扩展功能
文章信息
- 刘英杰, 张丽红, 张宏, 兰波, 吕江涛, 陈光, 王禄山, 刘正学
- LIU Yingjie, ZHANG Lihong, ZHANG Hong, LAN Bo, LÜ Jiangtao, CHEN Guang, WANG Lushan, LIU Zhengxue
- 溶磷微生物在土壤磷循环中的作用研究进展
- Role of phosphate solubilizing microorganisms in soil phosphorus cycle: a review
- 微生物学通报, 2023, 50(8): 3671-3687
- Microbiology China, 2023, 50(8): 3671-3687
- DOI: 10.13344/j.microbiol.china.221127
-
文章历史
- 收稿日期: 2022-11-18
- 接受日期: 2023-01-05
- 网络首发日期: 2023-03-02
2. 山东大学微生物技术国家重点实验室, 山东 青岛 266237
2. State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
磷(phosphorus, P)是植物生长的关键营养素,也是陆地生态系统初级生产的主要限制因素之一[1],全球30%−40%耕地的作物产量受到磷的限制[2]。由于磷肥的广泛使用,磷也成为造成陆地和沿海水域持续富营养化的原因之一[3]。磷循环存在于土壤、水体以及自然和农业生态系统中,与环境和人类社会的安全问题密切相关[4]。研究认为,人类干扰、气候变化和生物活动是影响全球磷循环的重要因素[5]。人类干扰,包括开发利用有机磷化学品、利用磷矿以生产和施用磷肥,以及将动物排泄物排入环境,干扰磷的生物地球化学循环[6]。气候变化通过与土壤颗粒的相互作用控制土壤磷循环[7]。目前,人类干扰和气候变化对土壤磷的影响已被大致了解,而由土壤生物参与的磷循环及引起的磷有效性的变化一直都是研究的热点。
用于生产磷肥的磷矿属于不可再生资源,全球高品位磷矿资源预计在50−100年内面临耗竭[8],已经证明溶磷微生物(phosphate solubilizing microorganisms, PSMs)的应用是管理磷矿资源和实现农业可持续发展的公认解决方案。PSMs是一种调节土壤有效磷含量的大型微生物群落,通过矿化有机磷、溶解无机磷矿物和储存生物量磷,在土壤磷循环中发挥关键作用[9]。接种PSMs是提高土壤可溶性磷浓度和农业生产力的一种环境友好方法,认识PSMs在土壤磷的生物化学转化过程中发挥的作用,理解PSMs功能及其如何提高土壤磷有效性,对植物磷营养的获取有着深远的意义[1]。
本文系统论述了土壤基本磷形态和转化,PSMs种类和分布情况,微生物磷循环功能基因,以及PSMs如何参与土壤磷循环并调节土壤正磷酸盐水平,强调了PSMs在土壤磷的生物化学转化过程中的作用和研究PSMs的方法,并以此为基础提出PSMs在未来应用与研究中需要注意和突破的问题。
1 土壤中的基本磷形态和磷循环大多数土壤中存在充足的全磷,土壤全磷含量约10−1 000 g/kg[8],但土壤中超过80%的不溶性磷不可移动,不容易被植物吸收[10]。土壤磷以无机磷和有机磷2种形式存在,二者含量比一般在0.1−3.0之间[8],并随土壤的质地和发育而变化[11]。
土壤有机磷含量占全磷含量的20%−80%,植酸(肌醇六磷酸)是土壤有机磷的主要赋存形式之一,占土壤有机磷含量的50%−80%[2]。植酸由植物在陆地生态系统中合成,不易被生物分解利用且易与土壤颗粒结合,因而在土壤中广泛积累,每年约有多达5 100万t的植酸盐积累在全球土壤中[12]。土壤中的植酸盐浓度取决于土地利用方式和土壤性质,耕地、牧场土壤和肥料中的植酸磷含量范围分别为1.4−220 mg/kg、42−220 mg/kg和153−1 325 mg/kg[13]。如图 1所示,微生物生物量磷是土壤有机磷的重要存在形式,包括土壤中所有活体微生物细胞内所含的磷[1],其既可以作为磷源,也可以作为磷库,这取决于正磷酸盐的全磷吸收率(磷生物固持)是否小于全磷矿化率(释磷)。有机磷矿化对有效磷的贡献潜力取决于微生物磷库的大小及更新时间,微生物生物量磷在农田中约占土壤全磷的0.4%−2.5%,在草地土壤中可占全磷的7.5%[14]。含有机磷产品的应用,如增塑剂、阻燃剂和杀虫剂等,增加了土壤中有机磷的数量和种类。31P核磁共振光谱是研究土壤有机磷的理想工具,可以识别和量化有机磷数量和种类[15]。
土壤无机磷包括原生磷矿物(磷灰石、红磷铁矿、磷铝石等)、次生磷矿物(磷酸钙盐、磷酸铁盐和磷酸铝盐等)、吸附态磷和可溶性磷,无机磷由于与土壤颗粒的弱相互作用而更容易被淋溶[16]。土壤可溶性磷主要指土壤中水溶性或弱酸溶性的磷酸盐离子(HPO42‒、H2PO4‒),占全磷含量低于0.1%,是植物吸收利用的有效形态[17]。矿物态磷共同作用于图 1中的I1和P4,其溶解度取决于土壤pH和离子活性等。Yusdar等[18]发现酸性土壤中磷矿的溶解度取决于土壤质地(54%) > 土壤酸度(43%) > 肥料影响(3%)。次生磷矿物(P4)来源于环境中的磷输入,包括原生磷矿物(I1)的风化、大气干湿沉降(I2)、其他磷输入(I3)[19];原生磷矿物(I1)是土壤磷的主要来源,土壤中约有170种不同的磷酸盐供应矿物[1],大气干湿沉降对土壤磷输入的贡献范围在10‒2−100 g/(m2·y)之间[20]。磷酸钙盐通常在高pH下更稳定、较难溶解,石灰性土壤中的无机磷以钙磷(Ca-P)为主;而磷酸铝和磷酸铁盐在低pH下更稳定,酸性土壤中的铁磷(Fe-P)和铝磷(Al-P)的含量较高[11]。吸附态磷(P3)是指通过范德华力、化学键能等吸附在土壤黏土矿物、Fe/Al氧化物等固相表面的磷,土壤pH影响吸附容量,碱性土壤中磷酸盐阴离子受到排斥,土壤对磷的吸附减少,酸性土壤则相反[21]。无机磷的输出形式包括侵蚀作用(L1)、淋溶作用(L2)和生物吸收(L3)[22]。最早的土壤无机磷组分确定方法是Chang和Jackson提出的化学分组方法,包括不稳定性磷(提取剂NH4Cl)、铝结合态磷(NH4F)、铁结合态磷(NaOH)、钙结合态磷(HCl)、可溶性磷(CDB混合物)和难溶性磷(NaOH)[16],其后出现了许多改进的磷组分方法。土壤磷在生物化学过程中完成相互转化,而特殊环境影响土壤磷的转化,如周期性水淹条件下的三峡水库消落带,土壤晶体矿物吸附态有机磷是水溶态磷的主要来源[23]。
在大多数自然生态系统中,土壤化学过程决定了磷在土壤中的长期形式(植物可用或不可用)和分布(> 103年)[7],生物过程影响磷在短期内(10−2–100年)的分布,原因是来自土壤有机质的大部分有效磷被土壤微生物固定和矿化[24]。因此,生物过程对磷素的有效性有着重要影响,这也是一直以来研究的焦点。
2 溶磷微生物(PSMs)种类及其分布PSMs被定义为将不溶性无机磷和有机磷转化为可溶性磷的形式并调节农业生态系统中磷的生物地球化学循环的微生物,包括溶磷细菌(phosphate solubilizing bacteria, PSB)、溶磷真菌(phosphate solubilizing fungi, PSF)、溶磷放线菌(phosphate solubilizing actinomyces, PSA)和蓝藻,土壤中PSB占PSMs的1%−50%,PSF占0.1%−0.5%[25]。目前有20多个属的细菌具有溶磷能力,以芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、根瘤菌属(Rhizobium)和大肠杆菌属(Escherichia)为代表的PSB是土壤中具有溶磷能力的最大的微生物群落[26]。PSF比PSB的溶磷能力更强,其可以产生比PSB多10倍的有机酸并且可以通过附着磷矿物来增加接触面积[27]。青霉属(Penicillium)、曲霉属(Aspergillus)、毛霉属(Mucor)、根霉属(Rhizopus)和丛枝菌根属(Arbusclar mycorrhiza)是土壤中常见的PSF菌群。PSA主要有链霉菌属(Streptomyces)和小单孢菌属(Micromonospora),这些产孢放线菌能够在无机磷风化和土壤磷循环过程中溶解不溶性磷矿物[28]。除了异养微生物,有研究报道了具有无机磷溶解能力的自养型微生物,如2株蓝藻菌株(Westiellopsis prolifica和Anabaena variabilis)能显著提高培养基中全磷和有效磷含量[29]。有各种研究发现了具有胁迫耐性的PSMs,同时对植物生长有促进作用。在戈多尼亚土壤中发现了在高盐条件下(NaCl浓度1.5 mol/L) Ca3(PO4)2溶解能力高达(393.5±13.2) mg/L的Bacillus siamensis[30];嗜冷性PSB (Pseudomonas jesenii MP1)使种子发芽率提高了92%,并显著提高了田间条件下的鹰嘴豆的生化参数;耐寒冷胁迫的假单胞菌(Pseudomonas simiae)分别使番茄的果实产量增加9.8% (网室栽培)和19.8% (田间实验)[31];耐干旱胁迫的PSA (Streptomyces laurentii)的溶磷能力达到206.65 mg/L,可以在干旱胁迫下促进双色高粱的生长[32]。这些具有胁迫耐性的PSMs将有助于极端环境地区农业的发展。
