubroot disease[J]. Microbiological Research, 2020, 241: 126565. DOI:10.1016/j.micres.2020.126565
[12]
LI GQ. Study on control techniques of clubroot disease of alpine Chinese cabbage in Lixian County, Sichuan Province[D]. Chengdu: Master's Thesis of Sichuan Agricultural University, 2018 (in Chinese).
李光乾. 四川理县高山大白菜根肿病防治技术研究[D]. 成都: 四川农业大学硕士学位论文, 2018.
[13]
GAO YH, ZHENG ZH, ZHANG Y, HU YG, WANG XF. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review[J]. Journal of China Agricultural University, 2021, 26(6): 100-113. (in Chinese)
高游慧, 郑泽慧, 张越, 胡跃高, 王小芬. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100-113.
[14]
HE PJ, CUI WY, MUNIR S, HE PB, HUANG RR, LI XY, WU YX, WANG YH, YANG J, TANG P, HE YQ, HE PF. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation[J]. Journal of Cellular Physiology, 2023. DOI:10.1002/JCP.30991
[15]
ABDELAZIZ AM, HASHEM AH, EL-SAYYAD GS, EL-WAKIL DA, SELIM S, ALKHALIFAH DHM, ATTIA MS. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria[J]. Tropical Plant Pathology, 2023, 48(2): 105-127. DOI:10.1007/s40858-022-00544-7
[16]
RAAIJMAKERS JM, PAULITZ TC, STEINBERG C, ALABOUVETTE C, MOËNNE-LOCCOZ Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1): 341-361.
[17]
ZHANG JH, WEI LF, YANG J, AHMED W, WANG YT, FU LN, JI GH. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng[J]. Frontiers in Microbiology, 2020, 11: 701. DOI:10.3389/fmicb.2020.00701
[18]
YANG SD, LIU HW, XIE PH, WEN T, SHEN QR, YUAN J. Emerging pathways for engineering the rhizosphere microbiome for optimal plant health[J]. Journal of Agricultural and Food Chemistry, 2023, 71(11): 4441-4449. DOI:10.1021/acs.jafc.2c08758
[19]
CLASSEN AT, SUNDQVIST MK, HENNING JA, NEWMAN GS, MOORE JAM, CREGGER MA, MOORHEAD LC, PATTERSON CM. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?[J]. Ecosphere, 2015, 6(8): art130.
[20]
HU R, ZHENG L, LIU H, HUANG JB. Effects of straw returning on microbial diversity in rice rhizosphere and occurrence of rice sheath blight[J]. Journal of Plant Protection, 2020, 47(6): 1261-1269. (in Chinese)
胡蓉, 郑露, 刘浩, 黄俊斌. 秸秆还田对水稻根际微生物多样性和水稻纹枯病发生的影响[J]. 植物保护学报, 2020, 47(6): 1261-1269.
[21]
DENG XH, ZHANG N, LI YC, ZHU CZ, QU BY, LIU HJ, LI R, BAI Y, SHEN QR, FALCAO SALLES J. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities[J]. The New Phytologist, 2022, 235(4): 1558-1574. DOI:10.1111/nph.18221
[22]
ZHU FY, FANG Y, WANG ZW, WANG P, YANG KK, XIAO LT, WANG RZ. Salicylic acid remodeling of the rhizosphere microbiome induces watermelon root resistance against Fusarium oxysporum f. sp. niveum infection[J]. Frontiers in Microbiology, 2022, 13: 1015038. DOI:10.3389/fmicb.2022.1015038
[23]
SUDINI H, LILES MR, ARIAS CR, BOWEN KL, HUETTEL RN. Exploring soil bacterial communities in different peanut-cropping sequences using multiple molecular approaches[J]. Phytopathology, 2011, 101(7): 819-827. DOI:10.1094/PHYTO-11-10-0310
[24]
YANG XX, HUANG XQ, WU WX, XIANG YJ, DU L, ZHANG L, LIU Y. Effects of different rotation patterns on the occurrence of clubroot disease and diversity of rhizosphere microbes[J]. Journal of Integrative Agriculture, 2020, 19(9): 2265-2273. DOI:10.1016/S2095-3119(20)63186-0
[25]
CAI QH, ZHOU GS, AHMED W, CAO YY, ZHAO MW, LI ZH, ZHAO ZX. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars[J]. European Journal of Plant Pathology, 2021, 160(2): 265-276. DOI:10.1007/s10658-021-02237-4
[26]
TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1
[27]
ZHOU X, WANG JT, LIU F, LIANG JM, ZHAO P, TSUI CKM, CAI L. Cross-Kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease[J]. Nature Communications, 2022, 13: 7890. DOI:10.1038/s41467-022-35452-6
[28]
ZHOU XG, ZHANG JY, RAHMAN MKU, GAO DM, WEI Z, WU FZ, DINI-ANDREOTE F. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant, 2023, 16(5): 849-864. DOI:10.1016/j.molp.2023.03.009
[29]
LIU HW, BRETTELL LE, QIU ZG, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743. DOI:10.1016/j.tplants.2020.03.014
[30]
BALBÍN-SUÁREZ A, JACQUIOD S, ROHR AD, LIU BY, FLACHOWSKY H, WINKELMANN T, BEERHUES L, NESME J, J SØRENSEN S, VETTERLEIN D, SMALLA K. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis[J]. FEMS Microbiology Ecology, 2021, 97(4): fiab031. DOI:10.1093/femsec/fiab031
[31]
CHEN H, REN HY, LIU JJ, TIAN Y, LU SG. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses[J]. Environmental Science and Pollution Research, 2022, 29(30): 45435-45448. DOI:10.1007/s11356-022-19165-3
[32]
WANG B, WANG XC, WANG ZW, ZHU KF, WU WM. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress[J]. Frontiers in Microbiology, 2023, 14: 1102547. DOI:10.3389/fmicb.2023.1102547
[33]
XU L, DONG ZB, CHINIQUY D, PIERROZ G, DENG SW, GAO C, DIAMOND S, SIMMONS T, WIPF HML, CADDELL D, VAROQUAUX N, MADERA MA, HUTMACHER R, DEUTSCHBAUER A, DAHLBERG JA, GUERINOT ML, PURDOM E, BANFIELD JF, TAYLOR JW, LEMAUX PG, et al. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics[J]. Nature Communications, 2021, 12: 3209. DOI:10.1038/s41467-021-23553-7
[34]
LI XY, LIU WY. Occurrence and prevention of cabbage clubroot in Yanji[J]. Journal of Agricultural Science Yanbian University, 2008, 30(2): 126-128. (in Chinese)
李熙英, 刘为勇. 延吉市白菜根肿病发生危害及其防治[J]. 延边大学农学学报, 2008, 30(2): 126-128. DOI:10.3969/j.issn.1004-7999.2008.02.010
[35]
LIU J. Occurrence and prevention of cabbage root swelling in Anlong county[D]. Guizhou: Master's Thesis of Guizhou University, 2019 (in Chinese).
