[1] |
STAUDACHER HM, MIKOCKA-WALUS A, Ford AC. Common mental disorders in irritable bowel syndrome: pathophysiology, management, and considerations for future randomised controlled trials[J]. The Lancet Gastroenterology & Hepatology, 2021, 6(5): 401-410. |
|
[2] | |
|
[3] |
BONETTO S, FAGOONEE S, BATTAGLIA E, GRASSINI M, SARACCO GM, PELLICANO R. Recent advances in the treatment of irritable bowel syndrome[J]. Polish Archives of Internal Medicine, 2021, 131(7-8): 709-715. DOI:10.20452/pamw.16067 |
|
[4] |
TANG XD, BIAN LQ. Thoughts regarding establishment of a system for assessment of the clinical efficacy of Chinese medicine in treating irritable bowel syndrome[J]. World Chinese Journal of Digestology, 2010, 18(21): 2221-2224. (in Chinese) 唐旭东, 卞立群. 构建中医药治疗肠易激综合征的疗效评价体系的思考[J]. 世界华人消化杂志, 2010, 18(21): 2221-2224. |
|
[5] |
SAHA L. Irritable bowel syndrome: pathogenesis, diagnosis, treatment, and evidence-based medicine[J]. World Journal of Gastroenterology, 2014, 20(22): 6759-6773. DOI:10.3748/wjg.v20.i22.6759 |
|
[6] |
BOTSCHUIJVER S, ROESELERS G, LEVIN E, JONKERS DM, WELTING O, HEINSBROEK SEM, de WEERD HH, BOEKHOUT T, FORNAI M, MASCLEE AA, SCHUREN FHJ, de JONGE WJ, SEPPEN J, van den WIJNGAARD RM. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats[J]. Gastroenterology, 2017, 153(4): 1026-1039. DOI:10.1053/j.gastro.2017.06.004 |
|
[7] |
GRACIE DJ, HAMLIN PJ, FORD AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment[J]. The Lancet Gastroenterology & Hepatology, 2019, 4(8): 632-642. |
|
[8] |
WU HM, ZHAN K, RAO KH, ZHENG H, QIN SM, TANG XD, HUANG SG. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112811. |
|
[9] |
MIN YW, REZAIE A, PIMENTEL M. Bile acid and gut microbiota in irritable bowel syndrome[J]. Journal of Neurogastroenterology and Motility, 2022, 28(4): 549-561. DOI:10.5056/jnm22129 |
|
[10] | |
|
[11] |
CRYAN JF, O'RIORDAN KJ, COWAN CSM, SANDHU KV, BASTIAANSSEN TFS, BOEHME M, CODAGNONE MG, CUSSOTTO S, FULLING C, GOLUBEVA AV, GUZZETTA KE, JAGGAR M, LONG-SMITH CM, LYTE JM, MARTIN JA, MOLINERO-PEREZ A, MOLONEY G, MORELLI E, MORILLAS E, O'CONNOR R, et al. The microbiota-gut-brain axis[J]. Physiological Reviews, 2019, 99(4): 1877-2013. DOI:10.1152/physrev.00018.2018 |
|
[12] |
LONG-SMITH C, O'RIORDAN KJ, CLARKE G, STANTON C, DINAN TG, CRYAN JF. Microbiota-gut-brain axis: new therapeutic opportunities[J]. Annual Review of Pharmacology and Toxicology, 2020, 60: 477-502. DOI:10.1146/annurev-pharmtox-010919-023628 |
|
[13] |
OSADCHIY V, MARTIN CR, MAYER EA. Gut microbiome and modulation of CNS function[J]. Comprehensive Physiology, 2019, 10(1): 57-72. |
|
[14] |
ZAMANI M, ALIZADEH-TABARI S, ZAMANI V. Systematic review with meta-analysis: the prevalence of anxiety and depression in patients with irritable bowel syndrome[J]. Alimentary Pharmacology & Therapeutics, 2019, 50(2): 132-143. |
|
[15] |
ZHU Y, WU ZY, MA XP, LIU HR, BAO CH, YANG L, CUI YH, ZHOU CL, WANG XM, WANG YM, ZHANG ZW, ZHANG H, JIA HP, WU HG. Brain regions involved in moxibustion-induced analgesia in irritable bowel syndrome with diarrhea: a functional magnetic resonance imaging study[J]. BMC Complementary and Alternative Medicine, 2014, 14: 500. DOI:10.1186/1472-6882-14-500 |
|
[16] |
WANG DP, ZHANG X, ZHANG XS, HUANG ZG, SONG YF. Magnetic resonance imaging analysis of brain function in patients with irritable bowel syndrome[J]. BMC Gastroenterology, 2017, 17(1): 148. DOI:10.1186/s12876-017-0673-y |
|
[17] |
MEI LJ, ZHOU JL, SU YM, MAO KH, WU J, ZHU CC, HE L, CUI Y. Gut microbiota composition and functional prediction in diarrhea-predominant irritable bowel syndrome[J]. BMC Gastroenterology, 2021, 21(1): 105. DOI:10.1186/s12876-021-01693-w |