土壤PSMs的种群密度可作为代表负责土壤磷循环的微生物群落整体功能的一个指标。研究发现,环境中PSMs种群密度的全球分布格局是根际与非根际土中含有比沉积物和水体更多的PSMs。我国各地土壤PSMs的种群密度与经度呈正相关,与纬度呈负相关,因此与干旱和寒冷地区相比,温暖和潮湿地区负责磷循环的微生物的代谢活性可能更高[33]。PSMs在植物根际土壤的数量远大于非根际土壤,说明PSMs的群落分布具有明显的根际招募效应[34]。PSMs的种群密度与pH无关,这表明PSMs可以在广泛的pH范围内生长[33]。
3 主要微生物磷循环功能基因土壤中参与磷循环的PSMs种类多,过程复杂。截至目前,用于检测PSMs的传统方法,如选择性培养基Pikovskaya (PVK)[35]、NBRIP生长培养基[36]等,这些方法分别利用琼脂平板和液体培养基进行定性和定量分析,缺点是耗时长且结果不太准确[1]。随着分子技术、基因组学工具的广泛应用,基于分子水平理解PSMs的研究迅速发展。作为传统方法的替代方法,基于基因特异性PCR的研究成果为PSMs的检测和鉴定开辟了新视角,人们设计各种基因特异性引物集来识别PSMs[37],同时有助于发现新的溶磷基因,并克隆和表征存在于不同微生物中的溶磷基因。按照这类方法从土壤微生物中分离出了Burkholderia cepacia (napD和napE基因)、Morganella morganii (phoC基因)[38]、Pseudomonas fluorescens (pqq基因家族)[39]等溶磷基因。
在参与磷循环的功能酶中,吡咯喹啉合成酶家族(pyrroloquinoline quinone, PQQ)在微生物溶解磷酸盐中起着关键作用,这是由于PQQ参与葡萄糖酸(gluconic acid, GA)的分泌,葡萄糖直接氧化产生GA是PSMs能够溶解有机磷的一个主要机制[34]。已经证明PQQ的主要来源是微生物[40],研究报道了能够合成PQQ的细菌有Gluconobacter oxydan[41]、Enterobacter intermedium 60-2G[42]、Methylobacterium extorquens AM1[43]、Erwinia herbicola[44]等。在微生物中插入或表达溶磷基因是提高其溶磷能力的方法之一,首次应用基因修饰以提高微生物菌株溶磷性能的研究,报道了革兰氏阴性菌Erwinia herbicola编码吡咯喹啉醌合成酶基因的克隆,含有重组质粒的克隆显示出更大的溶磷圈[25]。Tahir等[44]将pqqE在Pantoea sp.和Pseudomonas sp.的基因组中进行了扩增和测序,不同碳源培养基中的Pantoea sp.和Pseudomonas sp.显示的磷酸盐溶解能力分别为(311±4) μg/mL、(204±3) μg/mL和(176±3) μg/mL、(298±5) μg/mL,并且在田间实验中的作物产量比未接种的对照组提高了10%−20%。最近的研究揭示了带有gcd基因的Acinetobacter sp. MR5和Pseudomonas sp. MR7对水稻磷吸收和生长的促进作用,与对照植株相比,经细菌处理的水稻植株中的植物磷含量增加了约67%,谷物产量增加了约55%[45]。微生物的基因片段对土壤磷转化具有重要意义,侧重利用基因组和蛋白质组学工具检测新的PSMs并改善其促进植物生长的能力,有助于推动生态友好型和高产型农业的发展。表 1对参与磷循环的主要基因及合成的功能酶进行了汇总。
Functional groups and protein | Gene | Primer name | Forward (5ʹ→3ʹ) | References |
Organic P mineralization | ||||
β-propeller phytase | bpp | BPP-F/BPP-R | GACGCAGCCGAYGAYCCNGCNITNTGG CAGGSCGCANRTCIACRTTRTT |
[46] |
Ruminal cysteine phytase | cphy | Cphy-F/Cphy-R | GTGGACCTRCGRMARGARWCICA GTCCGACCATTGCCTGCYTCRCARTGRAMRTGIADCCA |
[47] |
Phosphonate transport system ATP-binding protein | phnK | PhnK-F/PhnK-R | CATCGTCGGCGAATCCGG TGCTGCATGCCGCCGGAAAA |
[48] |
D alkaline phosphatase D | phoD | ALPS-F730/ALPS-R1101 | CAGTGGGACGACCACGAGGT GAGGCCGATCGGCATGTCG |
[49] |
Alkaline phosphatase/Pho regulon | phoX | phoX2-F/phoX2-R | GARGAGAACWTCCACGGYTA GATCTCGATGATRTGRCCRAAG |
[50] |
Molecular class C phosphatase | olpA | CMEC1/CMEC2 | TCTGCTCAAAAAGCAGATCAC TTATTGATTAATATTTTGAG |
[51] |
Inorganic P solubilization | ||||
Quinoprotein glucose dehydrogenase | gcd | Gcd-F/Gcd-R | ATCGCGTTCGGGCCGGACG ATSAGRTTSAGCTCGTCCCA |
[48] |
Gcd | GACCTGTGGGACATGGACGT GTCCTTGCCGGTGTAGSTCATC |
[52] | ||
AACACAGCGAAGTCGAACA TGGATCGGGATGACGTAGA |
[53] | |||
Pyrroloquinoline-quinone synthase | pqqC | PqqC-F/PqqC-R | AACCGCTTCTACTACCAG GCGAACAGCTCGGTCAG |
[54] |
PqqC | ATTACCCTGCAGCACTACAC CCAGAGGATATCCAGCTTGAAC |
[53] | ||
GYGTSCGBTTYGCVGTBGA TARTGYTGSGGCCARCTGT |
[53] | |||
Pyrroloquinoline quinone oxidase | pqq | PqqA2 | ACTACGAAGAACGCCCCAAG ATTGTCGCCATCATGTGGGT |
[37] |
Pqq5 | ATGCTGAAGGAAGTCGACGG GATCCATCCGGAACAACGGT |
[37] | ||
PqqF2 | GTGTTGTTCGGCGTCCAATC GGCCATTTTTAGCTGGGTGC |
[37] | ||
PqqBCD | TTCAAGATGCTCAGCCACTG CGATCTTGTCGATGTTGTGC |
[55] | ||
PqqAB | TGTGGACCAAACCTGCATACACTG GATGCTCATGCCATCGAA |
[55] | ||
PqqA peptide cyclase | pqqE | PqqE | TCCGTGGCTATGAGTGGA CATCACCGGTCAGCATGAA |
[53] |
F317/R1019 | TTYTAYACCAACCTGATCACSTC TBAGCATRAASGCCTGRCG |
[53] | ||
Pyrroloquinoline quinone biosynthesis protein A | pqqA | PqqA | ATGTGGACCAAACCTGCATAC GCGGTTAGCGAAGTACATGGT |
[53] |
Pyrroloquinoline quinone biosynthesis protein B | pqqB | PqqB | ACAACACCAACCCGATTCTC TACAACTCGATGCTCATGCC |
[53] |
Pyrroloquinoline quinone biosynthesis protein | pqqD | PqqD | GACGTGGCAGCGATCAT GGCCACCTCCATGAACTG |
[53] |
Pyrroloquinoline quinone biosynthesis protein | pqqF | PqqF | ACACACTTGGCCACACAA CAAACATAGCCAAGCGGAAC |
[53] |
Pyrroloquinoline quinone | pqqG | PqqG | AAGCAGAGGCGCATTTCTAT GTTGATGGTTGATCACGTTGC |
[53] |
Exopolyphosphatase | ppx | Ppx-F/Ppx-R | TGCATCTGGCGGACGGCCT AGATCCGCCGCCAATATCA |
[48] |
Inorganic P biosynthesis | ||||
