扩展功能
文章信息
- 杨凡, 姜华艳, 马凯, 蔡毓新, 常高正, 史宣杰
- YANG Fan, JIANG Huayan, MA Kai, CAI Yuxin, CHANG Gaozheng, SHI Xuanjie
- 瓜菜枯萎病及生防根际微生物组研究进展
- Research progress in Fusarium wilt of cucurbitaceous vegetables and rhizosphere microbiome for biocontrol
- 微生物学通报, 2024, 51(1): 50-65
- Microbiology China, 2024, 51(1): 50-65
- DOI: 10.13344/j.microbiol.china.230504
-
文章历史
- 收稿日期: 2023-06-25
- 接受日期: 2023-08-17
- 网络首发日期: 2023-09-05
2. 郑州大学, 河南 郑州 450001;
3. 河南省庆发种业有限公司, 河南 郑州 450002
2. Zhengzhou University, Zhengzhou 450001, Henan, China;
3. Henan Qingfa Seed Industry Limited Company, Zhengzhou 450002, Henan, China
瓜菜枯萎病(Fusarium wilt)是顽固性土传病害之一,露地和设施栽培都可发生,特别是连作地区发病尤为严重,被称为瓜菜中的“癌症”。发病率一般在15%−35%,严重时可达75%−95%,有的地块甚至绝收[1-2]。除了造成经济作物减产之外,还会产生脱氢富马酸等有毒的次级代谢产物遗留在农作物中,对人畜产生危害[3]。此病害已成为制约现代农业发展的重要因素。化学防治是当前最经济有效的防治方法,但过度使用将促使根际微生物严重紊乱、生态环境系统更加脆弱、农业生物多样性快速丧失,从而造成农药残留严重、病原菌耐药性增强及有害生物猖獗等问题,导致人畜健康及共存受到威胁[4]。因此,开发绿色、高效及环境友好型生物防治技术或生物农药已成为当前迫切需要。
1 瓜菜枯萎病灾变机制瓜菜枯萎病是由半知菌亚门(Imperfecti)丝孢纲(Hyphomycetes)从梗孢目(Moniliales)瘤座孢科(Tuberculariaceae)镰刀菌属(Fusarium)中的尖孢镰刀菌(Fusarium oxysporum)引起瓜菜维管束病变的真菌性病害,又称“萎蔫病”和“发瘟”,严重制约着瓜菜产量和品质[5-6]。尖孢镰刀菌除了能侵染瓜类[6]、番茄[7]、辣椒[8]和草莓[9]等果蔬作物外,还能侵染百合[10]、香蕉[11]、棉[12]和大豆[13]等百余种植物。该菌因染色体含有丰富的转座子和致病相关基因,在和寄主作物互作过程中容易发生基因水平转移[14-15],导致尖孢镰刀菌寄主专化型增多、寄主范围广泛,从而更难以防治和管理。
瓜菜枯萎病的发生是尖孢镰刀菌与寄主作物相互斗争的结果。土壤酸性、板结及高温高湿等条件下,病害更容易发生和加重。尖孢镰刀菌主要以厚垣孢子、菌丝和大小分生孢子在植物病残体、土壤和种子中休眠过冬。当条件适宜时,该病原菌首先通过性信息素受体等趋化生长附着根表面,从根尖、根系伤口或侧根生长点进入植物体[16]。其次,通过信号传导、毒素和细胞壁降解酶等次生代谢产物及小分子效应蛋白多种方式协同损害植物根系细胞膜和维管束系统,干扰水分运输和营养吸收,阻断蒸腾拉力导致植株导管枯萎,从而降低或抑制整体寄主免疫反应[17]。再次,病原菌侵入根系内部以后,在寄主植物根系内定殖、生长发育,最终致使寄主植物表现出发病症状,导致根系腐烂、叶片逐渐黄化变褐、茎秆开裂、植物自下而上逐渐枯萎死亡[18]。具体有三方面,见图 1。
|
| 图 1 尖孢镰刀菌侵染瓜菜机制 Figure 1 Mechanism of Fusarium oxysporum infecting cucurbitaceous vegetable. |
|
|
细胞壁是尖孢镰刀菌入侵寄主植物的第一道屏障。细胞壁降解酶在参与病原菌侵染寄主过程中起重要作用。大量研究表明尖孢镰刀菌侵染寄主时,果胶酶、几丁质酶、纤维素酶和半纤维素酶协同先后降解细胞壁中的果胶、几丁质、纤维素类等物质,从而快速侵染寄主植物[19-20]。果胶酶是镰刀菌最重要的致病力因子之一,其活性大小决定着植物发病速度和严重程度,但酶活性和表达易受碳分解代谢阻遏[21]。陈晓林等[22]研究发现,病原菌通过分泌多聚半乳糖醛酸酶、纤维素酶和木聚糖酶等细胞壁降解酶在寄主体内外寄生,而且细胞壁降解酶活性与其致病力呈正相关性。β-葡萄糖苷酶通过降解植物细胞壁纤维素和半纤维素,破坏寄主植株根系组织,从而导致植株感病[23]。另有研究表明,尖孢镰刀菌单个细胞壁降解酶基因缺失对镰刀菌致病力无太大影响,但若2个或多个基因同时缺失,会导致其菌株致病力严重下降,由此推测单个细胞壁降解酶基因不是镰刀菌致病力的主导因素,某一个基因功能缺失或丧失会有其他相关功能基因表达替代或弥补[24]。目前,关于尖孢镰刀菌细胞壁降解酶种类、编码基因及致病机理等已有较多研究,但大部分都是单个酶或单个基因功能研究,而多个酶或基因之间的协同互作、整体调控机制等还有待持续深入的研究。
1.2 分泌致病毒素调控植物生理生化过程毒素是尖孢镰刀菌侵染寄主植物的重要致病因子之一。病原菌侵入植株后会产生枯萎酸(镰刀菌酸)[25]、恩镰孢菌素[26]、伏马菌素[27]、串珠镰刀菌素[28]、麦角固醇[28]和白僵菌素[29]等物质,这些毒素的产生不仅会破坏细胞膜及细胞器,还会造成维管束堵塞,从而使植物生理及代谢紊乱,防御保卫酶活性下降,进而导致植物叶片气孔非正常开放或开放时间变长,蒸腾加剧,最终使得植株过度缺水而萎蔫和枯死。枯萎酸作为引起植物凋亡的毒素,通过干扰线粒体功能诱导植物细胞死亡。熊银峰[30]研究表明尖孢镰刀菌分泌枯萎酸不仅破坏细胞膜,引起根细胞内代谢发生紊乱、抑制防御酶活性、根系活力下降,而且增加叶片膜透性,气孔非正常开放,水分流失和蒸腾过快,防卫机能丧失,植株快速失水而枯死。当培养基以蔗糖为底物时枯萎酸合成更容易[31],但当镰刀菌酸的合成前体β-酮己二酸合成遭到切断后,其镰刀菌酸合成受到抑制,该菌株失去毒力[32]。不同毒素作用方式也存在一定差异。例如单端孢酶烯毒素通过抑制蛋白质合成从而加快病原菌在植株上繁殖和扩展速度[33]。白僵菌素因具有强离子传递活性,可与寄主生物膜结合成离子通道,增加膜离子渗透性和去极化,打破细胞内稳态平衡,导致细胞死亡[29, 34]。恩镰孢菌素则可以与细胞膜内单价离子结合,通过抑制acyl-CoA酶活性,从而破坏寄主植株细胞外信号调节激酶表达且诱导植株细胞死亡[26]。当前对毒素的报道主要集中于毒素作用于寄主机制方面,对多种毒素之间如何协调作用及毒素产生机理还有待进一步明确研究。
1.3 信号传导有助于成功侵染尖孢镰刀菌根据寄主植物种类及土壤环境等特点,通过性信息素受体和蛋白激酶通路等信号传导系统调整自身活动,从根尖、根系伤口或侧根生长点进入植物体。G蛋白信号传导、双组分信号传导、环腺苷酸单磷酸-蛋白激酶A (cycloadenylate monophosphate-protein kinase A, cAMP-PKA)和促分裂素原活化蛋白激酶(mitogen-activated protein kinases, MAPK)等是病原菌信号传导的主要途径,是当前的研究热点。其中G蛋白信号传导途径对病原菌趋向性、外界营养物质感应、菌丝生长及分化、孢子形成与数量、毒素等次生代谢产物合成和相关致病基因表达等具有重要调控作用[35]。大量研究表明G蛋白亚基α的fga1、fga2、fga3和fgb1等基因敲除后,病原菌不能识别寄主植物根部、菌丝营养生长受阻、孢子萌发抑制、产孢量减少等,造成致病性减弱或丧失[36-37]。cAMP-PKA和MAPK途径在侵染病原菌过程中发挥重要作用,前者侧重于抑制病原菌孢子形成和萌发,而后者主要参与代谢产物合成与调控[38]。尖孢镰刀菌cAMP蛋白激酶A突变后,该菌菌丝生长明显缓慢,产孢量显著降低,孢子萌发大量减少,无法在维管束内定殖,丧失了对寄主植物的侵染力[39-40]。在MAPK途径中FoSlt2、FoBck1和FoMkk2等基因与几丁质酶、纤维素酶、枯萎菌酸和白僵菌素等次生代谢产物合成与调控有关;基因缺失或敲除都能造成菌丝形态畸形、营养生长减弱和致病力降低或丧失等[41]。此外,病原菌趋化性、吸附定殖、新陈代谢和致病力等方面调控也离不开双组分信号传导途径参与调节[42],但相关机理有待更深入研究。
