[1] |
LIU QQ, LUO L, ZHENG LQ. Lignins: biosynthesis and biological functions in plants[J]. International Journal of Molecular Sciences, 2018, 19(2): 335. DOI:10.3390/ijms19020335 |
|
[2] |
LOURENÇO A, PEREIRA H. Compositional Variability of Lignin in Biomass[M]//POLETTO M. Lignin-trends and Applications. London: IntechOpen, 2018: 65-98.
|
|
[3] |
SCHOENHERR S, EBRAHIMI M, CZERMAK P. Lignin Degradation Processes and the Purification of Valuable Products[M]//POLETTO M. Lignin-trends and Applications. London: IntechOpen, 2018: 30-63.
|
|
[4] |
LU Y, LU YC, HU HQ, XIE FJ, WEI XY, FAN X. Structural characterization of lignin and its degradation products with spectroscopic methods[J]. Journal of Spectroscopy, 2017, 2017: 1-15. |
|
[5] |
HATAKEYAMA H, HATAKEYAMA T. Lignin Structure, Properties, and Applications[M]. Biopolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 1-63.
|
|
[6] |
LI H, LIANG Y, LI PC, HE CB. Conversion of biomass lignin to high-value polyurethane: a review[J]. Journal of Bioresources and Bioproducts, 2020, 5(3): 163-179. DOI:10.1016/j.jobab.2020.07.002 |
|
[7] |
ALINEJAD M, HENRY C, NIKAFSHAR S, GONDALIYA A, BAGHERI S, CHEN NS, SINGH S, HODGE D, NEJAD M. Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives[J]. Polymers, 2019, 11(7): 1202. DOI:10.3390/polym11071202 |
|
[8] |
SUN ZH, FRIDRICH B, de SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678. DOI:10.1021/acs.chemrev.7b00588 |
|
[9] |
WANG YY, WYMAN CE, CAI CM, RAGAUSKAS AJ. Lignin-based polyurethanes from unmodified kraft lignin fractionated by sequential precipitation[J]. ACS Applied Polymer Materials, 2019, 1(7): 1672-1679. DOI:10.1021/acsapm.9b00228 |
|
[10] | |
|
[11] |
KAMIMURA N, SAKAMOTO S, MITSUDA N, MASAI EJ, KAJITA S. Advances in microbial lignin degradation and its applications[J]. Current Opinion in Biotechnology, 2019, 56: 179-186. DOI:10.1016/j.copbio.2018.11.011 |
|
[12] |
BRINK DP, RAVI K, LIDÉN G, GORWA-GRAUSLUND MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database[J]. Applied Microbiology and Biotechnology, 2019, 103(10): 3979-4002. DOI:10.1007/s00253-019-09692-4 |
|
[13] |
LI X, ZHENG Y. Biotransformation of lignin: mechanisms, applications and future work[J]. Biotechnology Progress, 2020, 36(1): e2922. |
|
[14] |
SINGH R, UPADHYAY SK, RANI A, KUMAR P, KUMAR A, SINGH C. Lignin biodegradation in nature and significance[J]. Vegetos-an International Journal of Plant Research, 2018, 31(4): 39. |
|
[15] |
AYERONFE F, KASSIM A, ISHAK N, ARIPIN A, HUNG P, ABDULKAREEM M. A review on microbial degradation of lignin[J]. Advanced Science Letters, 2018, 24(6): 4407-4413. DOI:10.1166/asl.2018.11615 |
|
[16] |
ZHANG CF, WANG F. Catalytic lignin depolymerization to aromatic chemicals[J]. Accounts of Chemical Research, 2020, 53(2): 470-484. DOI:10.1021/acs.accounts.9b00573 |
|
[17] |
PARTHASARATHI R, ROMERO RA, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. The Journal of Physical Chemistry Letters, 2011, 2(20): 2660-2666. DOI:10.1021/jz201201q |
|
[18] |
BUGG TDH, AHMAD M, HARDIMAN EM, RAHMANPOUR R. Pathways for degradation of lignin in bacteria and fungi[J]. Natural Product Reports, 2011, 28(12): 1883-1896. DOI:10.1039/c1np00042j |