刘静. 安龙县白菜根肿病发生及防治研究[D]. 贵州: 贵州大学硕士学位论文, 2019.
[36]
LI Y, YUAN YX, ZHAO YY, WEI XC, YAO QJ, JIANG WS, WANG ZY, YANG SJ, ZHANG XW, TIAN BM. Pathogen identification of clubroot disease in Chinese cabbage from Yuanyang County, Henan Province[J]. Molecular Plant Breeding, 2017, 8(5): 45-51.
[37]
LAILA R, PARK JI, ROBIN AHK, NATARAJAN S, VIJAYAKUMAR H, SHIRASAWA K, ISOBE S, KIM HT, NOU IS. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.)[J]. BMC Plant Biology, 2019, 19(1): 1-9. DOI:10.1186/s12870-018-1600-2
[38]
WANG J, HUANG Y, LI XL, LI HZ. Research progress in clubroot of crucifers[J]. Plant Protection, 2011, 37(6): 153-158. (in Chinese)
王靖, 黄云, 李小兰, 黎怀忠. 十字花科根肿病研究进展[J]. 植物保护, 2011, 37(6): 153-158. DOI:10.3969/j.issn.0529-1542.2011.06.031
[39]
LI Z, NIU YZ, WU YC, GUO SX. Research advances in clubroot disease[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1733-1737. (in Chinese)
李壮, 牛应泽, 吴永成, 郭世星. 根肿病的研究进展[J]. 西南农业学报, 2013, 26(4): 1733-1737. DOI:10.3969/j.issn.1001-4829.2013.04.087
[40]
YANG WQ. Study on the occurrence regulation, pathogenesis of Plasmodiophora brassicae in pakchoi and biological characteristic of pathogen[D]. Chengdu: Master's Thesis of Sichuan Agricultural University, 2009 (in Chinese).
杨文强. 小白菜根肿病发生规律、发病条件及病菌生物学特性研究[D]. 成都: 四川农业大学硕士学位论文, 2009.
[41]
KONG LY, LIU JX, ZHANG WJ, LI XN, ZHANG YT, CHEN XY, ZHAN ZX, PIAO ZY. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase gene family in Chinese cabbage (Brassica rapa) and Plasmodiophora brassicae during their interaction[J]. International Journal of Molecular Sciences, 2023, 24(2): 929. DOI:10.3390/ijms24020929
[42]
ZHANG H, ZHANG SJ, LI F, ZHANG SF, LI GL, MA XC, LIU XT, SUN RF. Research progress on clubroot disease resistance breeding of Brassica rapa[J]. Acta Horticulturae Sinica, 2020, 47(9): 1648-1662. (in Chinese)
张慧, 张淑江, 李菲, 章时蕃, 李国亮, 马小超, 刘希童, 孙日飞. 大白菜抗根肿病育种研究进展[J]. 园艺学报, 2020, 47(9): 1648-1662.
[43]
WANG Q, WANG CY, MU YS. Occurrence and control of cabbage clubroot[J]. XianDai NongYe KeJi, 2015(12): 129-130. (in Chinese)
王秋, 王成云, 牟岩松. 白菜根肿病的发生与防治[J]. 现代农业科技, 2015(12): 129-130. DOI:10.3969/j.issn.1007-5739.2015.12.080
[44]
FU LN, LI HM, WEI LF, YANG J, LIU Q, WANG YT, WANG X, JI GH. Antifungal and biocontrol evaluation of four Lysobacter strains against clubroot disease[J]. Indian Journal of Microbiology, 2018, 58(3): 353-359. DOI:10.1007/s12088-018-0716-2
[45]
WANG SQ. Susaintable management for cruciferous clubroot[D]. Shenyang: Master's Thesis of Shenyang Agricultural University, 2021 (in Chinese).
王思琦. 十字花科根肿病综合防控技术研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2021.