1.4 致病相关基因研究病原菌致病是致病基因表达后产生致病物质如细胞壁降解酶、毒素和效应蛋白等综合作用之后的表现。尖孢镰刀菌番茄专化型全基因组测序,为全面研究尖孢镰刀菌致病因子、作用机理和互作调控等相关信息带来了巨大福利[14-15]。例如,线粒体蛋白基因Fow1首次被鉴定并报道在尖孢镰刀菌侵染与定殖寄主番茄过程中起决定性作用[43],而Zn(Ⅱ)2Cys6中Fow2基因则被证明参与调控病原菌快速及稳定定殖寄主植物[44]。编码F-box蛋白基因Frpl调控果胶酶、木聚糖酶等细胞壁降解酶基因表达,当该基因敲除后,PG1、PG2和PL1等编码果胶酶基因和编码木聚糖酶的相关基因XYL2、XYL5等活性下降,相关表达量迅速降低,其余细胞壁降解酶基因表达量也显著下降,侵染能力明显减弱,影响病原菌在寄主根部生长繁殖[45]。fmk1基因研究表明fmk1是影响尖孢镰刀菌能否在维管束中定殖的主要功能基因,并且表达受氮源代谢抑制[38]。羊玉花等[37]研究发现,fgal基因控制病原菌致病性,该基因缺失后产孢量、致病力及细胞内cAMP表达水平都降低,但营养生长不受影响;而且该基因在尖孢镰刀菌4号小种中表达存在可变性剪切,从而导致香蕉枯萎病菌株之间存在致病力差异[46]。此外,编码番茄皂甙酶基因fotom1可以诱导番茄产生α-番茄碱,使其变成无毒状态,从而利于尖孢镰刀菌快速侵染寄主,使番茄发病更加严重[47]。还有研究表明foABC1负责真菌毒素泵出,或对植保素或抗毒素类物质具有忍耐性[48]、Hap X在尖孢镰刀菌铁渗透和毒力方面起重要作用[49]。随着分子生物学技术的快速发展,通过全基因组学等技术快速鉴定病原菌致病基因及毒力因子,通过植物-病原菌互作等理清这些致病基因与植物互作关系,进而阐明病原菌致病分子机制。
2 根际微生物在农业中防治枯萎病应用微生物疗法是发展现代农业、实现绿色环保、环境友好型农业的有效途径。生防微生物因具有安全、生态可持续性等特点而广受关注。目前防控瓜菜枯萎病生防微生物主要有细菌、真菌和放线菌等。
2.1 生防细菌防治瓜菜枯萎病生防细菌的研究与应用主要以芽孢杆菌和假单胞菌为主。李娜等[50]筛出一株对黄瓜尖孢镰刀菌(F. oxysporum f. sp. cucumerinum)有较强抑制作用的弗雷德里克斯堡假单胞菌(Pseudomonas frederiksbergensisi)并应用于生产,黄瓜苗期枯萎病防效可达86.95%,且对黄瓜植株有一定促生作用。侯圆圆[51]研究发现绿针假单胞菌(Pseudomonas chlororaphis)强烈抑制多种瓜菜枯萎病病原菌生长和繁殖。在芽孢杆菌研究方面,枯草芽孢杆菌(Bacillus subtilis)[52]、贝莱斯芽胞杆菌(Bacillus velezensis)[53]、多黏类芽孢杆菌(Paenibacillus polymyxa)[54]和解淀粉芽孢杆菌(Bacillus amyloliquefaciens)[55]等均能显著抑制甚至破坏枯萎病菌菌丝生长,降低瓜菜枯萎病发病率,并诱导寄主对枯萎病产生系统抗性等。自然环境中还有少量未鉴定的细菌如黏质沙雷氏菌(Serratia marcescens)[56]、洋葱伯克霍尔德氏菌(Burkholderia cepacia)[57]等通过产生活性酶、铁载体、毒素和其他分泌的次级代谢产物抑制病原菌生长和繁殖。
2.2 生防真菌木霉、丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)及非致病性镰刀菌等作为生防真菌被广泛用于瓜菜枯萎病的防治。哈茨木霉、淡绿木霉、棘孢木霉和深绿木霉等作为理想的瓜菜枯萎病生防菌,已广泛应用于生产[58]。Sahi等[59]评价了几种木霉体外抑制病原菌活性,其活性强弱为淡绿木霉 > 哈茨木霉 > 深绿木霉 > 康氏木霉 > 拟康氏木霉。谷祖敏等[60]阐明了木霉不仅依靠菌丝吸附、缠绕和穿透等抑制致病菌菌丝生长,造成菌丝畸形或断裂,还可以通过代谢产物等毒杀病原菌。还有研究表明AMF可以显著降低枯萎病发生,增强菌根植物抗性,促进植株生长[61]。AMF与不同种类及功能的生防菌等混合使用可以更显著提高植株抗病抗逆、促生和诱导抗性能力[62-63]。此外,环境中存在非致病性尖孢镰刀菌,如Fusarium oxysporum Fo47这些菌株不仅能够诱导寄主植株产生过敏性反应,还可以提高植株抗病能力;同时与其致病菌竞争有限的营养、生存空间及侵染位点,多方协作降低枯萎病发病率[64-65]。另外,还有内生真菌球黑孢菌(Nigrospora sphaerica)[66]、球孢白僵菌(Beauveria bassiana)[67]和土壤寄生真菌毛壳菌(Coprophilous chartomium)[68]等也常用于防治瓜菜枯萎病,其防效较显著。
2.3 生防放线菌放线菌是医药、农业和环境等人类生活生产所需抗生素的重要来源。链霉菌(Streptomyces sp.) A217具有显著广谱抗性,对尖孢镰刀菌(F. oxysporum)、丁香假单胞菌(Pseudomonas syringae)、葡萄孢灰霉菌(Botrytis cinerea)、辣椒疫霉菌(Phytophthora capsici)、核盘菌(Sclerotinia sclerotiorum)和野生黄单胞菌(Xanthomonas campestris)等多种植物病原菌有较强拮抗或抑制作用[69]。Streptomyces rochei SR-1102对黄瓜、西瓜和茄子等枯萎病病原菌具有较好的抑菌效果,并且能够招募有益微生物,形成以放线菌、拮抗细菌为核心的菌群,形成可以抵抗病原菌侵染的生物屏障,为生物农药和生物肥料研发提供了优良资源[70]。Streptomyces IMS00首次被报道可以分泌产生对尖孢镰刀菌具有抑菌效果的疏螺旋体素抗菌活性物质,但对其作用机理及活性成分不清楚,仍需更深入的研究[71]。
目前,瓜菜枯萎病尚无有效化学防治药物和生防产品,拮抗微生物相关研究仍在大力进行。从土壤微生态平衡角度进行病害防控应是未来发展方向。现有研究表明,作为植物-土壤-微生物互作热点区域,根际是土传病原菌入侵植物根部必经途径,根际微生物组被认为是抵御病原微生物入侵的第一道防线[72]。根际微生物间相互关系在一定程度上决定着致病菌能否成功地侵入植物。同时根际微生物组还可以通过竞争、分泌激素、酶和蛋白等代谢产物合成或降解使植物免受致病菌侵害,促进植物生长及其对环境的适应性。充分挖掘根际微生物组潜能,通过精准分子对话联合多种有益微生物,将微观单一物种研究转移到宏观群落水平,使微生物防治枯萎病体系变成现实。
3 根际微生物组防治枯萎病机制根际微生物组、植株根系、尖孢镰刀菌及土壤环境共同构成了土壤微生态系统。根际微生物组是土壤微生态系统中的重要组成部分,有利于土壤微生态系统健康,保持动态平衡和稳定性,且可以有效抑制瓜菜枯萎病及其他土传病虫害发生。根际微生物组防治尖孢镰刀菌是一个较复杂的过程,存在多个区域空间交叉和相互影响,是多种机制协同作用的结果。我们将主要从根际微生物组自身与病原菌、土壤和寄主植物三方面互作阐述其作用机制,见图 2。
