[1] |
BILLAH M, KHAN M, BANO A, HASSAN TU, MUNIR A, GURMANI AR. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture[J]. Geomicrobiology Journal, 2019, 36(10): 904-916. DOI:10.1080/01490451.2019.1654043 |
|
[2] |
BASÍLIO F, DIAS T, SANTANA MM, MELO J, CARVALHO L, CORREIA P, CRUZ C. Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: the example of bacteria- and fungi-based biofertilizers[J]. Applied Soil Ecology, 2022, 178: 104550. DOI:10.1016/j.apsoil.2022.104550 |
|
[3] |
XIONG CH, GUO Z, CHEN SS, GAO Q, KISHE MA, SHEN QS. Understanding the pathway of phosphorus metabolism in urban household consumption system: a case study of Dar es Salaam, Tanzania[J]. Journal of Cleaner Production, 2020, 274: 122874. DOI:10.1016/j.jclepro.2020.122874 |
|
[4] |
YUAN ZW, JIANG SY, SHENG H, LIU X, HUA H, LIU XW, ZHANG Y. Human perturbation of the global phosphorus cycle: changes and consequences[J]. Environmental Science & Technology, 2018, 52(5): 2438-2450. |
|
[5] |
LIU XW, YUAN ZW, LIU X, ZHANG Y, HUA H, JIANG SY. Historic trends and future prospects of waste generation and recycling in China's phosphorus cycle[J]. Environmental Science & Technology, 2020, 54(8): 5131-5139. |
|
[6] |
HÉBERT MP, FUGÈRE V, GONZALEZ A. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds[J]. Frontiers in Ecology and the Environment, 2019, 17(1): 48-56. DOI:10.1002/fee.1985 |
|
[7] |
HOU EQ, CHEN CR, LUO YQ, ZHOU GY, KUANG YW, ZHANG YG, HEENAN M, LU XK, WEN DZ. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 2018, 24(8): 3344-3356. DOI:10.1111/gcb.14093 |
|
[8] |
WANG H, SONG SH, ZHANG JY, LIU YX. Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and 31P-NMR techniques[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 512-523. (in Chinese) 汪洪, 宋书会, 张金尧, 刘云霞. 土壤磷形态组分分级及 31P-NMR技术应用研究进展[J]. 植物营养与肥料学报, 2017, 23(2): 512-523. |
|
[9] |
GROSS A, LIN Y, WEBER PK, PETT-RIDGE J, SILVER WL. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests[J]. Ecology, 2020, 101(2): e02928. |
|
[10] |
XU XL, MAO XL, van ZWIETEN L, NIAZI NK, LU KP, BOLAN NS, WANG HL. Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus[J]. Journal of Soils and Sediments, 2020, 20(11): 3921-3930. DOI:10.1007/s11368-020-02712-1 |
|
[11] |
KRUSE J, ABRAHAM M, AMELUNG W, BAUM C, BOL R, KÜHN O, LEWANDOWSKI H, NIEDERBERGER J, OELMANN Y, RÜGER C, SANTNER J, SIEBERS M, SIEBERS N, SPOHN M, VESTERGREN J, VOGTS A, LEINWEBER P. Innovative methods in soil phosphorus research: a review[J]. Journal of Plant Nutrition and Soil Science = Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 2015, 178(1): 43-88. DOI:10.1002/jpln.201400327 |
|
[12] |
ZHOU Q, JIANG YB, HAO JH, JI JF, LI W. Advances in the study of biogeochemical cycles of phosphorus[J]. Geological Journal of China Universities, 2021, 27(2): 183-199. (in Chinese) 周强, 姜允斌, 郝记华, 季峻峰, 李伟. 磷的生物地球化学循环研究进展[J]. 高校地质学报, 2021, 27(2): 183-199. DOI:10.16108/j.issn1006-7493.2020002 |
|
[13] |
LIU X, HAN R, CAO Y, TURNER BL, MA LQ. Enhancing phytate availability in soils and phytate-P acquisition by plants: a review[J]. Environmental Science & Technology, 2022, 56(13): 9196-9219. |
|
[14] |
PARK Y, SOLHTALAB M, THONGSOMBOON W, ARISTILDE L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation[J]. Environmental Microbiology Reports, 2022, 14(1): 3-24. DOI:10.1111/1758-2229.13040 |