|
[18] |
WEI W, WANG HF, ZHANG Y, ZHANG YL, NIU BY, YAO SK. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome[J]. World Journal of Gastroenterology, 2020, 26(45): 7153-7172. DOI:10.3748/wjg.v26.i45.7153 |
|
[19] |
WANG Z, XU CM, LIU YX, WANG XQ, ZHANG L, LI M, ZHU SW, XIE ZJ, WANG PH, DUAN LP, ZHU HQ. Characteristic dysbiosis of gut microbiota of Chinese patients with diarrhea-predominant irritable bowel syndrome by an insight into the pan-microbiome[J]. Chinese Medical Journal, 2019, 132(8): 889-904. DOI:10.1097/CM9.0000000000000192 |
|
[20] |
CONSTANTE M, de PALMA G, LU J, JURY J, RONDEAU L, CAMINERO A, COLLINS SM, VERDU EF, BERCIK P. Saccharomyces boulardii CNCM Ⅰ-745 modulates the microbiota-gut-brain axis in a humanized mouse model of irritable bowel syndrome[J]. Neurogastroenterology & Motility, 2021, 33(3): e13985. |
|
[21] |
EL-SALHY M, HATLEBAKK JG, GILJA OH, BRÅTHEN KRISTOFFERSEN A, HAUSKEN T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study[J]. Gut, 2020, 69(5): 859-867. DOI:10.1136/gutjnl-2019-319630 |
|
[22] |
CHEN MJ, RUAN GC, CHEN L, YING SH, LI GH, XU FH, XIAO ZF, TIAN YT, LV LL, PING Y, CHENG Y, WEI YL. Neurotransmitter and intestinal interactions: focus on the microbiota-gut-brain axis in irritable bowel syndrome[J]. Frontiers in Endocrinology, 2022, 13: 817100. DOI:10.3389/fendo.2022.817100 |
|
[23] |
MISHIMA Y, ISHIHARA S. Enteric microbiota-mediated serotonergic signaling in pathogenesis of irritable bowel syndrome[J]. International Journal of Molecular Sciences, 2021, 22(19): 10235. DOI:10.3390/ijms221910235 |
|
[24] |
CUI XF, ZHOU WM, YANG Y, ZHOU J, LI XL, LIN L, ZHANG HJ. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome[J]. World Journal of Gastroenterology, 2014, 20(37): 13521-13529. DOI:10.3748/wjg.v20.i37.13521 |
|
[25] |
CAO HL, LIU X, AN YY, ZHOU GQ, LIU YR, XU MQ, DONG WX, WANG SN, YAN F, JIANG K, WANG BM. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine[J]. Scientific Reports, 2017, 7: 10322. DOI:10.1038/s41598-017-10835-8 |
|
[26] |
YANO JM, YU K, DONALDSON GP, SHASTRI GG, ANN P, MA L, NAGLER CR, ISMAGILOV RF, MAZMANIAN SK, HSIAO EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. DOI:10.1016/j.cell.2015.02.047 |
|
[27] |
LIU QQ, YAO XX, GAO SH, LI R, LI BJ, YANG W, CUI RJ. Role of 5-HT receptors in neuropathic pain: potential therapeutic implications[J]. Pharmacological Research, 2020, 159: 104949. DOI:10.1016/j.phrs.2020.104949 |
|
[28] |
CHANG WY, YANG YT, SHE MP, TU CH, LEE TC, WU MS, SUN CH, HSIN LW, YU LCH. 5-HT7 receptor-dependent intestinal neurite outgrowth contributes to visceral hypersensitivity in irritable bowel syndrome[J]. Laboratory Investigation, 2022, 102(9): 1023-1037. DOI:10.1038/s41374-022-00800-z |
|
[29] |
FAURE C. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients[J]. Gastroenterology, 2010, 139(1): 249-258. DOI:10.1053/j.gastro.2010.03.032 |
|
[30] |
DUNLOP SP, COLEMAN NS, BLACKSHAW E, PERKINS AC, SINGH G, MARSDEN CA, SPILLER RC. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome[J]. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association, 2005, 3(4): 349-357. DOI:10.1016/S1542-3565(04)00726-8 |
|
[31] |
GROS M, GROS B, MESONERO JE, LATORRE E. Neurotransmitter dysfunction in irritable bowel syndrome: emerging approaches for management[J]. Journal of Clinical Medicine, 2021, 10(15): 3429. DOI:10.3390/jcm10153429 |
|
[32] |
TANIYAMA K, MAKIMOTO N, FURUICHI A, SAKURAI-YAMASHITA Y, NAGASE Y, KAIBARA M, KANEMATSU T. Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroxytryptamine 4 receptor, in gastrointestinal motility[J]. Journal of Gastroenterology, 2000, 35(8): 575-582. DOI:10.1007/s005350070056 |