|
| 图 2 根际微生物组防治瓜菜枯萎病机制 Figure 2 Mechanism of rhizosphere microbiome to control fusarium wilt of cucurbitaceous vegetable. |
|
|
土壤微生态条件下,微生物之间因可利用资源有限,因此竞争较为激烈,主要有生存空间竞争和营养物质竞争。生存空间竞争即生态位点竞争,指根际有益微生物快速占据有利生态位点从而阻碍病原菌在植物根系定殖,抑制病原菌生长。例如根际生防真菌菌丝提前并快速侵染植物侧根内短细胞,形成假根,摄取环境中营养,导致尖孢镰刀菌生长发育受阻、菌丝生长不良;其次通过空间位点和营养竞争可以在植物周围迅速扩展生长,形成一定保护屏障,隔断病原菌对植株体入侵,从而有效地抑制尖孢镰刀菌侵染和定殖寄主植物[73]。还有研究发现,P. chlororaphis G5菌株可以在平板上迅速占领大量生存空间,抑制黄瓜枯萎病菌菌丝生长及孢子萌发[51]。此外,Non-pathogenic Fusarium oxysporum Fo47会和致病型Fusarium oxysporum竞争根系生存位点和养分,干扰致病菌菌丝生长和孢子萌发;再次通过竞争根系感染空间位点,诱导植株产生过敏性反应和系统抗性,增强植株抗病力[65]。在营养竞争方面,当有益生防菌抢先利用光合产物进行代谢活动时,病原菌生长所需营养来源则不足,导致尖孢镰刀菌菌丝生长缓慢或孢子产量低,进而影响病原菌定殖和再侵染[52, 73, 74]。生防菌不仅可以与病原菌竞争碳源、氮源等营养,还可以通过自身分泌嗜铁素,如枯草芽孢杆菌(B. subtilis)[52]、荧光假单胞菌(Pseudomonas spp.)[74]、链霉菌(Actinomycete sp.) HJG-5 [75]等利用环境中铁元素来促进自身生长,使病原菌对Fe3+的需求得不到满足,导致病原菌孢子萌发受到抑制,进而降低植物发病率。
3.1.2 降解与重寄生部分有益菌在进行生命活动时,通过产生细胞壁降解酶或细胞溶解酶等导致病原菌菌丝畸形、断裂、变粗、细胞壁破裂和细胞质消解,从而抑制病原菌生长或重寄生。Bacillus subtilis YB-04通过产生β-1, 3-葡聚糖酶、胞外蛋白酶、淀粉酶和纤维素酶等胞外酶降解或破坏病原菌细胞壁及质膜,且对菌丝生长有致畸作用[52]。放线菌通过产生细胞壁水解酶和多种抗生素抑制病原菌生长并进行重寄生[76]。木霉首先通过分泌几丁质酶、果胶酶和β-1, 3-葡聚糖酶等细胞壁降解酶降解病原菌细胞壁,其次通过信号识别、菌丝吸附和侵入完成对致病镰刀菌重寄生过程[77]。此外,毒素等代谢产物能够显著降低病原菌生殖和产孢能力,并且抑制病原孢子萌发,对减少病原菌的再次或多次侵染具有重要意义[78]。
3.1.3 毒杀生防菌在代谢活动中分泌毒素、抗生素及有机酸等次生代谢产物可以直接或间接作用于病原菌细胞壁、细胞膜和细胞器等,进而干扰病原菌能量代谢系统、蛋白质合成系统,使细胞分解从而抑制或杀死病原菌。木霉能够产生多种异腈类、烷基吡喃酮类、二酮哌嗪类、倍半萜类和类固醇类等具有抗生作用的次生代谢产物抑制致病镰刀菌活性[79]。芽孢杆菌可产生芽孢菌霉素、伊枯草菌素、泛革素、杆菌溶素和表面活性素等脂肽类活性物质防治多种植物病原菌[80]。此外,放线菌类抗生素如链霉素、土霉素、井冈霉素、阿维菌素、多杀菌素等已被开发成生物农药,但其致病机理有待深入研究[81]。
3.2 土壤层面防御机制 3.2.1 改善土壤理化性质当根际有益微生物进行生命活动代谢时,产生的代谢产物等活性物质对土壤微环境有一定影响,并且参与调控寄主根系分泌物氨基酸、有机酸及酚类等化感物质的表达,从而间接改变土壤理化性质。Yang等[5]指出根际微生物菌群通过调节土壤中K、Cu和Ca等元素的含量,可以达到抑制黄瓜枯萎病的效果。解淀粉芽孢杆菌(Bacillus amyloliquefaciens) Y1可以通过溶解无机磷酸盐、释放铁载体、增强几丁质酶和脱氢酶活性显著提高土壤全氮含量和促生抗病细菌数量,从而促进辣椒生长,并提高抗病性和总产量[82]。土壤内生真菌庞大的菌丝网不仅可以穿透土壤,增加土壤透气性,降低土壤容重,还可以降解并改善土壤中无机矿质元素形态,帮助植物吸收营养元素,提高植物抵御各种生物和非生物胁迫的能力[83]。施用钩状木霉(Trichoderma hamatum) MHT1134后,土壤有机质、氮磷钾、土壤脲酶和蛋白酶活性等理化性质皆有显著升高和增强,土壤肥力明显增加[84]。将多种生防菌剂与有机肥结合,能有效提高枯萎病防治效果的持效期和稳定性,这为进一步利用生防菌剂防治病原菌稳定性提供了新思路。
3.2.2 调节土壤微生物群落结构根际微生物通过招募有益微生物菌群等直接或间接途径抑制尖孢镰刀菌生长。Yang等[5]揭示了土壤中Aeromicrobium、Pseudorhodoplanes、考克氏菌属(Kocuria)和毛壳菌属(Chaetomium)等微生物菌群种类和丰度影响着黄瓜枯萎病的发生或抑制。芽孢杆菌可以提高根际酶活性,通过招募和改变土壤微生物群落结构,显著增加根际中细菌和放线菌数量,减少尖孢镰刀菌及其他真菌数量,从而抑制枯萎病发生并促进植株生长[85]。AMF能够改善土壤微生物对不同碳源底物的利用能力,进而提高根际土壤周围的细菌和放线菌数量,降低土壤和根际中尖孢镰刀菌等有害真菌种类及丰度,通过根际微生物种群重构,增强土壤根际抗病稳定性和持久性[86]。木霉菌通过分泌酸类、糖类和氨基酸类等物质吸引土壤中放线菌和细菌,降低尖孢镰刀菌的数量[87],但木霉种类不同对不同植物根际微生物种群结构影响存在较大的差异。
3.3 植物层面防御尖孢镰刀菌 3.3.1 影响根系形态结构,构建机械保护屏障根系是植物和病原菌激烈“战斗”的关键部位。根际微生物能够通过影响寄主植物根系细胞生长改变根系生长发育和形态变化、促进木质素、侵填体和胼胝体等物质累积,从而形成物理机械保护屏障阻止病原菌入侵。例如土壤内生真菌菌丝入侵植物根系时,根系皮层细胞壁变厚,根系木质化和纤维化程度提高,根系内养分和水分无法满足病原菌的正常生长代谢,进而抑制病原菌定殖生长和传播[88]。此外,还有研究发现土壤中许多土著微生物能够促进细胞分裂素产生,使根系长度增加、根系分枝增多,更有利于根系扩展延伸、营养物质吸收和尖孢镰刀菌侵染寄主速度延缓等[89]。
3.3.2 促进寄主植物吸收养分微生物可以分泌生长素、糖类或提高植物对营养物质吸收,从而促进植物生长。许多研究证明芽孢杆菌等生防细菌可通过固氮、溶磷、解钾、螯合、氧化还原和酶促等多种方式提高土壤中营养元素可利用率,促进寄主植物对氮、磷、钾、铁、钙、镁和锌等营养元素吸收利用,从而促进植物生长和产量提高[52, 57, 82]。伯克霍尔德氏菌(Burkholderia anthina)通过生物固氮、产生嗜铁素等促进作物幼苗叶绿素含量和根系活力提高,且显著促进植株生长[90]。AMF不仅可以与寄主形成假根,还可以在根外形成密集庞大的菌丝网络,从而扩大和提高寄主植物养分吸收范围和能力,促进植物健康生长并增强抗枯萎病能力[91]。研究表明,固氮螺菌能够分泌生长素(indoleacetic acid, IAA)、脱落酸(abscisic acid, ABA)、赤霉素(gibberellin, GA3)和细胞分裂素(cytokinin, CTK)等激素调控寄主植物生长发育,并抑制病原菌生长[92]。此外,链霉菌通过产生1-氨基环丙烷-1-羧酸脱氨酶抑制寄主植物中乙烯合成,进而增加寄主植物抗逆能力,促进植物生长[93]。