|
[15] |
WANG LM, AMELUNG W, WILLBOLD S. 18O isotope labeling combined with 31P nuclear magnetic resonance spectroscopy for accurate quantification of hydrolyzable phosphorus species in environmental samples[J]. Analytical Chemistry, 2021, 93(4): 2018-2025. DOI:10.1021/acs.analchem.0c03379 |
|
[16] |
BEZAK-MAZUR E, CIOPIŃSKA J. The application of sequential extraction in phosphorus fractionation in environmental samples[J]. Journal of AOAC International, 2020, 103(2): 337-347. DOI:10.5740/jaoacint.19-0263 |
|
[17] |
HAO JH, KNOLL AH, HUANG F, SCHIEBER J, HAZEN RM, DANIEL I. Cycling phosphorus on the archean earth: part II. Phosphorus limitation on primary production in archean ecosystems[J]. Geochimica et Cosmochimica Acta, 2020, 280: 360-377. DOI:10.1016/j.gca.2020.04.005 |
|
[18] |
YUSDAR H, ANUAR AR, HANAFI MM, AZIZAH H. Analysis of phosphate rock dissolution determining factors using principal component analysis in some acid Indonesian soils[J]. Communications in Soil Science and Plant Analysis, 2007, 38(1/2): 273-282. |
|
[19] |
GAO Y, HAO Z, YANG TT, HE NP, WEN XF, YU GR. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: a Chinese case study[J]. Environmental Pollution, 2017, 226: 69-78. DOI:10.1016/j.envpol.2017.03.067 |
|
[20] |
TIPPING E, BENHAM S, BOYLE JF, CROW P, DAVIES J, FISCHER U, GUYATT H, HELLIWELL R, JACKSON-BLAKE L, LAWLOR AJ, MONTEITH DT, ROWE EC, TOBERMAN H. Atmospheric deposition of phosphorus to land and freshwater[J]. Environmental Science Processes & Impacts, 2014, 16(7): 1608-1617. |
|
[21] |
WEIHRAUCH C, OPP C. Ecologically relevant phosphorus pools in soils and their dynamics: the story so far[J]. Geoderma, 2018, 325: 183-194. DOI:10.1016/j.geoderma.2018.02.047 |
|
[22] |
MATHEW D, GIREESHKUMAR TR, BALACHANDRAN KK, UDAYAKRISHNAN PB, SHAMEEM K, DEEPULAL PM, NAIR M, MADHU NV, MURALEEDHARAN KR. Influence of hypoxia on phosphorus cycling in alappuzha mud banks, southwest coast of India[J]. Regional Studies in Marine Science, 2020, 34: 101083. DOI:10.1016/j.rsma.2020.101083 |
|
[23] |
HE LP, LAN B, LIN JJ, DUAN LY, LIAO YH, XU ZJ. Transformation processes of phosphorus forms in purple alluvial soil of riparian zone of the Three Gorges Reservoir[J]. Research of Environmental Sciences, 2021, 34(8): 1952-1960. (in Chinese) 何立平, 兰波, 林俊杰, 段林艳, 廖雨涵, 徐正佳. 三峡库区消落带紫色潮土磷形态转化过程[J]. 环境科学研究, 2021, 34(8): 1952-1960. DOI:10.13198/j.issn.1001-6929.2021.05.12 |
|
[24] |
HACKER N, WILCKE W, OELMANN Y. The oxygen isotope composition of bioavailable phosphate in soil reflects the oxygen isotope composition in soil water driven by plant diversity effects on evaporation[J]. Geochimica et Cosmochimica Acta, 2019, 248: 387-399. DOI:10.1016/j.gca.2018.11.023 |
|
[25] |
FATIMA F, AHMAD MM, VERMA SR, PATHAK N. Relevance of phosphate solubilizing microbes in sustainable crop production: a review[J]. International Journal of Environmental Science and Technology, 2022, 19(9): 9283-9296. DOI:10.1007/s13762-021-03425-9 |
|
[26] |
TIMOFEEVA A, GALYAMOVA M, SEDYKH S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants (Basel, Switzerland), 2022, 11(16): 2119. |
|
[27] |
JIANG YF, TIAN J, GE F. New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4[J]. Current Microbiology, 2020, 77(12): 4095-4103. DOI:10.1007/s00284-020-02238-2 |