[46]
LIU Y, HUANG XQ, KE SY, LIU HY. Evaluation of resistance of rapeseed varieties to club root infected by Plasmodiophora brassicae in Sichuan[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(1): 90-93. (in Chinese)
刘勇, 黄小琴, 柯绍英, 刘红雨. 四川主栽油菜品种根肿病抗性研究[J]. 中国油料作物学报, 2009, 31(1): 90-93. DOI:10.3321/j.issn:1007-9084.2009.01.018
[47]
MUHAMMAD K, SAEED-UR R, SADAF-ILYAS K, ABID AK, HAMMED G, NAN H. Plasmodiophora brassicae-the causal agent of clubroot and its biological control/suppression with fungi-a review[J]. South African Journal of Botany, 2022, 147: 325-331. DOI:10.1016/j.sajb.2022.01.032
[48]
DIXON GR. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease[J]. Journal of Plant Growth Regulation, 2009, 28(3): 194-202. DOI:10.1007/s00344-009-9090-y
[49]
REN L, XU L, LIU F, CHEN KR, SUN CC, LI J, FANG XP. Host range of Plasmodiophora brassicae on cruciferous crops and weeds in China[J]. Plant Disease, 2016, 100(5): 933-939. DOI:10.1094/PDIS-09-15-1082-RE
[50]
SHEN XQ, NIE K, WU Q, ZHANG YG, MENG XH. Initial research report on differentiation identification of Chinese cabbage clubroot main physiological races[J]. China Vegetables, 2009(8): 59-62. (in Chinese)
沈向群, 聂凯, 吴琼, 张玉光, 孟星河. 大白菜根肿病主要生理小种种群分化鉴定初报[J]. 中国蔬菜, 2009(8): 59-62.
[51]
YANG MY, LI XD, SUN DW, CAO JF, PENG RZ, YANG PW, DAI YH, YANG JL, YAN WZ. Study on pathogenic factors of cabbage root swelling[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 612-615. (in Chinese)
杨明英, 李向东, 孙道旺, 曹继芬, 彭荣珍, 杨佩文, 代玉华, 杨家鸾, 严位中. 白菜根肿病菌致病性因素研究[J]. 西南农业学报, 2011, 24(2): 612-615. DOI:10.3969/j.issn.1001-4829.2011.02.047
[52]
ZHANG FL, YU SC, YU YJ, ZHANG DS, SU TB, ZHAO XY, WANG WH, LI PR, XIN XY. Research progress on Chinese cabbage genetic breeding During 'The thirteenth five-year plan՚ in China[J]. China Vegetables, 2021(1): 22-32. (in Chinese)
张凤兰, 于拴仓, 余阳俊, 张德双, 苏同兵, 赵岫云, 汪维红, 李佩荣, 辛晓云. "十三五"我国大白菜遗传育种研究进展[J]. 中国蔬菜, 2021(1): 22-32.
[53]
CHAI AL, XIE XW, SHI YX, LI BJ. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China[J]. Canadian Journal of Plant Pathology, 2014, 36(sup1): 142-153. DOI:10.1080/07060661.2013.868829
[54]
WEI LF, YANG J, AHMED W, XIONG XY, LIU Q, HUANG Q, JI GH. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage[J]. Agronomy, 2021, 11(12): 2424. DOI:10.3390/agronomy11122424
[55]
ZHANG JH, AHMED W, DAI ZL, ZHOU XH, HE ZL, WEI LF, JI GH. Microbial consortia: an engineering tool to suppress clubroot of Chinese cabbage by changing the rhizosphere bacterial community composition[J]. Biology, 2022, 11(6): 918. DOI:10.3390/biology11060918
[56]
JIANG Y. Study on the application of microbial agent to prevent and control cabbage clubroot disease[J]. Fertilizer & Health, 2021(2): 51-54, 58. (in Chinese)
江瑶. 微生物菌剂防治白菜根肿病的应用研究[J]. 肥料与健康, 2021(2): 51-54, 58. DOI:10.3969/j.issn.2096-7047.2021.02.013
[57]
HE PJ, CUI WY, MUNIR S, HE PF, LI XY, WU YX, YANG XW, TANG P, HE YQ. Plasmodiophora brassicae root hair interaction and control by Bacillus subtilis XF-1 in Chinese cabbage[J]. Biological Control, 2019, 128: 56-63. DOI:10.1016/j.biocontrol.2018.09.020
[58]
LARKIN RP, FRAVEL DR. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.[J]. Phytopathology, 2002, 92(11): 1160-1166. DOI:10.1094/PHYTO.2002.92.11.1160
[59]
NARISAWA K, SHIMURA M, USUKI F, FUKUHARA S, HASHIBA T. Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira[J]. Plant Disease, 2005, 89(3): 285-290. DOI:10.1094/PD-89-0285
[60]
YANG MY, YANG JL, SUN DW, YAN WZ. Effects of soil moisture on the incidence of cabbages clubroot[J]. Southwest China Journal of Agricultural Sciences, 2004, 17(4): 482-483. (in Chinese)
杨明英, 杨家鸾, 孙道旺, 严位中. 土壤含水量对白菜根肿病发生的影响研究[J]. 西南农业学报, 2004, 17(4): 482-483. DOI:10.3969/j.issn.1001-4829.2004.04.017
[61]
XIE GL. Study on the control effect of microbial inoculum combined with biochar application on cabbage clubroot[D]. Kunming: Master's Thesis of Yunan Agricultural University, 2022 (in Chinese).
解国玲. 微生物菌剂结合生物炭施用对白菜根肿病防控效果研究[D]. 昆明: 云南农业大学硕士学位论文, 2022.