3.3.3 诱导植物产生系统性抗性部分生防菌株侵入寄主后可以产生某种物质诱导植物对病害产生抗性。荧光假单孢杆菌(Pseudomonas fluorescens)能诱导拟南芥合成抗生素2, 4-二乙酰基间苯三酚,提高对枯萎病、茎基腐病等病原菌防御[94]。深色有隔内生真菌(Ochroconis guangxiensis) X22通过产生寡聚糖、多糖和激活蛋白等代谢物质,诱导香蕉可溶性糖和脯氨酸含量增加,防御性酶活性提高,显著增强香蕉对枯萎病的抗病能力[95]。AMF侵入寄主植物根系皮层后,植物发生过敏性反应,水杨酸和防御性酶含量提高,诱导植物系统获得性抗性(systemic acquired resistance, SAR);在病原菌胁迫下,AMF能够产生相关代谢产物,进而激活茉莉酸信号通路和反应,诱导植物增大调控诱导系统性抗性(induced systemic resistance, ISR)反应[96]。还有研究表明AMF能够通过调节甜瓜玉米素、多酚氧化酶、过氧化物酶、丙二醛和吲哚乙酸等合成以降低尖孢镰孢对植物造成损害[97]。此外,土壤中木霉菌侵染植物根系后,通过触发水杨酸、茉莉酸/乙烯等防御反应信号通路,诱导ISR/SAR混合型防御基因表达,进而产生具有广谱性的诱导系统抗性[98]。
4 展望枯萎病是一种世界性的具有毁灭能力的顽固性土传病害,对瓜菜生长有着巨大危害,在生产中是一个古老而又现实的“卡脖子”问题。生物防治手段在防控瓜菜枯萎病的同时可以有效减轻化学防治对环境带来的污染。然而,生防菌、微生物源产品在使用过程中受多种因素制约,导致枯萎病大田防效不稳定且持久性较差等瓶颈障碍,严重制约了瓜菜枯萎病生物防治推广应用。究其原因在于枯萎病发生的关键微生物因子不明确、优异生防菌株土壤定殖及功能不稳定、瓜菜种植模式及制度多样性等。今后应加强几个方面的研究。
(1) 揭示枯萎病发生和抑制的关键因子
土壤理化性质、耕作制度、气候环境、土著微生物等会影响田间枯萎病发生率和生防产品防效。因此需要结合现代分子生物学技术、宏基因组及高通量测序等,分析不同感病、抑病型土壤微生物种群结构及优势微生物种类,分析土传病害发生的可能关键因子,揭示病株与健株根际生长介质中微生物组成及差异,有助于阐明枯萎病发生规律;通过监测主要菌群动态变化可以提前预测枯萎病发生规律,并为筛选对枯萎病有拮抗作用的有益微生物提供新的思路。
(2) 挖掘或改造有益生防菌株
生防菌能否在特定农田生态系统中定殖,是否受土著菌影响直接关系到其生防效果好坏。筛选挖掘枯萎病有效生防资源,获得生防菌株抑制作用的准确评价是目前首要解决的关键问题。首先,对生防菌的筛选不能仅限于某种作物或其根系,而应扩大筛选范围,如从盐碱地、温泉、火山口、戈壁沙漠和动物等样品中筛选抗病抗逆强、抗药抗菌谱广、耐盐耐旱和生长定殖稳定的生防菌株。其次,可将人们优异的特定功能基因转入表达宿主中,构建筛选多种机制、适应性更强、功能更丰富的瓜菜枯萎病生防微生物工程菌;在次生代谢产物研究方面,可以通过基因编辑、基因过表达、发酵条件优化等技术提高菌株产生次生代谢物质能力,也可通过人工合成途径、宏代谢组学途径,研制出防治瓜菜枯萎病的新型生物农药或产品。
(3) 构建核心微生物组及产品设计
培育功能核心微生物组、构建抑病型根际土壤微生态环境是减少化学农药施用和污染、提升土壤健康的一种新技术和途径。接种核心微生物组可以直接调节微生物关系,抑制有害微生物,进而招募功能微生物,从而提升土壤健康、提高作物生产力。一个健康稳定的核心微生物组不仅需要考虑恰当的关键物种、群落成员和物种多样性,还需要明确菌群互作协同关系、稳定的菌群抑病功能,而菌群之间资源竞争或直接干扰竞争导致的消极结果会以各种方式增强或诱导土传病原菌入侵。另外,通过对育苗基质及栽培基质等载体的研发,提前构建稳定的核心微生物菌群,有效提高生防菌在寄主植物根际生长和繁殖能力,避免化肥、农药对生防菌的抑制。
此外,植物免疫的微生物互作分子模式(microbe-associated molecular patterm, MAMPs)理论的深入研究,开阔了生防菌防治病害由微观到宏观、由局部到整体的变革性研究视野,从根本上丰富了植物病虫害以及植物育种理论基础。最后,如何通过不同手段将生防菌或其他来源中抗枯萎病及其他病害的优异功能基因转入瓜菜以提高其抗枯萎病能力及安全性评估将是值得深入思考和探讨的内容。
| [1] |
HUSAINI AM, SAKINA A, CAMBAY SR. Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?[J]. Molecular Plant-Microbe Interactions: MPMI, 2018, 31(9): 889-898. DOI:10.1094/MPMI-12-17-0302-CR |
| [2] |
JIN YL, GUO LM. Research progress of Fusarium wilt in melon[J]. Vegetables, 2023(1): 26-29. (in Chinese) 靳颖玲, 郭利敏. 瓜类枯萎病研究进展[J]. 蔬菜, 2023(1): 26-29. |
| [3] |
SRINIVAS C, DEVI DN, MURTHY KN, MOHAN CD, LAKSHMEESHA TR, SINGH B, KALAGATUR NK, NIRANJANA SR, HASHEM A, ALQARAWI AA, TABASSUM B, ABD_ALLAH EF, NAYAKA SC, SRIVASTAVA RK. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity-a review[J]. Saudi Journal of Biological Sciences, 2019, 26(7): 1315-1324. DOI:10.1016/j.sjbs.2019.06.002 |
| [4] |
FANG Y. The Control Effect and Mechanism of Streptomyces NJU-54 on Tomato Fusarium Wilt[D]. Nanjing: Master's Thesis of Nanjing University, 2021 (in Chinese). 方悠. 链霉菌NJU-54对番茄枯萎病的防治作用及其机理研究[D]. 南京: 南京大学硕士学位论文, 2021. |
| [5] |
YANG KK, LIU XH, CHEN C, HUANG YL, ZHOU G, LIANG ZH, CHEN HM. Research progress of cucumber Fusarium wilt[J]. Hunan Agricultural Sciences, 2019(6): 121-124. (in Chinese) 杨侃侃, 刘晓虹, 陈宸, 黄亚莉, 周赓, 梁志怀, 陈惠明. 黄瓜枯萎病研究进展[J]. 湖南农业科学, 2019(6): 121-124. |
| [6] |
YANG F, JIANG HY, CHANG GZ, LIANG S, MA K, CAI YX, TIAN BM, SHI XJ. Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression[J]. Microorganisms, 2023, 11(6): 1576. DOI:10.3390/microorganisms11061576 |
| [7] |
ANIMASHAUN BO, POPOOLA AR, ENIKUOMEHIN OA, AIYELAAGBE IOO, IMONMION JE. Induced resistance to Fusarium wilt (Fusarium oxysporum) in tomato using plant growth activator, Acibenzolar-S-methyl[J]. Nigerian Journal of Biotechnology, 2017, 32(1): 83. DOI:10.4314/njb.v32i1.12 |