polyphosphate kinase | ppk | Ppk-F/Ppk-R | GACCCGAABGTRCTBGCSAT TTATAATTNCCSGTNCCNA |
[49] |
土壤有机磷存在快速和慢速循环过程,微生物生物量磷构成快速循环,在细胞死亡后转入到慢速循环。植物凋落物、动物遗体、微生物和有机肥(如秸秆和动物粪便)是常见的慢速磷循环过程,在土壤化学作用或生物分解作用下补充土壤正磷酸盐含量[56]。控制土壤有机磷源的正磷酸盐释放可以增加有机磷有效性以供植物吸收,是土壤磷循环的关键,PSMs可以通过矿化和分解有机磷促进土壤有机磷循环。从土壤和植物根际分离的PSMs已被证明是通过酶解作用矿化有机磷,这些酶包括磷酸酶、植酸酶(肌醇六磷酸酶)、C-P键裂解酶、核酸酶等[57],其中磷酸酶和植酸酶最常见。
磷酸酶通常分为磷酸单酯酶、磷酸二酯酶和作用于含磷酸酐或P-N键的酶[58],主要通过催化磷酸酯和酸酐水解来分解和矿化有机磷,这些酶主要来源于土壤微生物和植物细胞,而且根际的酶活性始终高于其他区域土壤[56]。研究已经证实,磷酸酶的表达是PSMs将有机磷矿化为生物可利用正磷酸盐的关键因素[59],磷酸酶水解活性受土壤理化性质、微生物相互作用、植被以及环境抑制剂和激活剂的影响[58]。磷酸酶根据最佳pH的不同,分为酸性磷酸酶和碱性磷酸酶,碱性磷酸酶水解土壤中约90%的有机磷,并使磷变成植物可利用形式[60]。把从Bacillus licheniformis MTCC 2312中纯化的碱性磷酸酶接种到土壤中,可使玉米根和茎中的磷含量分别提高2.35倍和1.76倍[61]。与未接种土壤的碱性磷酸酶活性(47.86 EU)相比,在土壤中共同接种PSF Talaromyces helicus L7B和丛枝菌根真菌Rhizophagus irregularis后的土壤碱性磷酸酶活性可高达459.38 EU,原因可能是与丛枝菌根真菌的定殖以及真菌相互作用有关,同时土壤水溶态磷浓度与未处理土壤相比提高了约50%[62]。至今报道过的存在于微生物中的碱性磷酸酶主要有phoA、phoD和phoX这3种,它们由不同的基因编码[49]。在微生物中也分离并鉴定了其他磷酸水解酶基因,如Passariello等[51]克隆表达了脑膜炎金杆菌的olpA基因(表 1),并揭示了其功能异质性。
植酸酶通过催化肌醇六磷酸中磷酸单酯键的水解,释放出肌醇磷酸酯和无机磷酸酯。植酸酶由appA或phyA基因编码,负责从土壤中的植酸盐中释放磷[60]。土壤植酸酶活性主要来源于微生物,土壤微生物植酸酶水解植酸的能力高于植物根,如黑曲霉(A. terrus和A. rugulus)滤液中植酸酶活性远高于高粱滤液[13]。保持植酸酶活性的pH值在2.5−8.0之间,而且活性随pH值的增加而下降[13]。由于植酸是土壤有机磷的主要成分,因此大部分研究主要关注植酸酶在有机磷矿化中的应用。据报道,大约30%−48%的可培养土壤微生物通过产生植酸酶来利用植酸[63]。对产植酸酶的优良菌株Pseudomonas corrugata SP77和Serratia liquefaciens LR88进行研究,结果表明二者植酸酶活性分别为23.02 U/mL和24.84 U/mL,溶解磷含量分别提高到714.96 mg/L和306.74 mg/L[64]。溶磷真菌Aspergillus niger经固态发酵48 h后显示出最大的植酸酶活性和磷酸酶活性,分别为133 mmol/min和170 mmol/min,溶解磷含量高达835 mg/L[65]。研究也已证明酵母(相思毕赤酵母和银念珠菌)能产生植酸酶,并利用植酸作为其唯一的磷源[66]。植酸酶的多样性存在于大多数不可培养的土壤微生物中,但这方面的研究很少。此外有报道指出,还有许多酶可以从核苷酸和糖磷酸中释放无机磷酸盐,可以作为有机磷酸酯清除剂[67],是重要的有机磷矿化酶。
4.2 PSMs参与无机磷酸盐溶解如图 2所示,PSMs通过分泌释放降低土壤pH值的各种有机酸和H+,将不溶性无机磷转化为可溶性正磷酸盐形式[68]。无机磷的溶解主要与PSMs中小分子有机酸的分泌有关,PSMs产生的有机酸包括葡萄糖酸、草酸、酮基葡萄糖酸、乳酸、苹果酸、柠檬酸等[26],PSMs菌种不同,其产酸的种类和含量不相同,表现出的溶磷能力也不一样。
PSMs分泌的有机酸能促进微溶的矿质磷溶解(包括磷酸钙和磷灰石等),同时能与Fe3+、Ca2+、Mg2+、Al3+等阳离子螯合,即有机酸离子与无机磷在土壤中竞争(直接物理竞争或静电竞争)相同的吸附位点[69],释放磷酸根离子。PSF通过产生比PSB多10倍的有机酸,使液体和固体培养基中的pH降低1−2个单位,表现出更强的无机磷溶解能力。无机磷矿物在强酸性条件下几乎可以完全溶解,如大部分Ca3(PO4)2的溶解发生在pH 2.5–4.0的范围内,FePO4溶解发生在pH 2.0–2.5的范围内[27],这也解释了一元羧酸(乙酸、甲酸、乳酸和葡萄糖酸)的无机磷溶解效率低于具有较高酸度系数的二羧酸和三羧酸(草酸、苹果酸和柠檬酸)的原因[70]。
其他生物现象也能释放磷酸盐离子,如PSMs呼吸酸化产生H2S和H2CO3等酸性物质,将PO43‒转化成HPO42‒和H2PO4‒,促进无机磷酸盐溶解;土壤中的硫杆菌(Thiobacillus)通过产生的H2S与Fe-P化合物反应生成FeSO4,从而释放出磷酸根离子[71]。某些PSMs只有在NH4+存在时才能溶解无机磷酸盐,如假单胞菌属(Pseudomonas sp.)和青霉属(Penicillium sp.)伴随NH4+同化的H+生成过程中,能观察到磷灰石的完全溶解[72]。NH4+同化作用过程中,利用ATP转换时产生的能量,通过质子泵释放H+降低pH,有助于磷的溶解[73]。土壤pH与溶磷效率有一定的相关性,但pH的下降并不是微生物溶磷的必要条件[74]。
PSMs产生的胞外多糖(exopolysaccharides, EPS)能够增强溶磷作用。EPS是主要由碳水化合物组成的高分子量糖类聚合物,被认为是PSB增溶无机磷的一个重要因素[68]。EPS通过维持游离磷来干扰参与无机磷溶解的有机酸或H+的稳态,使更多的磷从无机磷矿物中释放[75]。PSMs在无机磷溶解过程中起促进作用,如桔灰青霉菌(Penicillium aurantiogriseum)可以吸收Ca2+,从而释放磷酸根以溶解磷酸钙盐[72]。PSB、PSA和蓝绿藻可以合成螯合剂(如cachelators、alchelators和fechelators),将磷从无机磷矿物中释放出来(图 2)。由于磷矿物主要是不溶性羟基磷灰石和Ca、Al、Fe磷酸盐,螯合剂与Ca、Al、Fe形成螯合物,从而释放这些金属结合的磷[29]。
4.3 PSMs促进植物根际环境对磷的吸收 4.3.1 PSMs影响植物根系发育PSMs利用多种机制影响根系发育和磷吸收,包括产生植物生长调节剂(即植物激素)和群体感应分子酰基高丝氨酸内酯等[76]。植物激素包括生长素(auxin, IAA)、脱落酸(abscisic acid, ABA)、细胞分裂素(cytokinin, CTK)和赤霉素(gibberellin, GA)等,其中IAA是促进植物生长的关键物质之一,也是植物和微生物中研究最多的物质之一。PSMs通过向植物提供IAA刺激根的生长并改变根系发育,以便更好地吸收土壤养分。Sharma等[77]研究表明,假单胞菌属的菌株诱导了番茄植株形成更多的侧根分枝和根毛,从而提高了养分吸收能力。两株产生IAA的PSB (Pseudomonas sp. MS16和Enterobacter sp. MS32)刺激了小麦根的生长,同时增加了小麦对土壤磷的吸收[78]。Elhaissoufi等[79]的研究发现,产生IAA的PSB菌株(Pseudomonas sp.)可以介导小麦根系(如根系生物量、根长度、根表面积和根体积等)在3个不同生长阶段的变化,他们的研究表明由PSB引发的根系延伸可以帮助植物获取更多的土壤磷。此外,PSMs的接种也可以刺激植株产生更多的IAA,Kudoyarova等[80]发现,溶磷菌株(P. illinoisensis)促进了小麦体内IAA的合成并进一步刺激根系生长使得植株捕获磷素的能力增强,从而显著增加了植株的生物量,这一过程与溶磷菌株自身产生的IAA并不相关。PSMs合成及诱导植株产生IAA为根系系统发育提供了有利条件,然而Dahmani等[81]研究发现,溶磷菌株(Bacillus megaterium RmBm31)可以产生IAA,但它通过产生挥发性化合物增加了植物根系生长参数(茎和根生物量、根数量以及根毛长度),说明这种溶磷菌株促进根系生长的机制可能不依赖IAA。此外,蔡璐等[82]在白三叶草上发现,接种溶磷菌株阴沟肠杆菌RW8抑制了根系伸长。以上说明PSMs可通过影响植物根系发育促进植物的磷吸收,但具体作用机制与菌株自身相关,同时PSMs是否对植物根系生长产生正向影响可能与菌株与植株间的作用模式相关,具体的机制需进一步探讨。
4.3.2 根际微生物共生根际PSMs被认为是共生或自生的微生物,能够定殖植物根系,并增加根际土壤正磷酸盐含量[83]。丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够与70%−80%的陆生植物形成共生关系,帮助植物吸收N、P等营养元素,根系与AMF共生是植物获取磷的有效策略[84]。AMF在侵入植物根系皮层细胞后连续双叉分枝形成类似树枝状的菌丝结构被称作丛枝,是真菌与植物进行物质交换的重要场所,植物能够利用菌丝获取土壤中更大范围的磷,并将磷迅速运送到根内皮质细胞中[85]。