|
[28] |
AALLAM Y, DHIBA D, LEMRISS S, SOUIRI A, KARRAY F, RASAFI TE, SAÏDI N, HADDIOUI A, EL KABBAJ S, VIROLLE MJ, HAMDALI H. Isolation and characterization of phosphate solubilizing Streptomyces sp. endemic from sugar beet fields of the Beni-mellal region in Morocco[J]. Microorganisms, 2021, 9(5): 914. DOI:10.3390/microorganisms9050914 |
|
[29] |
YANDIGERI MS, YADAV AK, SRINIVASAN R, KASHYAP S, PABBI S. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena[J]. Microbiology, 2011, 80(4): 558. DOI:10.1134/S0026261711040229 |
|
[30] |
JIANG HH, WANG T, CHI XY, WANG M, CHEN N, CHEN MN, PAN LJ, QI PS. Isolation and characterization of halotolerant phosphate solubilizing bacteria naturally colonizing the peanut rhizosphere in salt-affected soil[J]. Geomicrobiology Journal, 2020, 37(2): 110-118. DOI:10.1080/01490451.2019.1666195 |
|
[31] |
RIZVI A, AHMED B, KHAN MS, UMAR S, LEE J. Psychrophilic bacterial phosphate-biofertilizers: a novel extremophile for sustainable crop production under cold environment[J]. Microorganisms, 2021, 9(12): 2451. DOI:10.3390/microorganisms9122451 |
|
[32] |
KOUR D, LATA RANA K, KAUR T, SHEIKH I, YADAV AN, KUMAR V, DHALIWAL HS, SAXENA AK. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet ( Sorghum bicolour L.) by drought-adaptive and phosphorus- solubilizing microbes[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101501. DOI:10.1016/j.bcab.2020.101501 |
|
[33] |
LI JT, LU JL, WANG HY, FANG Z, WANG XJ, FENG SW, WANG Z, YUAN T, ZHANG SC, OU SN, YANG XD, WU ZH, DU XD, TANG LY, LIAO B, SHU WS, JIA P, LIANG JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes[J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771-2793. DOI:10.1111/brv.12779 |
|
[34] |
LI QL, LI AB, HUANG ZY, GAI X, BIAN FY, ZHONG ZK, ZHANG XP. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration[J]. World Forestry Research, 2022, 35(1): 15-20. (in Chinese) 李巧玲, 李爱博, 黄志远, 盖旭, 卞方圆, 钟哲科, 张小平. 解磷微生物在林业土壤生态修复中的应用进展[J]. 世界林业研究, 2022, 35(1): 15-20. |
|
[35] |
KUMAR V, PRASHER IB. Phosphate solubilization and indole-3-acetic acid (IAA) produced by Colletotrichum gloeosporioides and Aspergillus fumigatus strains isolated from the rhizosphere of Dillenia indica L[J]. Folia Microbiologica, 2022, 1-11. |
|
[36] |
JANATI W, MIKOU K, EL GHADRAOUI L, ERRACHIDI F. Isolation and characterization of phosphate solubilizing bacteria naturally colonizing legumes rhizosphere in Morocco[J]. Frontiers in Microbiology, 2022, 13: 958300. DOI:10.3389/fmicb.2022.958300 |
|
[37] |
ALAYLAR B, GÜLLÜCE M, KARADAYI M, ISAOGLU M. Rapid detection of phosphate- solubilizing bacteria from agricultural areas in Erzurum[J]. Current Microbiology, 2019, 76(7): 804-809. DOI:10.1007/s00284-019-01688-7 |
|
[38] |
TASNÁDI G, ZECHNER M, HALL M, BALDENIUS K, DITRICH K, FABER K. Investigation of acid phosphatase variants for the synthesis of phosphate monoesters[J]. Biotechnology and Bioengineering, 2017, 114(10): 2187-2195. DOI:10.1002/bit.26352 |
|
[39] |
CHO ST, CHANG HH, EGAMBERDIEVA D, KAMILOVA F, LUGTENBERG B, KUO CH. Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host[J]. PLoS One, 2015, 10(10): e0140231. DOI:10.1371/journal.pone.0140231 |
|
[40] |
ZHU W, KLINMAN JP. Biogenesis of the peptide-derived redox cofactor pyrroloquinoline quinone[J]. Current Opinion in Chemical Biology, 2020, 59: 93-103. DOI:10.1016/j.cbpa.2020.05.001 |