| [8] |
ZHAO ZX, YAN WR, WANG B, HE S, ZENG XP, XIAO TB. Research advances in biological control of pepper Fusarium wilt[J]. Journal of Henan Agricultural Sciences, 2022, 51(4): 11-21. (in Chinese) 赵志祥, 严婉荣, 王宝, 何舒, 曾向萍, 肖彤斌. 辣椒枯萎病生物防治研究进展[J]. 河南农业科学, 2022, 51(4): 11-21. |
| [9] |
ZHENG L, ZHU QZ, FENG ZL, HUANG JB. Identification and biological characteristics of pathogen causing strawberry wilt diseases[J]. Hubei Agricultural Sciences, 2006, 45(2): 194-195. (in Chinese) 郑莉, 朱秋珍, 冯自立, 黄俊斌. 草莓枯萎病病原菌鉴定及其生物学特性[J]. 湖北农业科学, 2006, 45(2): 194-195. |
| [10] |
REN SL, MEI HL, LI YX, DU PT, WEN T, QIAO YZ, ZHANG H, MAI YY, DONG YS, LI J, HUANG QW. Isolation and identification of lily Fusarium wilt pathogen and the effect of spore suspension concentration on the extent of disease[J]. Journal of Nanjing Agricultural University, 2020, 43(6): 1097-1106. (in Chinese) 任胜林, 梅慧玲, 李映萱, 杜彭涛, 文涛, 乔亦铸, 张赫, 麦远愉, 董银霜, 李静, 黄启为. 百合枯萎病病原菌的分离鉴定及其接种浓度对发病程度的影响[J]. 南京农业大学学报, 2020, 43(6): 1097-1106. |
| [11] |
ZHOU W, LI JL, HUANG SM, QIN LY, LI CS, TIAN DD, LONG SF, HUANG QY, WEI SL. Occurrence status of banana wilt in Guangxi and its prevention and control measures[J]. Fujian Agricultural Science and Technology, 2020(5): 46-50. (in Chinese) 周维, 李佳林, 黄素梅, 覃柳燕, 李朝生, 田丹丹, 龙盛风, 黄曲燕, 韦绍龙. 广西香蕉枯萎病发生现状及防控措施[J]. 福建农业科技, 2020(5): 46-50. |
| [12] |
LI MT. Study on cotton Fusarium wilt[J]. Journal of Agricultural Catastrophology, 2012, 2(4): 1-3, 16. (in Chinese) 李明桃. 棉花枯萎病的研究[J]. 农业灾害研究, 2012, 2(4): 1-3, 16. |
| [13] |
WANG JS, LI X, ZHANG HF, ZHANG ZG, ZHENG XB. Genetic diversity of Fusarium oxysporum and identification of resistance to soybean Fusarium wilt on soybean lines[J]. Acta Phytopathologica Sinica, 2015, 45(2): 167-174. (in Chinese) 王健生, 李潇, 张海峰, 张正光, 郑小波. 大豆枯萎病菌尖孢镰孢遗传多样性及大豆品种抗性[J]. 植物病理学报, 2015, 45(2): 167-174. |
| [14] |
MA LJ, van der DOES HC, BORKOVICH KA, COLEMAN JJ, DABOUSSI MJ, Di PIETRO A, DUFRESNE M, FREITAG M, GRABHERR M, HENRISSAT B, HOUTERMAN PM, KANG S, SHIM WB, WOLOSHUK C, XIE XH, XU JR, ANTONIW J, BAKER SE, BLUHM BH, BREAKSPEAR A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium[J]. Nature, 2010, 464(7287): 367-373. DOI:10.1038/nature08850 |
| [15] |
MA LJ. Horizontal chromosome transfer and rational strategies to manage Fusarium vascular wilt diseases[J]. Molecular Plant Pathology, 2014, 15(8): 763-766. DOI:10.1111/mpp.12171 |
| [16] |
SAMADI L, BEHBOODI BS. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2[J]. Planta, 2006, 225(1): 223-234. DOI:10.1007/s00425-006-0345-6 |
| [17] |
SAMBHAVANA C. RNAi-mediated down-regulation of fasciclin-like proteins (FoFLPs) in Fusarium oxysporum f. sp. lycopersici results in reduced pathogenicity and virulence[J]. Microbiological Research, 2022, 260: 127033. DOI:10.1016/j.micres.2022.127033 |
| [18] |
LI MH, YUAN ML, JIANG ZD, LI HP. Research progress in pathogenic mechanism of Fusarium oxysporum f. sp. cubense[J]. Journal of Fruit Science, 2019, 36(6): 803-811. (in Chinese) 李敏慧, 苑曼琳, 姜子德, 李华平. 香蕉枯萎病菌致病机理研究进展[J]. 果树学报, 2019, 36(6): 803-811. |
| [19] |
TEN HAVE A, TENBERGE KB, BENEN JAE, TUDZYNSKI P, VISSER J, van KAN JAL. The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens[M]//Agricultural Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 341-358.