在缺磷条件下,为了提高植物对磷的吸收,AMF通过密集的菌丝富集PSMs,为PSMs提供栖息地,PSMs则提供AMF所缺乏的磷酸酶基因[86],因此AMF和PSMs可以相互提供关键资源实现有益互动(图 3)。AMF或植物释放的分泌物(如糖、羧酸盐、氨基酸)能够刺激根际PSMs生长,进一步提高有机磷矿化度,从而对AMF和植物吸收磷产生积极影响[87]。有研究发现AMF分泌的果糖刺激了PSB (Rahnella aquatilis)中磷酸酶基因的表达,使有机磷浓度降低了120 μmol/L,而且大多数活化的无机磷被AMF菌丝吸收[88]。还有研究发现混合接种AMF和PSMs不仅能改善土壤肥力,还能显著增加作物干草产量[89]。与单一接种相比,AMF与PSB联合接种可提高蔬菜茎干重最高达15%[77]。
目前,利用宏基因组学和扩增子测序在菌丝相关群落中发现了越来越多具有溶磷能力和土壤磷循环潜力的微生物群落,这也表明AMF可以吸引聚集根际PSMs,将含磷营养物质从AMF菌丝转移到共生植物中,提高植物对土壤磷的吸收[90]。实际上,植物吸收的菌丝途径的磷占植物磷吸收总量的比例甚至可以达到100%[91],但是很多研究忽视了AMF与PSMs互作对植物磷吸收的影响。
5 展望PSMs参与土壤磷的生物地球化学循环并用于改善土壤正磷酸盐浓度,其作为一种环境友好型且容易获得的肥料得到了广泛认可。PSMs在土壤磷的生物地球化学循环过程中发挥了关键作用,其通过酶解作用促进了有机磷的矿化,通过分泌释放有机酸和H+等代谢物增加了无机磷的溶解,通过影响植物根系发育及与AMF互作提高了植物根际对磷元素的吸收。基于分子生物学的方法已经揭示了参与磷循环微生物的功能基因多样性、代谢途径多样性及生存方式多样性,增长了人们对于微生物参与土壤磷循环过程的认知。目前,研究者已经分离出大量具有有机磷矿化和无机磷溶解特性的PSMs,并用于植物生长和土壤实验研究中。然而,由于土壤中的磷循环受物理、化学和生物过程等多因素组合的影响,接种非本地土壤的PSMs被视为影响土壤磷循环和微生物群落结构的生物干预或人为干扰,并且实验室培养的高效PSMs在自然环境中出现生存能力差、溶磷能力退化的现象。因此,如何描述PSMs在土壤中的生长和功能是一个新的研究热点,如何鉴定新的PSMs菌株及开发新的高效生物肥料是需要不断突破的障碍。
在描述PSMs接种在土壤中的生长和功能上,一些研究引入新方法,例如,同位素标记用来讨论接种PSMs的抗性及其在土壤磷循环中的作用[92];拉曼光谱可以在单细胞水平上识别微生物表型和功能异质性且不破坏原始细胞或样品。Li等[93]将单细胞拉曼光谱与D2O标记相结合来探测PSMs,在单细胞水平上识别并定位混合细菌培养基和复杂土壤群落中的PSB。这些方法为了解PSMs接种在土壤中的磷迁移行为、生物有效磷时空变化特征、土壤土著微生物群落中的生态功能和风险提供更多新的选择。PCR、蛋白质组学和分子工具及技术,可以发现新的磷酸盐溶解基因并改善其促进植物生长的能力,有利于理解、管理和利用土壤微生物群落。本课题组前期工作研究表明,基于Box-Behnken响应面法确定载体配方的溶磷菌剂中,最低有效活菌数也达到了微生物菌剂质量标准的10.7倍以上,而且对三峡水库土壤养分有明显的改善作用[94],并在此基础上进行了盆栽实验评价(实验土壤与供试作物均来自三峡水库农耕区)[95],这些工作为开发高效生物肥料及在自然环境中的应用提供了科学依据。此外,有研究发现菌剂与肥料联合施用有利于微生物的功能表达[96]。Rawat等[97]的研究表明Pseudomonas palleroniana N26和Pseudomonas jesenii MP1这2种功能菌株共同接种显著促进鹰嘴豆的生长,而且基于qPCR和DGGE电泳技术显示菌株接种后的活性有持久性,同时不影响土著微生物区系。
本文基于PSMs对土壤磷循环的贡献研究的近期进展,并结合本课题组对PSMs的相关研究成果加以综述,期望对人们更深入认识PSMs在土壤中的功效有所帮助,并在未来使用PSMs接种在推动农业发展中的利用发挥更大的潜力。
[1] |
BILLAH M, KHAN M, BANO A, HASSAN TU, MUNIR A, GURMANI AR. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture[J]. Geomicrobiology Journal, 2019, 36(10): 904-916. DOI:10.1080/01490451.2019.1654043 |
[2] |
BASÍLIO F, DIAS T, SANTANA MM, MELO J, CARVALHO L, CORREIA P, CRUZ C. Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: the example of bacteria- and fungi-based biofertilizers[J]. Applied Soil Ecology, 2022, 178: 104550. DOI:10.1016/j.apsoil.2022.104550 |
[3] |
XIONG CH, GUO Z, CHEN SS, GAO Q, KISHE MA, SHEN QS. Understanding the pathway of phosphorus metabolism in urban household consumption system: a case study of Dar es Salaam, Tanzania[J]. Journal of Cleaner Production, 2020, 274: 122874. DOI:10.1016/j.jclepro.2020.122874 |
[4] |
YUAN ZW, JIANG SY, SHENG H, LIU X, HUA H, LIU XW, ZHANG Y. Human perturbation of the global phosphorus cycle: changes and consequences[J]. Environmental Science & Technology, 2018, 52(5): 2438-2450. |
[5] |
LIU XW, YUAN ZW, LIU X, ZHANG Y, HUA H, JIANG SY. Historic trends and future prospects of waste generation and recycling in China's phosphorus cycle[J]. Environmental Science & Technology, 2020, 54(8): 5131-5139. |
[6] |
HÉBERT MP, FUGÈRE V, GONZALEZ A. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds[J]. Frontiers in Ecology and the Environment, 2019, 17(1): 48-56. DOI:10.1002/fee.1985 |
[7] |
HOU EQ, CHEN CR, LUO YQ, ZHOU GY, KUANG YW, ZHANG YG, HEENAN M, LU XK, WEN DZ. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 2018, 24(8): 3344-3356. DOI:10.1111/gcb.14093 |
[8] |
WANG H, SONG SH, ZHANG JY, LIU YX. Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and 31P-NMR techniques[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 512-523. (in Chinese) 汪洪, 宋书会, 张金尧, 刘云霞. 土壤磷形态组分分级及31P-NMR技术应用研究进展[J]. 植物营养与肥料学报, 2017, 23(2): 512-523. |
[9] |
GROSS A, LIN Y, WEBER PK, PETT-RIDGE J, SILVER WL. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests[J]. Ecology, 2020, 101(2): e02928. |
[10] |
XU XL, MAO XL, van ZWIETEN L, NIAZI NK, LU KP, BOLAN NS, WANG HL. Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus[J]. Journal of Soils and Sediments, 2020, 20(11): 3921-3930. DOI:10.1007/s11368-020-02712-1 |