|
[41] |
HÖLSCHER T, GÖRISCH H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H[J]. Journal of Bacteriology, 2006, 188(21): 7668-7676. DOI:10.1128/JB.01009-06 |
|
[42] |
KIM CH, HAN SH, KIM KY, CHO BH, KIM YH, KOO BS, KIM YC. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium[J]. Current Microbiology, 2003, 47(6): 457-461. |
|
[43] |
TOYAMA H, CHISTOSERDOVA L, LIDSTROM ME. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate[J]. Microbiology (Reading, England), 1997, 143 (Pt 2): 595-602.
|
|
[44] |
TAHIR M, NAEEM MA, SHAHID M, KHALID U, FAROOQ AU, AHMAD N, AHMAD I, ARSHAD M, WAQAR A. Inoculation of pqqE gene inhabiting Pantoea and Pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. Journal of Applied Microbiology, 2020, 129(3): 575-589. DOI:10.1111/jam.14630 |
|
[45] |
RASUL M, YASMIN S, SULEMAN M, ZAHEER A, REITZ T, TARKKA MT, ISLAM E, MIRZA MS. Glucose dehydrogenase gene containing phosphobacteria for biofortification of phosphorus with growth promotion of rice[J]. Microbiological Research, 2019, 223/224/225: 1-12. |
|
[46] |
HUANG HQ, SHI PJ, WANG YR, LUO HY, SHAO N, WANG GZ, YANG PL, YAO B. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature[J]. Applied and Environmental Microbiology, 2009, 75(6): 1508-1516. DOI:10.1128/AEM.02188-08 |
|
[47] |
HUANG HQ, ZHANG R, FU DW, LUO JJ, LI ZY, LUO HY, SHI PJ, YANG PL, DIAO QY, YAO B. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation[J]. Environmental Microbiology, 2011, 13(3): 747-757. DOI:10.1111/j.1462-2920.2010.02379.x |
|
[48] |
ZHENG BX, ZHU YG, SARDANS J, PEÑUELAS J, SU JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China Life Sciences, 2018, 61(12): 1451-1462. DOI:10.1007/s11427-018-9364-7 |
|
[49] |
LIU J, CADE-MENUN BJ, YANG JJ, HU YF, LIU CW, TREMBLAY J, LAFORGE K, SCHELLENBERG M, HAMEL C, BAINARD LD. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils[J]. Frontiers in Microbiology, 2018, 9: 1643. DOI:10.3389/fmicb.2018.01643 |
|
[50] |
SEBASTIAN M, AMMERMAN JW. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA[J]. The ISME Journal, 2009, 3(5): 563-572. DOI:10.1038/ismej.2009.10 |
|
[51] |
PASSARIELLO C, SCHIPPA S, IORI P, BERLUTTI F, THALLER MC, ROSSOLINI GM. The molecular class C acid phosphatase of Chryseobacterium meningosepticum (OlpA) is a broad-spectrum nucleotidase with preferential activity on 5′-nucleotides[J]. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 2003, 1648(1/2): 203-209. |
|
[52] |
CHEN WM, YANG F, ZHANG L, WANG JM. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources[J]. Geomicrobiology Journal, 2016, 33(10): 870-877. DOI:10.1080/01490451.2015.1123329 |
|
[53] |
ANZUAY MS, FROLA O, ANGELINI JG, LUDUEÑA LM, FABRA A, TAURIAN T. Genetic diversity of phosphate-solubilizing peanut ( Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability[J]. Symbiosis, 2013, 60(3): 143-154. DOI:10.1007/s13199-013-0250-2 |
|
[54] |
ZHENG BX, HAO XL, DING K, ZHOU GW, CHEN QL, ZHANG JB, ZHU YG. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil[J]. Scientific Reports, 2017, 7: 42284. DOI:10.1038/srep42284 |
|
[55] |