|
[19] |
CHANG HM, JIANG X. Biphenyl structure and its impact on the macromolecular structure of lignin: a critical review[J]. Journal of Wood Chemistry and Technology, 2020, 40(2): 81-90. DOI:10.1080/02773813.2019.1697297 |
|
[20] |
ATIWESH G, PARRISH CC, BANOUB J, LE TA T. Lignin degradation by microorganisms: a review[J]. Biotechnology Progress, 2022, 38(2): e3226. |
|
[21] |
RODRÍGUEZ-COUTO S. Industrial and environmental applications of white-rot fungi[J]. Mycosphere, 2017, 8(3): 456-466. DOI:10.5943/mycosphere/8/3/7 |
|
[22] |
MARTÍNEZ AT, SPERANZA M, RUIZ-DUEÑAS FJ, FERREIRA P, CAMARERO S, GUILLÉN F, MARTÍNEZ MJ, GUTIÉRREZ A, del RÍO JC. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin[J]. International Microbiology, 2005, 8(3): 195-204. |
|
[23] |
TIAN SQ, ZHAO RY, CHEN ZC. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 483-489. DOI:10.1016/j.rser.2018.03.113 |
|
[24] |
SALEH HED M, RAHMAN ROA. Management of Hazardous Wastes[M]. S.l.: IntechOpen, 2016.
|
|
[25] |
CAMERON MD, TIMOFEEVSKI S, AUST SD. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics[J]. Applied Microbiology and Biotechnology, 2000, 54(6): 751-758. DOI:10.1007/s002530000459 |
|
[26] |
RUIZ-DUEÑAS FJ, MARTÍNEZ MJ, MARTÍNEZ AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii[J]. Molecular Microbiology, 1999, 31(1): 223-235. DOI:10.1046/j.1365-2958.1999.01164.x |
|
[27] |
CHEN YR, SARKANEN S, WANG YY. Lignin-degrading enzyme activities[J]. Methods in Molecular Biology (Clifton, N J), 2012, 908: 251-268. |
|
[28] |
HAMMEL KE, CULLEN D. Role of fungal peroxidases in biological ligninolysis[J]. Current Opinion in Plant Biology, 2008, 11(3): 349-355. DOI:10.1016/j.pbi.2008.02.003 |
|
[29] |
BACIOCCHI E, GERINI MF, LANZALUNGA O, LAPI A, LO PIPARO MG, MANCINELLI S. Isotope-effect profiles in the oxidative N-demethylation of N, N-dimethylanilines catalysed by lignin peroxidase and a chemical model[J]. European Journal of Organic Chemistry, 2001, 2001(12): 2305-2310. DOI:10.1002/1099-0690(200106)2001:12<2305::AID-EJOC2305>3.0.CO;2-E |
|
[30] |
DATTA R, KELKAR A, BARANIYA D, MOLAEI A, MOULICK A, MEENA R, FORMANEK P. Enzymatic degradation of lignin in soil: a review[J]. Sustainability, 2017, 9(7): 1163. DOI:10.3390/su9071163 |
|
[31] |
MARTÍNEZ MJ, RUIZ-DUEÑAS FJ, GUILLÉN F, MARTÍNEZ AT. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1996, 237(2): 424-432. DOI:10.1111/j.1432-1033.1996.0424k.x |
|
[32] |
BUGG TDH, RAHMANPOUR R. Enzymatic conversion of lignin into renewable chemicals[J]. Current Opinion in Chemical Biology, 2015, 29: 10-17. DOI:10.1016/j.cbpa.2015.06.009 |
|
[33] |
ZHANG ST, XIAO JL, WANG G, CHEN G. Enzymatic hydrolysis of lignin by ligninolytic enzymes and analysis of the hydrolyzed lignin products[J]. Bioresource Technology, 2020, 304: 122975. DOI:10.1016/j.biortech.2020.122975 |
|
[34] | |
|
[35] |
SHANKAR S, SINGH S, Shikha, MISHRA A, RAM S. Strategic Role of Fungal Laccases in Biodegradation of Lignin[M]. Springer, Cham: Mycodegradation of Lignocelluloses, 2019: 119-135.