[11] |
KRUSE J, ABRAHAM M, AMELUNG W, BAUM C, BOL R, KÜHN O, LEWANDOWSKI H, NIEDERBERGER J, OELMANN Y, RÜGER C, SANTNER J, SIEBERS M, SIEBERS N, SPOHN M, VESTERGREN J, VOGTS A, LEINWEBER P. Innovative methods in soil phosphorus research: a review[J]. Journal of Plant Nutrition and Soil Science = Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 2015, 178(1): 43-88. DOI:10.1002/jpln.201400327 |
[12] |
ZHOU Q, JIANG YB, HAO JH, JI JF, LI W. Advances in the study of biogeochemical cycles of phosphorus[J]. Geological Journal of China Universities, 2021, 27(2): 183-199. (in Chinese) 周强, 姜允斌, 郝记华, 季峻峰, 李伟. 磷的生物地球化学循环研究进展[J]. 高校地质学报, 2021, 27(2): 183-199. DOI:10.16108/j.issn1006-7493.2020002 |
[13] |
LIU X, HAN R, CAO Y, TURNER BL, MA LQ. Enhancing phytate availability in soils and phytate-P acquisition by plants: a review[J]. Environmental Science & Technology, 2022, 56(13): 9196-9219. |
[14] |
PARK Y, SOLHTALAB M, THONGSOMBOON W, ARISTILDE L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation[J]. Environmental Microbiology Reports, 2022, 14(1): 3-24. DOI:10.1111/1758-2229.13040 |
[15] |
WANG LM, AMELUNG W, WILLBOLD S. 18O isotope labeling combined with 31P nuclear magnetic resonance spectroscopy for accurate quantification of hydrolyzable phosphorus species in environmental samples[J]. Analytical Chemistry, 2021, 93(4): 2018-2025. DOI:10.1021/acs.analchem.0c03379 |
[16] |
BEZAK-MAZUR E, CIOPIŃSKA J. The application of sequential extraction in phosphorus fractionation in environmental samples[J]. Journal of AOAC International, 2020, 103(2): 337-347. DOI:10.5740/jaoacint.19-0263 |
[17] |
HAO JH, KNOLL AH, HUANG F, SCHIEBER J, HAZEN RM, DANIEL I. Cycling phosphorus on the archean earth: part II. Phosphorus limitation on primary production in archean ecosystems[J]. Geochimica et Cosmochimica Acta, 2020, 280: 360-377. DOI:10.1016/j.gca.2020.04.005 |
[18] |
YUSDAR H, ANUAR AR, HANAFI MM, AZIZAH H. Analysis of phosphate rock dissolution determining factors using principal component analysis in some acid Indonesian soils[J]. Communications in Soil Science and Plant Analysis, 2007, 38(1/2): 273-282. |
[19] |
GAO Y, HAO Z, YANG TT, HE NP, WEN XF, YU GR. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: a Chinese case study[J]. Environmental Pollution, 2017, 226: 69-78. DOI:10.1016/j.envpol.2017.03.067 |
[20] |
TIPPING E, BENHAM S, BOYLE JF, CROW P, DAVIES J, FISCHER U, GUYATT H, HELLIWELL R, JACKSON-BLAKE L, LAWLOR AJ, MONTEITH DT, ROWE EC, TOBERMAN H. Atmospheric deposition of phosphorus to land and freshwater[J]. Environmental Science Processes & Impacts, 2014, 16(7): 1608-1617. |
[21] |
WEIHRAUCH C, OPP C. Ecologically relevant phosphorus pools in soils and their dynamics: the story so far[J]. Geoderma, 2018, 325: 183-194. DOI:10.1016/j.geoderma.2018.02.047 |
[22] |
MATHEW D, GIREESHKUMAR TR, BALACHANDRAN KK, UDAYAKRISHNAN PB, SHAMEEM K, DEEPULAL PM, NAIR M, MADHU NV, MURALEEDHARAN KR. Influence of hypoxia on phosphorus cycling in alappuzha mud banks, southwest coast of India[J]. Regional Studies in Marine Science, 2020, 34: 101083. DOI:10.1016/j.rsma.2020.101083 |
[23] |
HE LP, LAN B, LIN JJ, DUAN LY, LIAO YH, XU ZJ. Transformation processes of phosphorus forms in purple alluvial soil of riparian zone of the Three Gorges Reservoir[J]. Research of Environmental Sciences, 2021, 34(8): 1952-1960. (in Chinese) 何立平, 兰波, 林俊杰, 段林艳, 廖雨涵, 徐正佳. 三峡库区消落带紫色潮土磷形态转化过程[J]. 环境科学研究, 2021, 34(8): 1952-1960. DOI:10.13198/j.issn.1001-6929.2021.05.12 |
[24] |
HACKER N, WILCKE W, OELMANN Y. The oxygen isotope composition of bioavailable phosphate in soil reflects the oxygen isotope composition in soil water driven by plant diversity effects on evaporation[J]. Geochimica et Cosmochimica Acta, 2019, 248: 387-399. DOI:10.1016/j.gca.2018.11.023 |
[25] |
FATIMA F, AHMAD MM, VERMA SR, PATHAK N. Relevance of phosphate solubilizing microbes in sustainable crop production: a review[J]. International Journal of Environmental Science and Technology, 2022, 19(9): 9283-9296. DOI:10.1007/s13762-021-03425-9 |