[62]
da S BHERING A, do CARMO MGF, de S MATOS T, LIMA ESA, do AMARAL SOBRINHO NMB. Soil factors related to the severity of clubroot in Rio de Janeiro, Brazil[J]. Plant Disease, 2017, 101(8): 1345-1353. DOI:10.1094/PDIS-07-16-1024-SR
[63]
GOSSEN BD, DEORA A, PENG G, HWANG SF, McDONALD MR. Effect of environmental parameters on clubroot development and the risk of pathogen spread[J]. Canadian Journal of Plant Pathology, 2014, 36(sup1): 37-48. DOI:10.1080/07060661.2013.859635
[64]
DIXON GR, TILSTON EL. Soil-borne pathogens and their interactions with the soil environment[M]//Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer Netherlands, 2010: 197-271.
[65]
HUANG RR, HUANG R, HU JK, HO HH, HE YQ. Molecular detection and pathogenicity assay of Plasmodiophora brassicaein chicken manure[J]. Journal of Phytopathology, 2015, 163(11/12): 926-930.
[66]
XIAO C. Study on the effect of different previous crops on alleviating the occurrence of clubroot in Chinese cabbage[D]. Yangling: Master's Thesis of Northwest A&F University, 2022 (in Chinese).
肖晨. 不同前茬作物对缓解大白菜根肿病发生效果的研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2022.
[67]
YANG MY, YANG ZL, MA GM, PEI WH, CAO JF, YANG PW, BI YQ, LIN XH, ZHOU LF. Study on pathogenicity difference of Plasmodiophora brassicae under different temperature and pH value[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1514-1517. (in Chinese)
杨明英, 杨子林, 马桂明, 裴卫华, 曹继芬, 杨佩文, 毕云青, 林兴华, 周丽凤. 十字花科白菜根肿病菌在不同温度、pH值条件下致病性差异研究[J]. 西南农业学报, 2014, 27(4): 1514-1517. DOI:10.3969/j.issn.1001-4829.2014.04.032
[68]
SI J, LI CQ, XIAO CG, REN XS, WANG XJ. Inheritance of resistance to clubroot disease in cabbage[J]. Acta Horticulturae Sinica, 2003, 30(6): 658-662. (in Chinese)
司军, 李成琼, 肖崇刚, 任雪松, 王小佳. 甘蓝根肿病抗性遗传规律的研究[J]. 园艺学报, 2003, 30(6): 658-662. DOI:10.3321/j.issn:0513-353X.2003.06.005
[69]
ZHOU H, PENG WY, REN ZH. Research progress in the soil factors on clubroot (Plasmodiophora brassicae woron) of cruciferous crops[J]. Hunan Agricultural Sciences, 2015(10): 143-145. (in Chinese)
周瑚, 彭伟业, 任佐华. 土壤因素对十字花科作物根肿病发生的影响研究进展[J]. 湖南农业科学, 2015(10): 143-145.
[70]
GOSSEN BD, MCDONALD MR, HWANG SF, STRELKOV SE, PENG G. A comparison of clubroot development and management on canola and Brassica vegetables[J]. Canadian Journal of Plant Pathology, 2013, 35(2): 175-191. DOI:10.1080/07060661.2013.763293
[71]
WEBSTER MA, DIXON GR. Calcium, pH and inoculum concentration influencing colonization by Plasmodiophora brassicae[J]. Mycological Research, 1991, 95(1): 64-73. DOI:10.1016/S0953-7562(09)81362-2
[72]
RASHID A, AHMED HU, XIAO Q, HWANG SF, STRELKOV SE. Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs[J]. Crop Protection, 2013, 48: 16-23. DOI:10.1016/j.cropro.2012.11.025
[73]
LUO HC. Study on the life history of Plasmodiophora brassicae I—infection of the pathogen[D]. Chongqing: Master's Thesis of Southwest University, 2013 (in Chinese).
罗红春. 芸薹根肿菌生活史研究I: 病原菌的侵染[D]. 重庆: 西南大学硕士学位论文, 2013.
[74]
LUO YF. Study on pathogenic influencing factors and classification of infection types in Plasmodiophora brassicae Woronin[D]. Ya'an: Master's Thesis of Sichuan Agricultural University, 2011 (in Chinese).
罗一帆. 芸薹根肿菌致病影响因子及其侵染类型划分研究[D]. 雅安: 四川农业大学硕士学位论文, 2011.
[75]
DONALD EC, LAWRENCE JM, PORTER IJ. Influence of particle size and application method on the efficacy of calcium cyanamide for control of clubroot of vegetable brassicas[J]. Crop Protection, 2003, 23(4): 297-303.
[76]
BAN JJ. Effects of soil water content, pH and Ca2+ concentration on infection and morbidity of Plasmodiophora brassicae Woronin[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2014 (in Chinese).
班洁静. 土壤含水量、pH、Ca2+浓度对芸薹根肿菌侵染及发病影响研究[D]. 武汉: 华中农业大学硕士学位论文, 2014.
[77]
RIEKO N, TOSHIAKI K, YOSHINOBU N, SHIGEKATA Y, MITSURU O, TATSUHIRO E. Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers[J]. Soil Biology and Biochemistry, 2007, 39(3): 778-785. DOI:10.1016/j.soilbio.2006.09.027
[78]
ZHANG SL, SONG HY, REN XS, LI CQ, SI J. The analysis on the relationship between calcium, magnesium and sulfur and cabbage clubroot resistance[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(9): 41-45. (in Chinese)
张赛莉, 宋洪元, 任雪松, 李成琼, 司军. 钙镁硫元素与甘蓝根肿病抗性关系的分析[J]. 西南大学学报(自然科学版), 2016, 38(9): 41-45.