NAVEED M, SOHAIL Y, KHALID N, AHMED I, MUMTAZ AS. Evaluation of glucose dehydrogenase and pyrroloquinoline quinine (pqq) mutagenesis that renders functional inadequacies in host plants[J]. Journal of Microbiology and Biotechnology, 2015, 25(8): 1349-1360. DOI:10.4014/jmb.1501.01075 |
|
[56] |
BI QF, LI KJ, ZHENG BX, LIU XP, LI HZ, JIN BJ, DING K, YANG XR, LIN XY, ZHU YG. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J]. Science of the Total Environment, 2020, 703: 134977. DOI:10.1016/j.scitotenv.2019.134977 |
|
[57] |
KOUR D, LATA RANA K, KAUR T, YADAV N, YADAV AN, KUMAR M, KUMAR V, DHALIWAL HS, SAXENA AK. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review[J]. Pedosphere, 2021, 31(1): 43-75. |
|
[58] |
NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of Phosphatase Enzymes in Soil[M]. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243.
|
|
[59] |
BI QF, ZHENG BX, LIN XY, LI KJ, LIU XP, HAO XL, ZHANG H, ZHANG JB, JAISI DP, ZHU YG. The microbial cycling of phosphorus on long-term fertilized soil: insights from phosphate oxygen isotope ratios[J]. Chemical Geology, 2018, 483: 56-64. DOI:10.1016/j.chemgeo.2018.02.013 |
|
[60] |
ALORI ET, GLICK BR, BABALOLA OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in Microbiology, 2017, 8: 971. |
|
[61] |
SINGH P, BANIK RM. Effect of purified alkaline phosphatase from Bacillus licheniformis on growth of Zea mays L.[J]. Plant Science Today, 2019, 6(sp1): 583-589. DOI:10.14719/pst.2019.6.sp1.676 |
|
[62] |
DELLA MÓNICA IF, GODEAS AM, SCERVINO JM. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers[J]. Microbial Ecology, 2020, 79(1): 21-29. |
|
[63] |
TIAN J, GE F, ZHANG DY, DENG SQ, LIU XW. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 2021, 10(2): 158. |
|
[64] |
BEN ZINEB A, TRABELSI D, AYACHI I, BARHOUMI F, AROCA R, MHAMDI R. Inoculation with elite strains of phosphate-solubilizing bacteria enhances the effectiveness of fertilization with rock phosphates[J]. Geomicrobiology Journal, 2020, 37(1): 22-30. |
|
[65] |
DIN M, NELOFER R, SALMAN M, ABDULLAH, KHAN FH, KHAN A, AHMAD M, JALIL F, DIN JU, KHAN M. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus[J]. Biotechnology Reports, 2019, 22: e00323. |
|
[66] |
LIANG XJ, CSETENYI L, GADD GM. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5141-5151. |
|
[67] |
KUMAR S, KAUSHIK G, DAR MA, NIMESH S, LÓPEZ-CHUKEN UJ, VILLARREAL-CHIU JF. Microbial degradation of organophosphate pesticides: a review[J]. Pedosphere, 2018, 28(2): 190-208. |
|
[68] |
SHARMA SB, SAYYED RZ, TRIVEDI MH, GOBI TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2013, 2: 587. |
|
[69] |
RAWAT P, DAS S, SHANKHDHAR D, SHANKHDHAR SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68. |
|
[70] |
LUYCKX L, GEERTS S, van CANEGHEM J. Closing the phosphorus cycle: multi-criteria techno-economic optimization of phosphorus extraction from wastewater treatment sludge ash[J]. Science of the Total Environment, 2020, 713: 135543. |
|
[71] |
GHANI A, RAJAN SSS, LEE A. Enhancement of phosphate rock solubility through biological processes[J]. Soil Biology and Biochemistry, 1994, 26(1): 127-136. |
|
[72] |
ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27(3): 257-263. |
|
[73] |
KHAN MS, ZAIDI A, AHMAD E. Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-solubilizing Microorganisms[M]. Phosphate Solubilizing Microorganisms. Cham: Springer International Publishing, 2014: 31-62.