[26] |
TIMOFEEVA A, GALYAMOVA M, SEDYKH S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants (Basel, Switzerland), 2022, 11(16): 2119. |
[27] |
JIANG YF, TIAN J, GE F. New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4[J]. Current Microbiology, 2020, 77(12): 4095-4103. DOI:10.1007/s00284-020-02238-2 |
[28] |
AALLAM Y, DHIBA D, LEMRISS S, SOUIRI A, KARRAY F, RASAFI TE, SAÏDI N, HADDIOUI A, EL KABBAJ S, VIROLLE MJ, HAMDALI H. Isolation and characterization of phosphate solubilizing Streptomyces sp. endemic from sugar beet fields of the Beni-mellal region in Morocco[J]. Microorganisms, 2021, 9(5): 914. DOI:10.3390/microorganisms9050914 |
[29] |
YANDIGERI MS, YADAV AK, SRINIVASAN R, KASHYAP S, PABBI S. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena[J]. Microbiology, 2011, 80(4): 558. DOI:10.1134/S0026261711040229 |
[30] |
JIANG HH, WANG T, CHI XY, WANG M, CHEN N, CHEN MN, PAN LJ, QI PS. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil[J]. Geomicrobiology Journal, 2020, 37(2): 110-118. DOI:10.1080/01490451.2019.1666195 |
[31] |
RIZVI A, AHMED B, KHAN MS, UMAR S, LEE J. Psychrophilic bacterial phosphate-biofertilizers: a novel extremophile for sustainable crop production under cold environment[J]. Microorganisms, 2021, 9(12): 2451. DOI:10.3390/microorganisms9122451 |
[32] |
KOUR D, LATA RANA K, KAUR T, SHEIKH I, YADAV AN, KUMAR V, DHALIWAL HS, SAXENA AK. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus- solubilizing microbes[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101501. DOI:10.1016/j.bcab.2020.101501 |
[33] |
LI JT, LU JL, WANG HY, FANG Z, WANG XJ, FENG SW, WANG Z, YUAN T, ZHANG SC, OU SN, YANG XD, WU ZH, DU XD, TANG LY, LIAO B, SHU WS, JIA P, LIANG JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes[J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771-2793. DOI:10.1111/brv.12779 |
[34] |
LI QL, LI AB, HUANG ZY, GAI X, BIAN FY, ZHONG ZK, ZHANG XP. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration[J]. World Forestry Research, 2022, 35(1): 15-20. (in Chinese) 李巧玲, 李爱博, 黄志远, 盖旭, 卞方圆, 钟哲科, 张小平. 解磷微生物在林业土壤生态修复中的应用进展[J]. 世界林业研究, 2022, 35(1): 15-20. |
[35] |
KUMAR V, PRASHER IB. Phosphate solubilization and indole-3-acetic acid (IAA) produced by Colletotrichum gloeosporioides and Aspergillus fumigatus strains isolated from the rhizosphere of Dillenia indica L[J]. Folia Microbiologica, 2022, 1-11. |
[36] |
JANATI W, MIKOU K, EL GHADRAOUI L, ERRACHIDI F. Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco[J]. Frontiers in Microbiology, 2022, 13: 958300. DOI:10.3389/fmicb.2022.958300 |
[37] |
ALAYLAR B, GÜLLÜCE M, KARADAYI M, ISAOGLU M. Rapid detection of phosphate- solubilizing bacteria from agricultural areas in Erzurum[J]. Current Microbiology, 2019, 76(7): 804-809. DOI:10.1007/s00284-019-01688-7 |
[38] |
TASNÁDI G, ZECHNER M, HALL M, BALDENIUS K, DITRICH K, FABER K. Investigation of acid phosphatase variants for the synthesis of phosphate monoesters[J]. Biotechnology and Bioengineering, 2017, 114(10): 2187-2195. DOI:10.1002/bit.26352 |
[39] |
CHO ST, CHANG HH, EGAMBERDIEVA D, KAMILOVA F, LUGTENBERG B, KUO CH. Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host[J]. PLoS One, 2015, 10(10): e0140231. DOI:10.1371/journal.pone.0140231 |
[40] |
ZHU W, KLINMAN JP. Biogenesis of the peptide-derived redox cofactor pyrroloquinoline quinone[J]. Current Opinion in Chemical Biology, 2020, 59: 93-103. DOI:10.1016/j.cbpa.2020.05.001 |
[41] |
HÖLSCHER T, GÖRISCH H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H[J]. Journal of Bacteriology, 2006, 188(21): 7668-7676. DOI:10.1128/JB.01009-06 |
[42] |
KIM CH, HAN SH, KIM KY, CHO BH, KIM YH, KOO BS, KIM YC. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium[J]. Current Microbiology, 2003, 47(6): 457-461. |
[43] |
TOYAMA H, CHISTOSERDOVA L, LIDSTROM ME. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate[J]. Microbiology (Reading, England), 1997, 143 (Pt 2): 595-602.