[79]
ZHANG CY, DU CY, LI YW, WANG HY, ZHANG CY, CHEN P. Advances in biological control and resistance genes of Brassicaceae clubroot disease-the study case of China[J]. International Journal of Molecular Sciences, 2023, 24(1): 785. DOI:10.3390/ijms24010785
[80]
DONALD C, PORTER I. Integrated control of clubroot[J]. Journal of Plant Growth Regulation, 2009, 28(3): 289-303. DOI:10.1007/s00344-009-9094-7
[81]
LIU JR, DU XG, LI YZ, LI SD, DAI YH. Studied on organic control techniques of Plasmodiophora brassica of Chinese cabbage in Yunnan[J]. Chinese Agricultural Science Bulletin, 2004, 20(3): 38-39, 66. (in Chinese)
刘建荣, 杜相革, 李元章, 李顺德, 代玉华. 云南白菜根肿病有机防治技术的研究[J]. 中国农学通报, 2004, 20(3): 38-39, 66.
[82]
AIGU Y, LAPERCHE A, MENDES J, LARIAGON C, GUICHARD S, GRAVOT A, MANZANARES- DAULEUX MJ. Nitrogen supply exerts a major/minor switch between two QTL s controlling Plasmodiophora brassicae spore content in rapeseed[J]. Plant Pathology, 2018, 67(7): 1574-1581. DOI:10.1111/ppa.12867
[83]
MURAKAMI H, TSUSHIMA S, KUROYANAGI Y, SHISHIDO Y. Reduction of resting spore density of Plasmodiophora brassicaeand clubroot disease severity by liming[J]. Soil Science and Plant Nutrition, 2002, 48(5): 685-691. DOI:10.1080/00380768.2002.10409258
[84]
WU GP, KANG XH, PENG YJ, LU XX, XU GD. Effects of soil organic matter and chemical composition content on occurrence of rape clubroot disease[J]. Hubei Agricultural Sciences, 2012, 51(21): 4782-4783, 4818. (in Chinese)
吴国萍, 康晓慧, 彭玉娇, 卢晓霞, 许国东. 土壤有机质和有效成分含量对油菜根肿病发病的影响[J]. 湖北农业科学, 2012, 51(21): 4782-4783, 4818. DOI:10.3969/j.issn.0439-8114.2012.21.025
[85]
WANG S. Infection of Rhizoctonia solani on Chinese cabbage and effects of boron and silicon on its infection[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2015 (in Chinese).
王双. 根肿菌对白菜的侵染及营养元素硼、硅对其侵染的影响[D]. 武汉: 华中农业大学硕士学位论文, 2015.
[86]
FAN CM. Evaluation and control mechanism for suppression of biological soil disinfection to club root of Chinese cabbage[D]. Kunming: Doctoral Dissertation of Yunan Agricultural University, 2007 (in Chinese).
范成明. 土壤生物消毒对大白菜根肿病的防效评估及防治机理研究[D]. 昆明: 云南农业大学博士学位论文, 2007.
[87]
ZHOU YF, FENG R, TANG L. Research progress on the root exudate-mediated mechanism of intercropping for prevention and control of soil-borne diseases[J]. Journal of Yunnan Agricultural University (Natural Science), 2023, 38(2): 353-360. (in Chinese)
周远锋, 冯瑞, 汤利. 根系分泌物介导的间作防控土传病害作用机制研究进展[J]. 云南农业大学学报(自然科学), 2023, 38(2): 353-360.
[88]
LI SL, XU C, WANG J, GUO B, YANG L, CHEN JN, DING W. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant and Soil, 2017, 412(1): 381-395.
[89]
REN GD, WANG GF, MA Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235. (in Chinese)
任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235.
[90]
YUE H, YUE WJ, JIAO S, KIM H, LEE YH, WEI GH, SONG WN, SHU DT. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions[J]. Microbiome, 2023, 11(1): 70. DOI:10.1186/s40168-023-01513-1
[91]
YUAN J, ZHAO J, WEN T, ZHAO ML, LI R, GOOSSENS P, HUANG QW, BAI Y, VIVANCO JM, KOWALCHUK GA, BERENDSEN RL, SHEN QR. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 1-12. DOI:10.1186/s40168-017-0383-2
[92]
WEN T, YUAN J, HE XM, LIN Y, HUANG QW, SHEN QR. Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion[J]. Horticulture Research, 2020, 7: 154. DOI:10.1038/s41438-020-00380-3
[93]
WU HM, QIN XJ, WANG JY, WU LK, CHEN J, FAN JK, ZHENG L, TANGTAI HP, ARAFAT Y, LIN WW, LUO XM, LIN S, LIN WX. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19-31.
[94]
GU YA, WANG XF, YANG TJ, FRIMAN VP, GEISEN S, WEI Z, XU YC, JOUSSET A, SHEN QR. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression[J]. Functional Ecology, 2020, 34(10): 2158-2169. DOI:10.1111/1365-2435.13624
[95]
WU QY, LIN YL, SUN YH, WEI QH, LIU JT, LI XF, CUI GW. Research progress on effects of root exudates on plant growth and soil nutrient uptake[J]. Chinese Journal of Grassland, 2021, 43(11): 97-104. (in Chinese)
吴清莹, 林宇龙, 孙一航, 魏千皓, 刘婧婷, 李雪峰, 崔国文. 根系分泌物对植物生长和土壤养分吸收的影响研究进展[J]. 中国草地学报, 2021, 43(11): 97-104.
[96]
XIA ZC. Underground chemical interaction between plant species mediated by root exudates[D]. Beijing: Doctoral Dissertation of China Agricultural University, 2017 (in Chinese).
夏志超. 根系分泌物介导的植物种间地下化学作用[D]. 北京: 中国农业大学博士学位论文, 2017.
[97]
CHEN SC. Soil microbial mechanism of intercropping tillering onion to improve tomato Verticillium wilt resistance[D]. Harbin: Doctoral Dissertation of Northeast Agricultural University, 2020 (in Chinese).