|
|
[74] |
CHEN GC, HE ZL, WANG YJ. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils[J]. Pedosphere, 2004, 14(1): 9-15. |
|
[75] |
PRABHU N, BORKAR S, GARG S. Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7[J]. Current Science, 2018, 114(4): 845. |
|
[76] |
BARGAZ A, ELHAISSOUFI W, KHOURCHI S, BENMRID B, BORDEN KA, RCHIAD Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J]. Microbiological Research, 2021, 252: 126842. |
|
[77] |
SHARMA S, COMPANT S, BALLHAUSEN MB, RUPPEL S, FRANKEN P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum[J]. Microbiological Research, 2020, 240: 126556. |
|
[78] |
SULEMAN M, YASMIN S, RASUL M, YAHYA M, ATTA BM, MIRZA MS. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9): e0204408. |
|
[79] |
ELHAISSOUFI W, KHOURCHI S, IBNYASSER A, GHOULAM C, RCHIAD Z, ZEROUAL Y, LYAMLOULI K, BARGAZ A. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization[J]. Frontiers in Plant Science, 2020, 11: 979. |
|
[80] |
KUDOYAROVA GR, VYSOTSKAYA LB, ARKHIPOVA TN, KUZMINA LY, GALIMSYANOVA NF, SIDOROVA LV, GABBASOVA IM, MELENTIEV AI, VESELOV SY. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants[J]. Acta Physiologiae Plantarum, 2017, 39(11): 253. |
|
[81] |
DAHMANI MA, DESRUT A, MOUMEN B, VERDON J, MERMOURI L, KACEM M, COUTOS-THÉVENOT P, KAID-HARCHE M, BERGÈS T, VRIET C. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma[J]. Frontiers in Plant Science, 2020, 11: 124. |
|
[82] |
CAI L, WANG XL, CHEN Y, WANG ZY, LI XD. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white clover ( Trifolium repens)[J]. Acta Prataculturae Sinica, 2017, 26(5): 181-188. (in Chinese) 蔡璐, 王小利, 陈莹, 王子苑, 李小冬. 无机磷溶解菌RW8的筛选、鉴定及对白三叶促生效果研究[J]. 草业学报, 2017, 26(5): 181-188. |
|
[83] |
ZHENG BX, DING K, YANG XR, WADAAN MAM, HOZZEIN WN, PEÑUELAS J, ZHU YG. Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake[J]. Science of the Total Environment, 2019, 647: 1113-1120. |
|
[84] |
SHI JC, ZHAO BY, ZHENG S, ZHANG XW, WANG XL, DONG WT, XIE QJ, WANG G, XIAO YP, CHEN F, YU N, WANG ET. A phosphate starvation response-centered network regulates mycorrhizal symbiosis[J]. Cell, 2021, 184(22): 5527-5540.e18. |
|
[85] |
BAO XZ, ZOU JX, ZHANG B, WU LM, YANG TT, HUANG Q. Arbuscular mycorrhizal fungi and microbes interaction in rice mycorrhizosphere[J]. Agronomy, 2022, 12(6): 1277. |
|
[86] |
WAHID F, SHARIF M, FAHAD S, ALI A, ADNAN M, RAFIULLAH, SAUD S, DANISH S, ARIF ALI M, AHMED N, ARSLAN H, ARSLAN D, ERMAN M, EL SABAGH A, GHOLIZADEH F, DATTA R. Mycorrhiza and phosphate solubilizing bacteria: potential bioagents for sustainable phosphorus management in agriculture[J]. Phyton, 2022, 91(2): 257-278. |