|
[44] |
TAHIR M, NAEEM MA, SHAHID M, KHALID U, FAROOQ AU, AHMAD N, AHMAD I, ARSHAD M, WAQAR A. Inoculation of pqqE gene inhabiting Pantoea and Pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. Journal of Applied Microbiology, 2020, 129(3): 575-589. DOI:10.1111/jam.14630 |
[45] |
RASUL M, YASMIN S, SULEMAN M, ZAHEER A, REITZ T, TARKKA MT, ISLAM E, MIRZA MS. Glucose dehydrogenase gene containing phosphobacteria for biofortification of phosphorus with growth promotion of rice[J]. Microbiological Research, 2019, 223/224/225: 1-12. |
[46] |
HUANG HQ, SHI PJ, WANG YR, LUO HY, SHAO N, WANG GZ, YANG PL, YAO B. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature[J]. Applied and Environmental Microbiology, 2009, 75(6): 1508-1516. DOI:10.1128/AEM.02188-08 |
[47] |
HUANG HQ, ZHANG R, FU DW, LUO JJ, LI ZY, LUO HY, SHI PJ, YANG PL, DIAO QY, YAO B. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation[J]. Environmental Microbiology, 2011, 13(3): 747-757. DOI:10.1111/j.1462-2920.2010.02379.x |
[48] |
ZHENG BX, ZHU YG, SARDANS J, PEÑUELAS J, SU JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China Life Sciences, 2018, 61(12): 1451-1462. DOI:10.1007/s11427-018-9364-7 |
[49] |
LIU J, CADE-MENUN BJ, YANG JJ, HU YF, LIU CW, TREMBLAY J, LAFORGE K, SCHELLENBERG M, HAMEL C, BAINARD LD. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils[J]. Frontiers in Microbiology, 2018, 9: 1643. DOI:10.3389/fmicb.2018.01643 |
[50] |
SEBASTIAN M, AMMERMAN JW. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA[J]. The ISME Journal, 2009, 3(5): 563-572. DOI:10.1038/ismej.2009.10 |
[51] |
PASSARIELLO C, SCHIPPA S, IORI P, BERLUTTI F, THALLER MC, ROSSOLINI GM. The molecular class C acid phosphatase of Chryseobacterium meningosepticum (OlpA) is a broad-spectrum nucleotidase with preferential activity on 5′-nucleotides[J]. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 2003, 1648(1/2): 203-209. |
[52] |
CHEN WM, YANG F, ZHANG L, WANG JM. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources[J]. Geomicrobiology Journal, 2016, 33(10): 870-877. DOI:10.1080/01490451.2015.1123329 |
[53] |
ANZUAY MS, FROLA O, ANGELINI JG, LUDUEÑA LM, FABRA A, TAURIAN T. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability[J]. Symbiosis, 2013, 60(3): 143-154. DOI:10.1007/s13199-013-0250-2 |
[54] |
ZHENG BX, HAO XL, DING K, ZHOU GW, CHEN QL, ZHANG JB, ZHU YG. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil[J]. Scientific Reports, 2017, 7: 42284. DOI:10.1038/srep42284 |
[55] |
NAVEED M, SOHAIL Y, KHALID N, AHMED I, MUMTAZ AS. Evaluation of glucose dehydrogenase and pyrroloquinoline quinine (pqq) mutagenesis that renders functional inadequacies in host plants[J]. Journal of Microbiology and Biotechnology, 2015, 25(8): 1349-1360. DOI:10.4014/jmb.1501.01075 |
[56] |
BI QF, LI KJ, ZHENG BX, LIU XP, LI HZ, JIN BJ, DING K, YANG XR, LIN XY, ZHU YG. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J]. Science of the Total Environment, 2020, 703: 134977. DOI:10.1016/j.scitotenv.2019.134977 |
[57] |
KOUR D, LATA RANA K, KAUR T, YADAV N, YADAV AN, KUMAR M, KUMAR V, DHALIWAL HS, SAXENA AK. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review[J]. Pedosphere, 2021, 31(1): 43-75. |
[58] |
NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of Phosphatase Enzymes in Soil[M]. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243.
|
[59] |
BI QF, ZHENG BX, LIN XY, LI KJ, LIU XP, HAO XL, ZHANG H, ZHANG JB, JAISI DP, ZHU YG. The microbial cycling of phosphorus on long-term fertilized soil: insights from phosphate oxygen isotope ratios[J]. Chemical Geology, 2018, 483: 56-64. DOI:10.1016/j.chemgeo.2018.02.013 |
[60] |
ALORI ET, GLICK BR, BABALOLA OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology, 2017, 8: 971. |
[61] |
SINGH P, BANIK RM. Effect of purified alkaline phosphatase from Bacillus licheniformis on growth of Zea mays L.[J]. Plant Science Today, 2019, 6(sp1): 583-589. DOI:10.14719/pst.2019.6.sp1.676 |
[62] |
DELLA MÓNICA IF, GODEAS AM, SCERVINO JM. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers[J]. Microbial Ecology, 2020, 79(1): 21-29. |
[63] |
TIAN J, GE F, ZHANG DY, DENG SQ, LIU XW. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 2021, 10(2): 158. |
[64] |
BEN ZINEB A, TRABELSI D, AYACHI I, BARHOUMI F, AROCA R, MHAMDI R. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilization with rock phosphates[J]. Geomicrobiology Journal, 2020, 37(1): 22-30. |
[65] |
DIN M, NELOFER R, SALMAN M, ABDULLAH, KHAN FH, KHAN A, AHMAD M, JALIL F, DIN JU, KHAN M. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus[J]. Biotechnology Reports, 2019, 22: e00323. |
[66] |
LIANG XJ, CSETENYI L, GADD GM. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5141-5151. |
[67] |
KUMAR S, KAUSHIK G, DAR MA, NIMESH S, LÓPEZ-CHUKEN UJ, VILLARREAL-CHIU JF. Microbial degradation of organophosphate pesticides: a review[J]. Pedosphere, 2018, 28(2): 190-208. |
[68] |
SHARMA SB, SAYYED RZ, TRIVEDI MH, GOBI TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2013, 2: 587. |
[69] |
RAWAT P, DAS S, SHANKHDHAR D, SHANKHDHAR SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68. |
[70] |
LUYCKX L, GEERTS S, van CANEGHEM J. Closing the phosphorus cycle: multi-criteria techno-economic optimization of phosphorus extraction from wastewater treatment sludge ash[J]. Science of the Total Environment, 2020, 713: 135543. |
[71] |
GHANI A, RAJAN SSS, LEE A. Enhancement of phosphate rock solubility through biological processes[J]. Soil Biology and Biochemistry, 1994, 26(1): 127-136. |
[72] |
ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27(3): 257-263. |
[73] |
KHAN MS, ZAIDI A, AHMAD E. Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-solubilizing Microorganisms[M]. Phosphate Solubilizing Microorganisms. Cham: Springer International Publishing, 2014: 31-62.