陈少灿. 间作分蘖洋葱提高番茄黄萎病抗病力的土壤微生物学机制[D]. 哈尔滨: 东北农业大学博士学位论文, 2020.
[98]
CHEN SC, ZHOU XG, YU HJ, WU FZ. Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbage-potato onion-Chinese cabbage crop rotation[J]. European Journal of Plant Pathology, 2018, 150(3): 765-777. DOI:10.1007/s10658-017-1307-5
[99]
LIN ZM, MUHAMMAD UK, FANG CX, LIN WX. Crop allelopathy types: current research status and prospects in China[J]. Chinese Journal of Eco-Agriculture, 2022(3): 343-355. (in Chinese)
林志敏, MUHAMMAD UK, 方长旬, 林文雄. 作物化感作用类型: 中国研究现状及其展望[J]. 中国生态农业学报, 2022(3): 343-355.
[100]
WANG R, ZHANG HC, SUN LG, QI GF, CHEN S, ZHAO XY. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 2017, 7: 343. DOI:10.1038/s41598-017-00472-6
[101]
BADRI DV, VIVANCO JM. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666-681.
[102]
WANG HT, WU CF, ZHANG HQ, XIAO ML, GE TD, ZHOU ZC, LIU YJ, PENG SG, PENG PQ, CHEN JP. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease[J]. World Journal of Microbiology and Biotechnology, 2022, 38(9): 1-14.
[103]
WEN T, DING ZX, THOMASHOW LS, HALE L, YANG SD, XIE PH, LIU XY, WANG HQ, SHEN QR, YUAN J. Deciphering the mechanism of fungal pathogen-induced disease-suppressive soil[J]. New Phytologist, 2023, 238(6): 2634-2650. DOI:10.1111/nph.18886
[104]
LI SM, FAN W, XU G, CAO Y, ZHAO X, HAO SW, DENG B, REN SY, HU SL. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023, 14: 1117355. DOI:10.3389/fmicb.2023.1117355
[105]
GU YA, BANERJEE S, DINI-ANDREOTE F, XU YC, SHEN QR, JOUSSET A, WEI Z. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations[J]. The ISME Journal, 2022, 16(10): 2448-2456. DOI:10.1038/s41396-022-01290-z
[106]
LIU SS, TAO CY, ZHANG LY, WANG Z, XIONG W, XIANG DD, SHENG O, WANG JB, LI R, SHEN ZZ, LI CY, SHEN QR, KOWALCHUK GA. Plant pathogen resistance is mediated by recruitment of specific rhizosphere fungi[J]. The ISME Journal, 2023, 17(6): 931-942. DOI:10.1038/s41396-023-01406-z
[107]
GU SH, WEI Z, SHAO ZY, FRIMAN VP, CAO KH, YANG TJ, KRAMER J, WANG XF, LI M, MEI XL, XU YC, SHEN QR, KÜMMERLI R, JOUSSET A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020, 5(8): 1002-1010. DOI:10.1038/s41564-020-0719-8
[108]
SALEEM M, HU J, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145-168. DOI:10.1146/annurev-ecolsys-110617-062605
[109]
van WEES SC, van der ENT S, PIETERSE CM. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443-448. DOI:10.1016/j.pbi.2008.05.005
[110]
CHISHOLM ST, COAKER G, DAY B, STASKAWICZ BJ. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814. DOI:10.1016/j.cell.2006.02.008
[111]
ZHANG YP, LI W, LU P, XU TY, PAN K. Three preceding crops increased the yield of and inhibited clubroot disease in continuously monocropped Chinese cabbage by regulating the soil properties and rhizosphere microbial community[J]. Microorganisms, 2022, 10(4): 799. DOI:10.3390/microorganisms10040799
[112]
LIU K, JI QR, CHEN J, LIANG YX, HU YM, HU YL. Effect of Streptomyces alfalfae XY25T application on physicochemical properties and microflora in clubroot-diseased soil[J]. Microbiology China, 2020, 47(1): 97-108. (in Chinese)
柳凯, 季倩茹, 陈静, 梁运祥, 胡咏梅, 胡远亮. 施用Streptomyces alfalfae XY25T对根肿病土壤性质及微生物群落的影响[J]. 微生物学通报, 2020, 47(1): 97-108.
[113]
HU YL, QIU L, ZHANG ZJ, LIU K, XIA X, XIONG SL, ZHAO SM, ZHAO ZQ, HU YM, LIANG YX. Control of Streptomyces alfalfae XY25T over clubroot disease and its effect on rhizosphere microbial community in Chinese cabbage field trials[J]. Frontiers in Microbiology, 2021, 12: 641556. DOI:10.3389/fmicb.2021.641556
[114]
LI JH, PHILP J, LI JS, WEI YL, LI HM, YANG K, RYDER M, TOH R, ZHOU Y, DENTON MD, HU JD, WANG Y. Trichoderma harzianum inoculation reduces the incidence of clubroot disease in Chinese cabbage by regulating the rhizosphere microbial community[J]. Microorganisms, 2020, 8(9): 1325. DOI:10.3390/microorganisms8091325
[115]
WEI LF, ZHANG RQ, YAO B, ZHANG JH, XIONG XY, DAI ZL, AI Y, JI GH. Effect of rotating soybean and its straw returning on Chinese cabbage clubroot disease[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 52-62. (in Chinese)
魏兰芳, 张荣琴, 姚博, 张晋豪, 熊新颖, 代真林, 艾瑛, 姬广海. 大豆轮作及秸秆还田模式对白菜根肿病的影响[J]. 江西农业大学学报, 2021, 43(1): 52-62.