|
| [20] |
ELEONORA KIKOT G, ALBERTO HOURS R, ALCONADA TM. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review[J]. Journal of Basic Microbiology, 2009, 49(3): 231-241. DOI:10.1002/jobm.200800231 |
| [21] |
GAO F, YUE HD, QIN XM, LEI ZH, WANG ML. Research advances on cell wall degrading enzymes produced by pathogenic Fusarium causing plant diseases[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 955-960. (in Chinese) 高芬, 岳换弟, 秦雪梅, 雷振宏, 王梦亮. 植物致病镰刀菌细胞壁降解酶的研究进展[J]. 江苏农业学报, 2018, 34(4): 955-960. |
| [22] |
CHEN XL, NIU CW, LI BH, LI GF, WANG CX. The kinds and activities of cell wall-degrading enzymes produced by Valsa ceratosperma[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(2): 207-212. (in Chinese) 陈晓林, 牛程旺, 李保华, 李桂舫, 王彩霞. 苹果树腐烂病菌产生细胞壁降解酶的种类及其活性分析[J]. 华北农学报, 2012, 27(2): 207-212. |
| [23] |
WANG CL, WANG DM, HUANG W, HUANG CF. Study on the relationship between the fusaric acid, β glucoseidase activity and the pathogenicity of Fusarium oxysporum f. sp. niveum on watermelon[J]. Journal of Xinjiang Agricultural University, 2000, 23(1): 1-6. (in Chinese) 王纯利, 王冬梅, 黄炜, 黄常福. 西瓜枯萎病菌致病力与镰刀菌酸和β-1, 4葡萄糖苷酶活性的关系研究[J]. 新疆农业大学学报, 2000, 23(1): 1-6. |
| [24] |
BRAVO RUIZ G, Di PIETRO A, RONCERO MIG. Combined action of the major secreted exo-and endopolygalacturonases is required for full virulence of Fusarium oxysporum[J]. Molecular Plant Pathology, 2016, 17(3): 339-353. DOI:10.1111/mpp.12283 |
| [25] |
DONG X, LING N, WANG M, SHEN QR, GUO SW. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants[J]. Plant Physiology and Biochemistry, 2012, 60: 171-179. DOI:10.1016/j.plaphy.2012.08.004 |
| [26] |
AMRAOUI H, LAZREK HB, SEDRA MH, SAMPIERI F, MANSUELLE P, ROCHAT H, HAMDAOUI A. Chromatographic characterization and phytotoxic activity of Fusarium oxysporum f. sp. albedinis and saprophytic strain toxins[J]. Journal of Phytopathology, 2005, 153(4): 203-208. DOI:10.1111/j.1439-0434.2005.00953.x |
| [27] |
PROCTOR RH, BUSMAN M, SEO JA, LEE, YW, PLATTNER RD. A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production[J]. Fungal Genetics and Biology, 2008, 45(6): 1016-1026. DOI:10.1016/j.fgb.2008.02.004 |
| [28] |
WASKIEWICZ A, GOLINSKI P, KAROLEWSKI Z, IRZYKOWSKA L, BOCIANOWSKI J, KOSTECKI M, WEBER Z. Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum: a comparative study[J]. Food Additives & Contaminants: Part A, 2010, 27(5): 608-615. |
| [29] |
SONG HH, LEE HS, JEONG JH, PARK HS, LEE C. Diversity in Beauvericin and Enniatins H, I, and MK1688 by Fusarium oxysporum isolated from potato[J]. International Journal of Food Microbiology, 2008, 122(3): 296-301. DOI:10.1016/j.ijfoodmicro.2008.01.009 |
| [30] |
XIONG YF. Study on physiological mechanism of soil-borne Fusarium wilt in cucumber[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2013 (in Chinese). 熊银峰. 黄瓜土传枯萎病发病生理机制研究[D]. 南京: 南京农业大学硕士学位论文, 2013. |
| [31] |
NOTZ R, MAURHOFER M, DUBACH H, HAAS D, DÉFAGO G. Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat[J]. Applied and Environmental Microbiology, 2002, 68(5): 2229-2235. DOI:10.1128/AEM.68.5.2229-2235.2002 |
| [32] |
MICHIELSE CB, REIJNEN L, OLIVAIN C, ALABOUVETTE C, REP M. Degradation of aromatic compounds through the β-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici[J]. Molecular Plant Pathology, 2012, 13(9): 1089-1100. DOI:10.1111/j.1364-3703.2012.00818.x |
| [33] |
SHI JR, WANG YZ, HE CY, WANG JS. Fusarium trichothecene toxins and their function in plant diseases[J]. Acta Phytopathologica Sinica, 1997, 27(4): 298-302. (in Chinese) 史建荣, 王裕中, 何晨阳, 王金生. 镰刀菌单端孢霉烯毒素及其在植物病程中的作用[J]. 植物病理学报, 1997, 27(4): 298-302. |
| [34] |
LI CY, CHEN S, ZUO CW, KUANG RB, YI GJ. Identification of beauvericin, a novel mycotoxin from Fusarium oxysporum f. sp. cubense[J]. Acta Horticulturae Sinica, 2011, 38(11): 2092-2098. (in Chinese) 李春雨, 陈石, 左存武, 邝瑞彬, 易干军. 香蕉枯萎病菌新毒素——白僵菌素的鉴定[J]. 园艺学报, 2011, 38(11): 2092-2098. |
| [35] |
LI LD, WRIGHT SJ, KRYSTOFOVA S, PARK G, BORKOVICH KA. Heterotrimeric G protein signaling in filamentous fungi[J]. Annual Review of Microbiology, 2007, 61: 423-452. DOI:10.1146/annurev.micro.61.080706.093432 |
| [36] |
GUO LJ, YANG YH, YANG LY, WANG FY, WANG GF, HUANG JS. Functional analysis of the G-protein α subunits FGA1 and FGA3 in the banana pathogen Fusarium oxysporum f. sp. cubense[J]. Physiological and Molecular Plant Pathology, 2016, 94: 75-82. DOI:10.1016/j.pmpp.2016.04.003 |
| [37] |
YANG YH, YANG LY, YANG XX, LI SW, HUANG JS. Cloning and sequence analysis of fga1 gene in Fusarium oxysporum f. sp. cubense[J]. Chinese Journal of Tropical Crops, 2009, 30(12): 1808-1812. (in Chinese) 羊玉花, 杨腊英, 杨歆璇, 李松伟, 黄俊生. 香蕉枯萎病菌fga1基因的克隆与序列分析[J]. 热带作物学报, 2009, 30(12): 1808-1812. |
| [38] |
di PIETRO A, GARCÍA-MACEIRA FI, MÉGLECZ E, RONCERO MIG. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis[J]. Molecular Microbiology, 2004, 39(5): 1140-1152. |
| [39] |
KIM HS, PARK SY, LEE S, ADAMS EL, CZYMMEK K, KANG S. Loss of cAMP-dependent protein kinase A affects multiple traits important for root pathogenesis by Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions, 2011, 24(6): 719-732. DOI:10.1094/MPMI-11-10-0267 |
| [40] |
JAIN S, AKIYAMA K, MAE K, OHGUCHI T, TAKATA R. Targeted disruption of a G protein α subunit gene results in reduced pathogenicity in Fusarium oxysporum[J]. Current Genetics, 2002, 41(6): 407-413. DOI:10.1007/s00294-002-0322-y |
| [41] |
DING ZJ, LI MH, SUN F, XI PG, SUN LH, ZHANG LH, JIANG ZD. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense[J]. PLoS One, 2015, 10(4): e0122634. DOI:10.1371/journal.pone.0122634 |
| [42] |
BAHN YS. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway[J]. Eukaryotic Cell, 2008, 7(12): 2017-2036. DOI:10.1128/EC.00323-08 |
| [43] |
INOUE I, NAMIKI F, TSUGE T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein[J]. The Plant Cell, 2002, 14(8): 1869-1883. DOI:10.1105/tpc.002576 |
| [44] |
IMAZAKI I, KURAHASHI M, IIDA Y, TSUGE T. Fow2, a Zn(Ⅱ)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum[J]. Molecular Microbiology, 2007, 63(3): 737-753. DOI:10.1111/j.1365-2958.2006.05554.x |
| [45] |
DUYVESTEIJN RGE, van WIJK R, BOER Y, REP M, CORNELISSEN BJC, HARING MA. Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato[J]. Molecular Microbiology, 2005, 57(4): 1051-1063. DOI:10.1111/j.1365-2958.2005.04751.x |
| [46] |
LI CY, CHEN S, SUN QM, KUANG RB, ZUO CW, ZHENG JX, ZHOU HL, YI GJ. Cloning and diversity of fga1 from Fusarium oxysporum f. sp. cubense[J]. Molecular Plant Breeding, 2011, 9(6): 709-715. (in Chinese) 李春雨, 陈石, 孙清明, 邝瑞彬, 左存武, 郑加协, 周红玲, 易干军. 香蕉枯萎病菌fga1基因克隆及其多样性研究[J]. 分子植物育种, 2011, 9(6): 709-715. |
| [47] |
KEUHENS EAJ, DEVRIJE T, VANDENBOOM C, DEWAARD P, PLASMAN HH, THIEL F, CHUPIN V, JONGEN WMF, DEKRUIJFF B. Molecular basis of glycoalkaloid induced membrane disruption[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1995, 1240(2): 216-228. DOI:10.1016/0005-2736(95)00186-7 |
| [48] |
LI MH, ZHUANG CX, JIANG Z. Isolation of a gene foABC1 involved in pathogenecity from Fusarium oxysporum f. sp. cubense race 4[J]. Journal of Fungal Research, 2006, 4(3): 94-95. (in Chinese) 李敏慧, 庄楚雄, 姜子德. 香蕉枯萎病菌4号生理小种致病相关基因foABC1的分离[J]. 菌物研究, 2006, 4(3): 94-95. |
| [49] |
LÓPEZ-BERGES MS, CAPILLA J, TURRÀ D, SCHAFFERER L, MATTHIJS S, JÖCHL C, CORNELIS P, GUARRO J, HAAS H, Di PIETRO A. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum[J]. The Plant Cell, 2012, 24(9): 3805-3822. DOI:10.1105/tpc.112.098624 |
| [50] |
LI N, LI J, FU LY, LIU JX, DING P, WU JR. Screening and identification of an excellent biocontrol bacteria against cucumber Fusarium wilt in heliogreenhouse of Gansu and its biological effect[J]. China Cucurbits and Vegetables, 2022, 35(1): 86-90. (in Chinese) 李娜, 李晶, 付麟雲, 刘锦霞, 丁品, 武建荣. 1株优良生防细菌的筛选及其对甘肃温室黄瓜枯萎病的防治效果[J]. 中国瓜菜, 2022, 35(1): 86-90. |
| [51] |
HOU YY. Preliminary study on the control technology of Pseudomonas aeruginosa G5 strain against Fusarium wilt of bitter gourd and cucumber[D]. Tai'an: Master's Thesis of Shandong Agricultural University, 2017 (in Chinese). 侯圆圆. 绿针假单胞菌G5菌株对苦瓜和黄瓜枯萎病防治技术初探[D]. 泰安: 山东农业大学硕士学位论文, 2017. |
| [52] |
XU W, YANG Q, YANG F, XIE X, GOODWIN P, DENG XX, TIAN BM, YANG LR. Evaluation and genome analysis of Bacillus subtilis YB-04 as a potential biocontrol agent against Fusarium wilt and growth promotion agent of cucumber[J]. Frontiers in Microbiology, 2022. DOI: 10.3389/fmicb.2022.885430.