|
|
[36] | |
|
[37] |
SU J, FU JJ, WANG Q, SILVA C, CAVACO-PAULO A. Laccase: a green catalyst for the biosynthesis of poly-phenols[J]. Critical Reviews in Biotechnology, 2018, 38(2): 294-307. DOI:10.1080/07388551.2017.1354353 |
|
[38] |
FISHER AB, FONG SS. Lignin biodegradation and industrial implications[J]. AIMS Bioengineering, 2014, 1(2): 92-112. DOI:10.3934/bioeng.2014.2.92 |
|
[39] |
SUNARDI TJ, ISHIGURI F, OHSHIMA J, IIZUKA K, YOKOTA S. Changes in lignocellulolytic enzyme activity during the degradation of Picea jezoensis wood by the white-rot fungus Porodaedalea pini[J]. International Biodeterioration & Biodegradation, 2016, 110: 108-112. |
|
[40] |
SETHURAMAN A, AKIN DE, ERIKSSON KEL. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus[J]. Applied Microbiology and Biotechnology, 1999, 52(5): 689-697. DOI:10.1007/s002530051580 |
|
[41] |
YANG CX, WANG T, GAO LN, YIN HJ, LÜ X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China[J]. Journal of Applied Microbiology, 2017, 123(6): 1447-1460. DOI:10.1111/jam.13562 |
|
[42] |
FILLEY TR, CODY GD, GOODELL B, JELLISON J, NOSER C, OSTROFSKY A. Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi[J]. Organic Geochemistry, 2002, 33(2): 111-124. DOI:10.1016/S0146-6380(01)00144-9 |
|
[43] |
GHOSH P, GHOSH U. Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate[J]. Acta Biologica Szegediensis, 2017, 61(1): 25-33. |
|
[44] |
BETTS WB, DART RK. The degradation of lignin-related compounds by Aspergillus flavus[J]. Microbiology, 1988, 134(9): 2413-2420. DOI:10.1099/00221287-134-9-2413 |
|
[45] |
OROZCO COLONIA BS, WOICIECHOWSKI AL, MALANSKI R, LETTI JUNIOR LA, SOCCOL CR. Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5[J]. Bioresource Technology, 2019, 285: 121361. DOI:10.1016/j.biortech.2019.121361 |
|
[46] |
HASANIN MS, DARWESH OM, MATTER IA, EI-SAIED H. Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 160-167. DOI:10.1016/j.bcab.2018.11.012 |
|
[47] |
KADAM KL, DREW SW. Study of lignin biotransformation by Aspergillus fumigatus and white-rot fungi using (14)C-labeled and unlabeled kraft lignins[J]. Biotechnology and Bioengineering, 1986, 28(3): 394-404. DOI:10.1002/bit.260280313 |
|
[48] |
ZHAO B, AL RASHEED H, ALI I, HU SL. Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi[J]. Bioresource Technology, 2021, 319: 124115. DOI:10.1016/j.biortech.2020.124115 |
|
[49] |
HERNÁNDEZ-ORTEGA A, FERREIRA P, MARTÍNEZ AT. Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation[J]. Applied Microbiology and Biotechnology, 2012, 93(4): 1395-1410. DOI:10.1007/s00253-011-3836-8 |
|
[50] |
ENOKI A, ITAKURA S, TANAKA H. The involvement of extracelluar substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi[J]. Journal of Biotechnology, 1997, 53(2/3): 265-272. |
|
[51] |
ARANTES V, MILAGRES AMF, FILLEY TR, GOODELL B. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(4): 541-555. |
|
[52] |
GOODELL B, JELLISON J, LIU J, DANIEL G, PASZCZYNSKI A, FEKETE F, KRISHNAMURTHY S, JUN L, XU G. Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood[J]. Journal of Biotechnology, 1997, 53(2/3): 133-162. |
|
[53] |
HOU LP, JI DD, DONG WF, YUAN L, ZHANG FS, LI Y, ZANG LH. The synergistic action of electro-Fenton and white-rot fungi in the degradation of lignin[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 99. DOI:10.3389/fbioe.2020.00099 |