|
[74] |
CHEN GC, HE ZL, WANG YJ. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere, 2004, 14(1): 9-15. |
[75] |
PRABHU N, BORKAR S, GARG S. Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7[J]. Current Science, 2018, 114(4): 845. |
[76] |
BARGAZ A, ELHAISSOUFI W, KHOURCHI S, BENMRID B, BORDEN KA, RCHIAD Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J]. Microbiological Research, 2021, 252: 126842. |
[77] |
SHARMA S, COMPANT S, BALLHAUSEN MB, RUPPEL S, FRANKEN P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum[J]. Microbiological Research, 2020, 240: 126556. |
[78] |
SULEMAN M, YASMIN S, RASUL M, YAHYA M, ATTA BM, MIRZA MS. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9): e0204408. |
[79] |
ELHAISSOUFI W, KHOURCHI S, IBNYASSER A, GHOULAM C, RCHIAD Z, ZEROUAL Y, LYAMLOULI K, BARGAZ A. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization[J]. Frontiers in Plant Science, 2020, 11: 979. |
[80] |
KUDOYAROVA GR, VYSOTSKAYA LB, ARKHIPOVA TN, KUZMINA LY, GALIMSYANOVA NF, SIDOROVA LV, GABBASOVA IM, MELENTIEV AI, VESELOV SY. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants[J]. Acta Physiologiae Plantarum, 2017, 39(11): 253. |
[81] |
DAHMANI MA, DESRUT A, MOUMEN B, VERDON J, MERMOURI L, KACEM M, COUTOS-THÉVENOT P, KAID-HARCHE M, BERGÈS T, VRIET C. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma[J]. Frontiers in Plant Science, 2020, 11: 124. |
[82] |
CAI L, WANG XL, CHEN Y, WANG ZY, LI XD. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white clover (Trifolium repens)[J]. Acta Prataculturae Sinica, 2017, 26(5): 181-188. (in Chinese) 蔡璐, 王小利, 陈莹, 王子苑, 李小冬. 无机磷溶解菌RW8的筛选、鉴定及对白三叶促生效果研究[J]. 草业学报, 2017, 26(5): 181-188. |
[83] |
ZHENG BX, DING K, YANG XR, WADAAN MAM, HOZZEIN WN, PEÑUELAS J, ZHU YG. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake[J]. Science of the Total Environment, 2019, 647: 1113-1120. |
[84] |
SHI JC, ZHAO BY, ZHENG S, ZHANG XW, WANG XL, DONG WT, XIE QJ, WANG G, XIAO YP, CHEN F, YU N, WANG ET. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527-5540.e18. |
[85] |
BAO XZ, ZOU JX, ZHANG B, WU LM, YANG TT, HUANG Q. Arbuscular mycorrhizal fungi and microbes interaction in rice mycorrhizosphere[J]. Agronomy, 2022, 12(6): 1277. |
[86] |
WAHID F, SHARIF M, FAHAD S, ALI A, ADNAN M, RAFIULLAH, SAUD S, DANISH S, ARIF ALI M, AHMED N, ARSLAN H, ARSLAN D, ERMAN M, EL SABAGH A, GHOLIZADEH F, DATTA R. Mycorrhiza and phosphate solubilizing bacteria: potential bioagents for sustainable phosphorus management in agriculture[J]. Phyton, 2022, 91(2): 257-278. |
[87] |
JIANG FY, ZHANG L, ZHOU JC, GEORGE TS, FENG G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. The New Phytologist, 2021, 230(1): 304-315. |
[88] |
ZHANG L, XU MG, LIU Y, ZHANG FS, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. The New Phytologist, 2016, 210(3): 1022-1032. |
[89] |
WANG YY, WEI Z, XU YC, SHEN QR. Dissolving capacity of phosphate dissolving bacteria strains combination and their effects on corn growth[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 262-268. (in Chinese) 王誉瑶, 韦中, 徐阳春, 沈其荣. 溶磷菌株组合的溶磷效应及对玉米生长的影响[J]. 植物营养与肥料学报, 2017, 23(1): 262-268. |
[90] |
LIU N, SHAO C, SUN H, LIU ZB, GUAN YM, WU LJ, ZHANG LL, PAN XX, ZHANG ZH, ZHANG YY, ZHANG B. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J]. Geoderma, 2020, 363: 114155. |
[91] |
ZHANG L, DING XD, WANG F, TIAN ZY, FENG G. The effects of inoculation with phosphate solubilizing bacteria Bacillus megaterium C4 in the AM fungal hyphosphere on soil organic phosphorus mineralization and plant uptake[J]. Acta Ecologica Sinica, 2012, 32(13): 4079-4086. (in Chinese) 张林, 丁效东, 王菲, 田芷源, 冯固. 菌丝室接种解磷细菌Bacillus megaterium C4对土壤有机磷矿化和植物吸收的影响[J]. 生态学报, 2012, 32(13): 4079-4086. |
[92] |
HONG JK, BIN KIM S, LYOU ES, LEE TK. Microbial phenomics linking the phenotype to function: the potential of Raman spectroscopy[J]. Journal of Microbiology, 2021, 59(3): 249-258. |
[93] |
LI HZ, BI QF, YANG K, ZHENG BX, PU Q, CUI L. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 2239-2246. |
[94] |
XIE WC. Development and preliminary application of inorganic phosphate-solubilizing bacteria agent suitable for plant growth in water-level fluctuation zone of Three Gorges Reservoir[D]. Chongqing: Master's Thesis of Chongqing Three Gorges University, 2020 (in Chinese). 谢稳春. 适于三峡水库消落区植物生长无机解磷菌剂研制及初步应用研究[D]. 重庆: 重庆三峡学院硕士学位论文, 2020. |
[95] |
LIU XL. Development of inorganic phosphate- solubilizing bacterial fertilizer suitable for Three Gorges Reservoir area and its influence on leek growth[D]. Chongqing: Master's Thesis of Chongqing Three Gorges University, 2020 (in Chinese). 刘小莉. 适用于三峡库区无机解磷菌肥的研制及对韭菜生长的影响[D]. 重庆: 重庆三峡学院硕士学位论文, 2020. |
[96] |
MPANGA IK, LUDEWIG U, DAPAAH HK, NEUMANN G. Acquisition of rock phosphate by combined application of ammonium fertilizers and Bacillus amyloliquefaciens FZB42 in maize as affected by soil pH[J]. Journal of Applied Microbiology, 2020, 129(4): 947-957. |
[97] |
RAWAT N, SHARMA M, SUYAL DC, SINGH DK, JOSHI D, SINGH P, GOEL R. Psyhcrotolerant bio-inoculants and their Co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3): 639-647. |