|
| [53] |
LUO WJ, LIU LD, QI GF, YANG F, SHI XJ, ZHAO XY. Embedding Bacillus velezensis NH-1 in microcapsules for biocontrol of cucumber Fusarium wilt[J]. Applied and Environmental Microbiology, 2019, 85(9): e03128-18. |
| [54] |
LING N, HUANG QW, GUO SW, SHEN QR. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2011, 341(1/2): 485-493. |
| [55] |
WU Y, ZHAO CY, FARMER J, SUN JD. Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol[J]. Scientia Horticulturae, 2015, 193: 114-120. DOI:10.1016/j.scienta.2015.06.039 |
| [56] |
MAMPHOGORO TP, MABOKO MM, BABALOLA OO, AIYEGORO OA. Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol[J]. Scientific Reports, 2020, 10: 8560. DOI:10.1038/s41598-020-65587-9 |
| [57] |
JUNG BK, HONG SJ, PARK GS, KIM MC, SHIN JH. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases[J]. Applied Biological Chemistry, 2018, 61(2): 173-180. DOI:10.1007/s13765-018-0345-9 |
| [58] |
HEWEDY OA, ABDEL-LATEIF KS, BAKR RA. Genetic diversity and biocontrol efficacy of indigenous Trichoderma isolates against Fusarium wilt of pepper[J]. Journal of Basic Microbiology, 2020, 60(2): 126-135. DOI:10.1002/jobm.201900493 |
| [59] |
SAHI IY, KHALID AN. In vitro biological control of Fusarium oxysporum causing wilt in Capsicum annuum[J]. Mycopathology, 2007, 5(2): 85-88. |
| [60] |
GU ZM, BI H, ZHANG B, TIAN XY. Inhibition action of different Trichoderma strains on Fusarium oxysporum f. sp. cucumerinum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(3): 426-431. (in Chinese) 谷祖敏, 毕卉, 张兵, 田晓颖. 不同木霉菌株对黄瓜枯萎病菌的拮抗作用[J]. 西北农业学报, 2018, 27(3): 426-431. |
| [61] |
JAMIOŁKOWSKA A, MICHAŁEK W. Effect of mycorrhiza inoculation of pepper seedlings (Capsicum annuum L.) on the growth and protection against Fusarium oxysporum infection[J]. Acta Scientiarum Polonorum Hortorum Cultus, 2019, 18(1): 161-169. DOI:10.24326/asphc.2019.1.16 |
| [62] |
AL-MORAD NM, IBRAHEEM B, AL-MORAD NYM. Influence of Glomus intraradices and Trichoderma harzianum on pepper Fusarium wilt control l[J]. Tikrit Journal for Agricultural Sciences, 2019, 18(3): 128-136. |
| [63] |
JALALULDEEN AF, SIJAM K, RAMADAN NA. Active changes of lignifications-related enzymes in chili pepper response to Glomus mosseae against Fusarium oxysporum[J]. Australian Journal of Basic and Applied Sciences, 2020, 14(6): 1-6. |
| [64] |
VELOSO J, DÍAZ J. The non-pathogenic Fusarium oxysporum Fo47 induces distinct responses in two closely related Solanaceae plants against the pathogen Verticillium dahliae[J]. Journal of Fungi, 2021, 7(5): 344. DOI:10.3390/jof7050344 |
| [65] |
SAJEENA A, NAIR DS, SREEPAVAN K. Non-pathogenic Fusarium oxysporum as a biocontrol agent[J]. Indian Phytopathology, 2020, 73(2): 177-183. DOI:10.1007/s42360-020-00226-x |
| [66] |
MMBAGA MT, GURUNG S, MAHESHWARI A. Screening of plant endophytes as biological control agents against root rot pathogens of pepper (Capsicum annuum L.)[J]. Journal of Plant Pathology & Microbiology, 2018, 9(3): 435. |
| [67] |
KICHAOUI AE, ELNABRIS K, SHAFIE A, FAYYAD NA, ARAFA M, EL HINDI MW. Development of Beauveria bassiana-based bio-fungicide against Fusarium wilt pathogens for Capsicum annuum, a promising approach toward vital biocontrol industry in Gaza strip[J]. IUG Journal of Natural Studies, 2017, 25(2): 183-190. |
| [68] |
MAO TT, TAO G, ZHAO DL, ZHAO XL, LIANG YP, WANG N, GU JG. Isolation and identification of coprophilous Chaetomium strain and its biocontrol effect against pepper Fusarium wilt[J]. Chinese Journal of Biological Control, 2017, 33(4): 552-560. (in Chinese) 卯婷婷, 陶刚, 赵玳琳, 赵兴丽, 梁彦平, 王廿, 顾金刚. 一株粪生毛壳菌的分离鉴定及其对辣椒枯萎病的防治效果[J]. 中国生物防治学报, 2017, 33(4): 552-560. |
| [69] |
HE H, HAO X, ZHOU W, SHI N, FENG J, HAN L. Identification of antimicrobial metabolites produced by a potential biocontrol Actinomycete strain A217[J]. Journal of Applied Microbiology, 2020, 128(4): 1143-1152. DOI:10.1111/jam.14548 |
| [70] |
LIU Q, XU J, QI JH, LIU HA, LI CM, HAN GJ, XU B, LU YR, SUN J. Control effect of Streptomyces rochei SR-1102 on Fusarium wilt of tomato and the impact on rhizosphere microorganisms[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1133-1138. (in Chinese) 刘琴, 徐健, 祁建杭, 刘怀阿, 李传明, 韩光杰, 徐彬, 陆玉荣, 孙俊. 娄彻氏链霉菌SR-1102对番茄枯萎病的防效及根际微生物的影响[J]. 江苏农业学报, 2020, 36(5): 1133-1138. |
| [71] |
QIAN Y, PAN YY, LI EW, JIA HH, WEI YM, LIU G. Classification of Streptomyces sp. IMS002 and identification of its antifungal metabolite[J]. Acta Microbiologica Sinica, 2020, 60(1): 60-68. (in Chinese) 钱瑶, 潘园园, 李二伟, 贾慧慧, 魏艳敏, 刘钢. 链霉菌IMS002的分类鉴定及其抗真菌活性物质解析[J]. 微生物学报, 2020, 60(1): 60-68. |
| [72] |
RAAIJMAKERS JM, MAZZOLA M. Soil immune responses[J]. Science, 2016, 352(6292): 1392-1393. DOI:10.1126/science.aaf3252 |
| [73] |
LI SJ, WANG BS, WANG Y, ZHANG SH, ZHANG XW, ZHANG XH, XU GH, REN LX. Mechanism of inoculation of watermelon seedlings with arbuscular mycorrhizae alleviating Fusarium wilt disease[J]. Acta Pedologica Sinica, 2021, 58(3): 744-754. (in Chinese) 李淑君, 王兵爽, 王媛, 张舒桓, 张夕雯, 张晓晖, 徐国华, 任丽轩. 丛枝菌根育苗缓解西瓜枯萎病的机制[J]. 土壤学报, 2021, 58(3): 744-754. |
| [74] |
ELAD Y. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. Pseudomonas spp.[J]. Phytopathology, 1985, 75(9): 1053. |
| [75] |