|
[54] |
GOODELL B, ZHU Y, KIM S, KAFLE K, EASTWOOD D, DANIEL G, JELLISON J, YOSHIDA M, GROOM L, PINGALI SV, O'NEILL H. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi[J]. Biotechnology for Biofuels, 2017, 10: 179. DOI:10.1186/s13068-017-0865-2 |
|
[55] |
LEONOWICZ A, MATUSZEWSKA A, LUTEREK J, ZIEGENHAGEN D, WOJTAŚ-WASILEWSKA M, CHO NS, HOFRICHTER M, ROGALSKI J. Biodegradation of lignin by white rot fungi[J]. Fungal Genetics and Biology, 1999, 27(2/3): 175-185. |
|
[56] |
EVANS CS, DUTTOM MV, GUILLéN F, VENESS RG. Enzymes and small molecular mass agents involved with lignocellulose degradation[J]. FEMS Microbiology Reviews, 1994, 13(2/3): 235-239. |
|
[57] |
WAGGONER DC, CHEN HM, WILLOUGHBY AS, HATCHER PG. Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin[J]. Organic Geochemistry, 2015, 82: 69-76. DOI:10.1016/j.orggeochem.2015.02.007 |
|
[58] |
HUANG XF, SANTHANAM N, BADRI DV, HUNTER WJ, MANTER DK, DECKER SR, VIVANCO JM, REARDON KF. Isolation and characterization of lignin-degrading bacteria from rainforest soils[J]. Biotechnology and Bioengineering, 2013, 110(6): 1616-1626. DOI:10.1002/bit.24833 |
|
[59] |
RAMACHANDRA M, CRAWFORD DL, HERTEL G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus[J]. Applied and Environmental Microbiology, 1988, 54(12): 3057-3063. DOI:10.1128/aem.54.12.3057-3063.1988 |
|
[60] |
MASAI EJ, KATAYAMA Y, FUKUDA M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(1): 1-15. DOI:10.1271/bbb.60437 |
|
[61] |
AHMAD M, ROBERTS JN, HARDIMAN EM, SINGH R, ELTIS LD, BUGG TDH. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase[J]. Biochemistry, 2011, 50(23): 5096-5107. DOI:10.1021/bi101892z |
|
[62] |
KOSA M, RAGAUSKAS AJ. Bioconversion of lignin model compounds with oleaginous Rhodococci[J]. Applied Microbiology and Biotechnology, 2012, 93(2): 891-900. DOI:10.1007/s00253-011-3743-z |
|
[63] |
RAHMANPOUR REA D, JAMSHIDI S, FüLÖP V, BUGG TDH. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds[J]. Archives of Biochemistry and Biophysics, 2016, 594: 54-60. DOI:10.1016/j.abb.2016.02.019 |
|
[64] |
LIN L, WANG XP, CAO LF, XU MY. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida[J]. Environmental Microbiology, 2019, 21(5): 1847-1863. DOI:10.1111/1462-2920.14593 |
|
[65] |
RAVI K, GARCÍA-HIDALGO J, GORWA-GRAUSLUND MF, LIDÉN G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost[J]. Applied Microbiology and Biotechnology, 2017, 101(12): 5059-5070. DOI:10.1007/s00253-017-8211-y |
|
[66] |
ZHANG K, XU R, ABOMOHRA AEF, XIE SX, YU ZS, GUO Q, LIU P, PENG L, LI XK. A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw[J]. Energy Conversion and Management, 2019, 199: 111928. DOI:10.1016/j.enconman.2019.111928 |
|
[67] |
SALVACHÚA D, WERNER AZ, PARDO I, MICHALSKA M, BLACK BA, DONOHOE BS, HAUGEN SJ, KATAHIRA R, NOTONIER S, RAMIREZ KJ, AMORE A, PURVINE SO, ZINK EM, ABRAHAM PE, GIANNONE RJ, POUDEL S, LAIBLE PD, HETTICH RL, BECKHAM GT. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(17): 9302-9310. |
|
[68] |
BAJPAI P. Brief Description of the Pulp and Papermaking Process[M]. Biotechnology for Pulp and Paper Processing. Singapore: Springer Singapore, 2018: 9-26.