[116]
LIU CM, YANG ZF, HE PF, MUNIR S, HE PB, WU YX, HO H, HE YQ. Fluazinam positively affected the microbial communities in clubroot cabbage rhizosphere[J]. Scientia Horticulturae, 2019, 256: 108519. DOI:10.1016/j.scienta.2019.05.046
[117]
ZHOU JH. Study on characteristics and biological control of clubroot in Taibai area[D]. Yangling: Master's Thesis of Northwest A&F University, 2019 (in Chinese).
周金华. 太白地区根肿病特性及生物防治研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2019.
[118]
YANG Z, DAI CC, WANG XX, LI XG. Advance in research on rhizosphere microbial mechanisms of crop soil-borne fungal diseases[J]. Acta Pedologica Sinica, 2019, 56(1): 12-22. (in Chinese)
杨珍, 戴传超, 王兴祥, 李孝刚. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019, 56(1): 12-22.
[119]
BRADER G, COMPANT S, VESCIO K, MITTER B, TROGNITZ F, MA LJ, SESSITSCH A. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes[J]. Annual Review of Phytopathology, 2017, 55: 61-83. DOI:10.1146/annurev-phyto-080516-035641
[120]
DONG CJ, WANG LL, LI Q, SHANG QM. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants[J]. PLoS One, 2019, 14(11): e0223847. DOI:10.1371/journal.pone.0223847
[121]
HU Y, LI YY, YANG XQ, LI CL, WANG L, FENG J, CHEN SW, LI XH, YANG Y. Effects of integrated biocontrol on bacterial wilt and rhizosphere bacterial community of tobacco[J]. Scientific Reports, 2021, 11: 2653. DOI:10.1038/s41598-021-82060-3
[122]
YANG BY, ZHENG MZ, DONG WP, XU PL, ZHENG Y, YANG W, LUO YM, GUO JH, NIU DD, YU YY, JIANG CH. Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment[J]. Microbiology Spectrum, 2023, 11(2): e03611-22.
[123]
WANG XF, WEI Z, YANG KM, WANG JN, JOUSSET A, XU YC, SHEN QR, FRIMAN VP. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520. DOI:10.1038/s41587-019-0328-3
[124]
CHEN MC, WANG JP, LIU B, ZHU YJ, XIAO RF, YANG WJ, GE CB, CHEN Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020, 20(1): 160. DOI:10.1186/s12866-020-01851-2
[125]
MOHAMED BFF, SALLAM NMA, ALAMRI SAM, ABO-ELYOUSR KAM, MOSTAFA YS, HASHEM M. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1-13. DOI:10.1186/s41938-020-0205-x
[126]
GUO S, ZHANG JW, DONG LH, LI X, ASIF M, GUO QG, JIANG WJ, MA P, ZHANG LQ. Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage[J]. Biological Control, 2019, 136: 104001. DOI:10.1016/j.biocontrol.2019.104001
[127]
DOWARAH B, AGARWAL H, KRISHNATREYA DB, SHARMA PL, KALITA N, AGARWALA N. Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease[J]. Microbiological Research, 2021, 248: 126751. DOI:10.1016/j.micres.2021.126751
[128]
TIAN Y, JI SH, ZHANG ER, CHEN YQ, XU GX, CHEN X, FAN JQ, TANG XX. Complete genome analysis of Bacillus subtilis TY-1 reveals its biocontrol potential against tobacco bacterial wilt[J]. Marine Genomics, 2023, 68: 101018. DOI:10.1016/j.margen.2023.101018
[129]
ZHAO Q, CAO JM, CAI XJ, WANG J, KONG FY, WANG DK, WANG J. Antagonistic activity of volatile organic compounds produced by acid-tolerant Pseudomonas protegens CLP-6 as biological fumigants to control tobacco bacterial wilt caused by Ralstonia solanacearum[J]. Applied and Environmental Microbiology, 2023, 89(2): e01892-22.
[130]
CHATURVEDI H, SINGH V. Potential of bacterial endophytes as plant growth promoting factors[J]. Journal of Plant Pathology & Microbiology, 2016, 7(9): 1000376.
[131]
EK-RAMOS MJ, GOMEZ-FLORES R, OROZCO- FLORES AA, RODRÍGUEZ-PADILLA C, GONZÁLEZ- OCHOA G, TAMEZ-GUERRA P. Bioactive products from plant-endophytic Gram-positive bacteria[J]. Frontiers in Microbiology, 2019, 10: 463. DOI:10.3389/fmicb.2019.00463
[132]
POHJANEN J, KOSKIMÄKI JJ, PIRTTILÄ AM. Interactions of meristem-associated endophytic bacteria[M]//Advances in Endophytic Research. New Delhi: Springer India, 2013: 103-113.
[133]
GUO RF, LIU XG, GAO KX, GAO BJ, SHI BS, ZHEN Z. Progress in biocontrol research with Trichoderma[J]. Chinese Journal of Biological Control, 2002(4): 180-184. (in Chinese)
郭润芳, 刘晓光, 高克祥, 高宝嘉, 史宝胜, 甄志先. 拮抗木霉菌在生物防治中的应用与研究进展[J]. 中国生物防治, 2002(4): 180-184.
[134]
CHEN J, ZHU JW, ZHANG T, WANG BL. Progress on mechanism and applications of Trichoderma as a biocontrol microbe[J]. Chinese Journal of Biological Control, 2011, 27(2): 145-151. (in Chinese)
陈捷, 朱洁伟, 张婷, 王秉丽. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报, 2011, 27(2): 145-151.