LI HK, MI JW, CHI M, LIU HQ, WANG YH, SHAN HY. Preparation of biocontrol agent of actinomycetes strain HJG-5 and its control effect on cucumber Fusarium wilt[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(7): 1087-1094. (in Chinese) 李鸿坤, 米佳雯, 池明, 刘慧芹, 王远宏, 单慧勇. 放线菌菌株HJG-5生防剂型的研制及对黄瓜枯萎病的防治效果[J]. 西北农业学报, 2020, 29(7): 1087-1094. |
| [76] |
YUAN Y, ZHANG H, DAOLAHU S, ZHENG R, SHI LL, WU HL. Biocontrol effect of Streptomyces sp. S-101 against cucumber wilt[J]. Chinese Journal of Biological Control, 2019, 35(5): 813-820. (in Chinese) 圆圆, 张虹, 苏道拉呼, 峥嵘, 石玲玲, 吴慧玲. 抑制黄瓜枯萎病的链霉菌S-101及其生防作用研究[J]. 中国生物防治学报, 2019, 35(5): 813-820. |
| [77] |
HE C, WANG WQ, HOU JL. Advances in mechanism and application of Trichoderma viride on biodegradation and biological control[J]. Journal of Microbiology, 2019, 39(3): 122-128. (in Chinese) 贺超, 王文全, 侯俊玲. 绿色木霉对生物降解和生物防治的影响机理与应用研究进展[J]. 微生物学杂志, 2019, 39(3): 122-128. |
| [78] |
DANIEL HCF, EPIFANIO C, FRANCISCO C, GABRIEL G, WILFREDO F. Antibiosis in vitro of Trichoderma strains metabolic extract on mycelial growth and reproductive capacity of Fusarium oxysporum isolated from pepper plants (Capsicum annuum L.)[J]. British Biotechnology Journal, 2014, 4(4): 387-399. |
| [79] |
SGHIR F, TOUATI J, MOURIA B, SELMOUI K. Effect of Trichoderma harzianum and endomycorrhizae on growth and Fusarium wilt of tomato and eggplant[J]. World Journal of Pharmaceutical and Life Sciences, 2016, 2(3): 69-93. |
| [80] |
SARAVANAKUMAR D, THOMAS A, BANWARIE N. Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens[J]. European Journal of Plant Pathology, 2019, 154(2): 319-335. |
| [81] |
HUTCHINGS MI, TRUMAN AW, WILKINSON B. Antibiotics: past, present and future[J]. Current Opinion in Microbiology, 2019, 51: 72-80. |
| [82] |
JAMAL Q, LEE YS, DEOK JEON H, KIM KY. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes[J]. Plant Protection Science, 2018, 54(3): 129-137. |
| [83] |
AKIYAMA K, MATSUZAKI KI, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-827. |
| [84] |
MAO TT, JIANG XL. Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application[J]. Scientific Reports, 2021, 11: 21585. |
| [85] |
ZHAO J, WANG YG, LIANG H, HUANG J, CHEN Z, NIE YJ. The rhizosphere microbial community response to a bio-organic fertilizer: finding the mechanisms behind the suppression of watermelon Fusarium wilt disease[J]. Acta Physiologiae Plantarum, 2018, 40(1): 17. |
| [86] |
MOHANDAS S, MANJULA R, RAWAL RD, LAKSHMIKANTHA HC, CHAKRABORTY S, RAMACHANDRA YL. Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f. sp. cubense infection in banana cv. Neypoovan[J]. Biocontrol Science and Technology, 2010, 20(2): 165-181. |
| [87] |
ZHANG FG, YUAN J, YANG XM, CUI YQ, CHEN LH, RAN W, SHEN QR. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization[J]. Plant and Soil, 2013, 368(1): 433-444. |
| [88] |
AHAMMED GJ, MAO Q, YAN YR, WU MJ, WANG YQ, REN JJ, GUO P, LIU AR, CHEN SC. Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to Fusarium wilt in cucumber[J]. Phytopathology, 2020, 110(5): 999-1009. |
| [89] |
CHIALVA M, SALVIOLI DFA, DAGHINO S, GHIGNONE S, BAGNARESI P, CHIAPELLO M, NOVERO M, SPADARO D, PEROTTO S, BONFANTE P. Native soils with their microbiotas elicit a state of alert in tomato plants[J]. New Phytologist, 2018, 220(4): 1296-1308. |
| [90] |
MALVIYA MK, SOLANKI MK, LI CN, HTUN R, SINGH RK, SINGH P, YANG LT, LI YR. Beneficial linkages of endophytic Burkholderia anthina MYSP113 towards sugarcane growth promotion[J]. Sugar Tech, 2019, 21(5): 737-748. |
| [91] |
YANG F, NIU LL, TANG YL, MA K, WANG CY, MI GQ, SUN TM, SHI XJ. The effect of arbuscular mycorrhizal fungi on cucumber Fusarium wilt disease control and plug seedlings growth[J]. China Fruit & Vegetable, 2022, 42(2): 75-80. (in Chinese) 杨凡, 牛莉莉, 唐艳领, 马凯, 王晨阳, 米国全, 孙天梅, 史宣杰. 丛枝菌根真菌对黄瓜苗期枯萎病防治及生长的影响[J]. 中国果菜, 2022, 42(2): 75-80. |
| [92] |
CASSÁN F, VANDERLEYDEN J, SPAEPEN S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum[J]. Journal of Plant Growth Regulation, 2014, 33(2): 440-459. |
| [93] |
PALANIYANDI SA, DAMODHARAN K, YANG SH, SUH JW. Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of 'Micro Tom' tomato plants[J]. Journal of Applied Microbiology, 2014, 117(3): 766-773. |
| [94] |
WELLER DM, MAVRODI DV, VAN PELT JA, PIETERSE CMJ, VAN LOON LC, BAKKER PAHM. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens[J]. Phytopathology, 2012, 102(4): 403-412. |
| [95] |
QIU MS, ZHANG Y, ZENG FH, LIN SY, LONG YY, SUN ZX, XIE L. Effects of dark septate endophyte Ochroconis guangxiensis X22 elicitor on banana growth promotion and Fusarium wilt resistance[J]. Journal of Southern Agriculture, 2022, 53(10): 2928-2936. (in Chinese) 邱美莎, 张艳, 曾凤花, 林珊宇, 龙艳艳, 孙正祥, 谢玲. 深色有隔内生真菌Ochroconis guangxiensis X22诱导子对香蕉的促生和抗枯萎病效果[J]. 南方农业学报, 2022, 53(10): 2928-2936. |
| [96] |
CAMERON DD, NEAL AL, VAN WEES SCM, TON J. Mycorrhiza-induced resistance: more than the sum of its parts?[J]. Trends in Plant Science, 2013, 18(10): 539-545. |
| [97] |
MARTÍNEZ-MEDINA A, PASCUAL JA, PÉREZ-ALFOCEA F, ALBACETE A, ROLDÁN A. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants[J]. Phytopathology, 2010, 100(7): 682-688. |
| [98] |
SHEN HB, WANG QC, CHEN J, WU J, YANG XD, ZHU WM, ZHANG YY. Efficacy and mechanism of three Trichoderma strains for control of tomato Fusarium wilt[J]. Plant Physiology Journal, 2023, 59(5): 965-976. (in Chinese) 沈海斌, 王前程, 陈捷, 吴珏, 杨学东, 朱为民, 张迎迎. 三株木霉对番茄枯萎病的防治效果和机理研究[J]. 植物生理学报, 2023, 59(5): 965-976. |
2024, Vol. 51