|
|
[69] |
KUMAR A, GAUTAM A, DUTT D. Bio-pulping: an energy saving and environment-friendly approach[J]. Physical Sciences Reviews, 2020, 5(10). |
|
[70] |
WANG ZN, LI N, PAN XJ. Transformation of ammonia fiber expansion (AFEX) corn stover lignin into microbial lipids by Rhodococcus opacus[J]. Fuel, 2019, 240: 119-125. DOI:10.1016/j.fuel.2018.11.081 |
|
[71] |
KUMAR M, YOU SM, BEIYUAN JZ, LUO G, GUPTA J, KUMAR S, SINGH L, ZHANG SC, TSANG DCW. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects[J]. Bioresource Technology, 2021, 320(Pt B): 124412. |
|
[72] |
WANG XP, LIN L, DONG JD, LING J, WANG WP, WANG HL, ZHANG ZC, YU XW. Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing[J]. Applied and Environmental Microbiology, 2018, 84(18): e01469-e01418. |
|
[73] |
SONOKI T, TAKAHASHI K, SUGITA H, HATAMURA M, AZUMA Y, SATO T, SUZUKI S, KAMIMURA N, MASAI E. Glucose-free cis, cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1256-1264. |
|
[74] |
WU WH, LIU F, SINGH S. Toward engineering E. coli with an autoregulatory system for lignin valorization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2970-2975. |
|
[75] |
BUGG TD, AHMAD M, HARDIMAN EM, SINGH R. The emerging role for bacteria in lignin degradation and bio-product formation[J]. Current Opinion in Biotechnology, 2011, 22(3): 394-400. DOI:10.1016/j.copbio.2010.10.009 |
|
[76] |
XIE SX, RAGAUSKAS AJ, YUAN JS. Lignin conversion: opportunities and challenges for the integrated biorefinery[J]. Industrial Biotechnology, 2016, 12(3): 161-167. DOI:10.1089/ind.2016.0007 |
|
[77] |
GRELSKA A, NOSZCZYŃSKA M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater[J]. Environmental Science and Pollution Research, 2020, 27(32): 39958-39976. DOI:10.1007/s11356-020-10382-2 |
|
[78] |
KHAN F, FAROOQI A, ZAFAR MI. Biodegradation of Xenobiotics in Soil by Fungi[M]//Soil Biology. Cham: Springer International Publishing, 2017: 235-242.
|
|
[79] |
CHRISTIAN V, SHRIVASTAVA R, SHUKLA D, MODI HA, VYAS BRM. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved[J]. Indian Journal of Experimental Biology, 2005, 43(4): 301-312. |
|
[80] |
WANG XL, YAO B, SU XY. Linking enzymatic oxidative degradation of lignin to organics detoxification[J]. International Journal of Molecular Sciences, 2018, 19(11): 3373. DOI:10.3390/ijms19113373 |
|
[81] |
LEATHAM GF. Extracellular enzymes produced by the cultivated mushroom Lentinus edodes during degradation of a lignocellulosic medium[J]. Applied and Environmental Microbiology, 1985, 50(4): 859-867. DOI:10.1128/aem.50.4.859-867.1985 |
|
[82] |
XU R, ZHANG K, LIU P, HAN HW, ZHAO S, KAKADE A, KHAN A, DU DL, LI XK. Lignin depolymerization and utilization by bacteria[J]. Bioresource Technology, 2018, 269: 557-566. DOI:10.1016/j.biortech.2018.08.118 |
|
[83] |
KHAN MU, AHRING BK. Lignin degradation under anaerobic digestion: influence of lignin modifications-a review[J]. Biomass and Bioenergy, 2019, 128: 105325. DOI:10.1016/j.biombioe.2019.105325 |
|
[84] | |
|