|
[87] |
JIANG FY, ZHANG L, ZHOU JC, GEORGE TS, FENG G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. The New Phytologist, 2021, 230(1): 304-315. |
|
[88] |
ZHANG L, XU MG, LIU Y, ZHANG FS, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. The New Phytologist, 2016, 210(3): 1022-1032. |
|
[89] |
WANG YY, WEI Z, XU YC, SHEN QR. Dissolving capacity of phosphate dissolving bacteria strains combination and their effects on corn growth[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 262-268. (in Chinese) 王誉瑶, 韦中, 徐阳春, 沈其荣. 溶磷菌株组合的溶磷效应及对玉米生长的影响[J]. 植物营养与肥料学报, 2017, 23(1): 262-268. |
|
[90] |
LIU N, SHAO C, SUN H, LIU ZB, GUAN YM, WU LJ, ZHANG LL, PAN XX, ZHANG ZH, ZHANG YY, ZHANG B. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J]. Geoderma, 2020, 363: 114155. |
|
[91] |
ZHANG L, DING XD, WANG F, TIAN ZY, FENG G. The effects of inoculation with phosphate solubilizing bacteria Bacillus megaterium C4 in the AM fungal hyphosphere on soil organic phosphorus mineralization and plant uptake[J]. Acta Ecologica Sinica, 2012, 32(13): 4079-4086. (in Chinese) 张林, 丁效东, 王菲, 田芷源, 冯固. 菌丝室接种解磷细菌 Bacillus megaterium C4对土壤有机磷矿化和植物吸收的影响[J]. 生态学报, 2012, 32(13): 4079-4086. |
|
[92] |
HONG JK, BIN KIM S, LYOU ES, LEE TK. Microbial phenomics linking the phenotype to function: the potential of Raman spectroscopy[J]. Journal of Microbiology, 2021, 59(3): 249-258. |
|
[93] |
LI HZ, BI QF, YANG K, ZHENG BX, PU Q, CUI L. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 2239-2246. |
|
[94] |
XIE WC. Development and preliminary application of inorganic phosphate-solubilizing bacteria agent suitable for plant growth in water-level fluctuation zone of Three Gorges Reservoir[D]. Chongqing: Master's Thesis of Chongqing Three Gorges University, 2020 (in Chinese). 谢稳春. 适于三峡水库消落区植物生长无机解磷菌剂研制及初步应用研究[D]. 重庆: 重庆三峡学院硕士学位论文, 2020.
|
|
[95] |
LIU XL. Development of inorganic phosphate- solubilizing bacterial fertilizer suitable for Three Gorges Reservoir area and its influence on leek growth[D]. Chongqing: Master's Thesis of Chongqing Three Gorges University, 2020 (in Chinese). 刘小莉. 适用于三峡库区无机解磷菌肥的研制及对韭菜生长的影响[D]. 重庆: 重庆三峡学院硕士学位论文, 2020.
|
|
[96] |
MPANGA IK, LUDEWIG U, DAPAAH HK, NEUMANN G. Acquisition of rock phosphate by combined application of ammonium fertilizers and Bacillus amyloliquefaciens FZB42 in maize as affected by soil pH[J]. Journal of Applied Microbiology, 2020, 129(4): 947-957. |
|
[97] |
RAWAT N, SHARMA M, SUYAL DC, SINGH DK, JOSHI D, SINGH P, GOEL R. Psyhcrotolerant bio-inoculants and their Co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3): 639-647. |
|