[135]
WEI YL, LI HM, HU JD, ZHAO ZJ, SUI LN, LI JS. Control effect of ozonated water combined with Trichoderma against clubroot of Chinese cabbage[J]. China Plant Protection, 2022, 42(2): 33-37, 49. (in Chinese)
魏艳丽, 李红梅, 扈进冬, 赵忠娟, 隋丽娜, 李纪顺. 臭氧水消毒土壤与木霉菌组合防治白菜根肿病的效果[J]. 中国植保导刊, 2022, 42(2): 33-37, 49. DOI:10.3969/j.issn.1672-6820.2022.02.007
[136]
ARIF S, FAROOQ HMM, LIAQUAT F, GULZAR S, HAROON U, Zhao LN, Zhang YD. Trichoderma viride establishes biodefense against clubroot (Plasmodiophora brassicae) and fosters plant growth via colonizing root hairs in pak choi (Brassica campestris spp. chinesnsis)[J]. Biological Control, 2023, 183: 105265. DOI:10.1016/j.biocontrol.2023.105265
[137]
ARIF S, LIAQUAT F, YANG SL, SHAH IH, ZHAO LN, XIONG X, GARCIA D, ZHANG YD. Exogenous inoculation of endophytic bacterium Bacillus cereus suppresses clubroot (Plasmodiophora brassicae) occurrence in pak choi (Brassica campestris sp. chinensis L.)[J]. Planta, 2021, 253(2): 1-15. DOI:10.3760/cma.j.cn115399-20210125-02001
[138]
YEOUNG Y, KIM JH, KIM BS, JEON J, YOON C. Effects of beneficial antagonists (Bacillus sp., Pseudomonas sp., and Trichoderma sp.) on control of clubroot of Chinese cabbage[J]. Korean Journal of Horticultural Science & Technology, 2003, 21: 194-198.
[139]
di FRANCESCO A, di FOGGIA M, CORBETTA M, BALDO D, RATTI C, BARALDI E. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains[J]. Journal of Plant Growth Regulation, 2021, 40(3): 1233-1244. DOI:10.1007/s00344-020-10184-3
[140]
ZHOU JH, YANG JJ, HUI K, FENG ZY, ZHANG LX, MENG CF, GUO Q, LAI HX. Effects of 3 biocontrol strains on clubroot disease-resistant and mechanism in Chinese cabbage[J]. Acta Agriculturae Boreali- Occidentalis Sinica, 2020, 29(4): 641-651. (in Chinese)
周金华, 杨晶晶, 惠珂, 冯朝阳, 张立鑫, 孟春凤, 郭俏, 来航线. 3株放线菌对白菜根肿病的防治效果及机制研究[J]. 西北农业学报, 2020, 29(4): 641-651.
[141]
WANG J, HUANG Y, YAO J, LIN S, LI XL, QIN Y. Identification and control effects of two antagonistic actinomycetes against clubroot[J]. Scientia Agricultura Sinica, 2011, 44(13): 2692-2700. (in Chinese)
王靖, 黄云, 姚佳, 林姗, 李小兰, 秦芸. 两株根肿病生防放线菌的鉴定及其防病效果[J]. 中国农业科学, 2011, 44(13): 2692-2700. DOI:10.3864/j.issn.0578-1752.2011.13.007
[142]
ZHOU XG, YU GB, WU FZ. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid[J]. Journal of Chemical Ecology, 2012, 38(8): 975-983. DOI:10.1007/s10886-012-0156-0
[143]
LI XG, DING CF, ZH TL, WANG XX. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 2014, 72: 11-18. DOI:10.1016/j.soilbio.2014.01.019
[144]
LI JP, CHAI AL, SUN RF, LI B. Recent research development on clubroot of cruciferae vegetables[J]. China Vegetables, 2012(8): 1-4. (in Chinese)
李金萍, 柴阿丽, 孙日飞, 李宝聚. 十字花科蔬菜根肿病研究新进展[J]. 中国蔬菜, 2012(8): 1-4.
[145]
BANERJEE S, SCHLAEPPI K, van der HEIJDEN MGA. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576. DOI:10.1038/s41579-018-0024-1
[146]
TANG TT, SUN X, LIU Q, DONG YH, ZHA MF. Treatment with organic manure inoculated with a biocontrol agent induces soil bacterial communities to inhibit tomato Fusarium wilt disease[J]. Frontiers in Microbiology, 2023, 13: 1006878. DOI:10.3389/fmicb.2022.1006878
[147]
LAI J, WEI SG, HUANG L, SHENG YZ, LIU Y, ZHANG QF, YE PS. Identification and evaluation on bolting traits of Chinese cabbage group germplasm resources[J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 41-47. (in Chinese)
赖佳, 韦树谷, 黄玲, 盛玉珍, 刘勇, 张骞方, 叶鹏盛. 白菜类蔬菜种质资源抽薹性状鉴定评价[J]. 中国农学通报, 2022, 38(28): 41-47. DOI:10.11924/j.issn.1000-6850.casb2022-0410
[148]
Sichuan Provincial Department of Agriculture and Rural Affairs. Technical specification of Chinese cabbage production: DB51/T 430—2022[S]. Chengdu: Administration for Market Regulation of Sichuan Province, 2022 (in Chinese).
四川省农业农村厅. 大白菜生产技术规程: DB51/T 430—2022[S]. 成都: 四川省市场监督管理局, 2022.
根际微生态调控白菜根肿病发生的机制研究进展
刘勇 , 赖佳 , 孙小芳 , 韦树谷 , 曾华兰 , 陈臣 , 黄玲 , 盛玉珍 , 叶鹏盛