|
[33] |
BARTHÓ L, LEFEBVRE RA. Nitric oxide-mediated contraction in enteric smooth muscle[J]. Archives Internationales De Pharmacodynamie et De Therapie, 1995, 329(1): 53-66. |
|
[34] |
BRIEJER MR, AKKERMANS LMA, MEULEMANS AL, LEFEBVRE RA, SCHUURKES JAJ. Nitric oxide is involved in 5-HT-induced relaxations of the guinea-pig colon ascendens in vitro[J]. British Journal of Pharmacology, 1992, 107(3): 756-761. DOI:10.1111/j.1476-5381.1992.tb14519.x |
|
[35] |
REIGSTAD CS, SALMONSON CE, RAINEY 3rd JF, SZURSZEWSKI JH, LINDEN DR, SONNENBURG JL, FARRUGIA G, KASHYAP PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2015, 29(4): 1395-1403. DOI:10.1096/fj.14-259598 |
|
[36] |
ZHANG ZW, GAO CS, ZHANG H, YANG J, WANG YP, PAN LB, YU H, HE CY, LUO HB, ZHAO ZX, ZHOU XB, WANG YL, FU J, HAN P, DONG YH, WANG G, LI S, WANG Y, JIANG JD, ZHONG W. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota[J]. Acta Pharmaceutica Sinica B, 2022, 12(8): 3298-3312. DOI:10.1016/j.apsb.2022.02.032 |
|
[37] |
TIAN PJ. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis[J]. The Journal of Nutritional Biochemistry, 2019, 66: 43-51. DOI:10.1016/j.jnutbio.2019.01.007 |
|
[38] |
YU HL, CHANG Y, WANG Z, YIN L, LU SC. Correlation between serotonin transporter and anxiety and depression in patients with irritable bowel syndrome[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2017, 26(8): 833-835. (in Chinese) 于惠玲, 常颖, 王铮, 尹玲, 鲁素彩. 5-羟色胺转运体与肠易激综合征患者焦虑抑郁的相关性分析[J]. 现代中西医结合杂志, 2017, 26(8): 833-835. |
|
[39] |
ZHANG W, GE WJ, WANG HS, ZHANG XX, LIU M, CUI WF, WANG J, LI GS, LIANG RF. Effect of Tongxie Yaofang with or without saposhnikoviae Radix on water metabolism and 5-HT pathway in irritable bowel syndrome rats[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(11): 56-62. (in Chinese) 张薇, 葛文静, 王慧森, 张雪侠, 刘明, 崔伟锋, 王军, 李更生, 梁瑞峰. 痛泻要方加减引经药防风对肠易激综合征大鼠水液代谢和5-HT系统的调控作用[J]. 中国实验方剂学杂志, 2020, 26(11): 56-62. DOI:10.13422/j.cnki.syfjx.20201138 |
|
[40] |
YANG M, LI YX, LIU H. Mechanism of Wenwei Tiaochang granule on intervening diarrhea predominant-irritable bowel syndrome based on brain-gut axis[J]. Pharmacology and Clinics of Chinese Materia Medica, 2019, 35(6): 106-110. (in Chinese) 杨梅, 李玉先, 刘欢. 基于脑-肠互动轴探讨温胃调肠颗粒干预腹泻型肠易激综合征的机制分析[J]. 中药药理与临床, 2019, 35(6): 106-110. DOI:10.13412/j.cnki.zyyl.2019.06.023 |
|
[41] |
STRANDWITZ P, KIM KH, TEREKHOVA D, LIU JK, SHARMA A, LEVERING J, MCDONALD D, DIETRICH D, RAMADHAR TR, LEKBUA A, MROUE N, LISTON C, STEWART EJ, DUBIN MJ, ZENGLER K, KNIGHT R, GILBERT JA, CLARDY J, LEWIS K. GABA-modulating bacteria of the human gut microbiota[J]. Nature Microbiology, 2019, 4(3): 396-403. |
|
[42] |
POKUSAEVA K, JOHNSON C, LUK B, URIBE G, FU Y, OEZGUEN N, MATSUNAMI RK, LUGO M, MAJOR A, MORI-AKIYAMA Y, HOLLISTER EB, DANN SM, SHI XZ, ENGLER DA, SAVIDGE T, VERSALOVIC J. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine[J]. Neurogastroenterology & Motility, 2017, 29(1): e12904. |
|
[43] | |
|
[44] |
HARADA K, MATSUOKA H, FUJIHARA H, UETA Y, YANAGAWA Y, INOUE M. GABA signaling and neuroactive steroids in adrenal medullary chromaffin cells[J]. Frontiers in Cellular Neuroscience, 2016, 10: 100. |
|
[45] |
AGGARWAL S, AHUJA V, PAUL J. Dysregulation of GABAergic signalling contributes in the pathogenesis of diarrhea-predominant irritable bowel syndrome[J]. Journal of Neurogastroenterology and Motility, 2018, 24(3): 422-430. DOI:10.5056/jnm17100 |
|
[46] |
LAROUTE V, BEAUFRAND C, GOMES P, NOUAILLE S, TONDEREAU V, DAVERAN-MINGOT ML, THEODOROU V, EUTAMENE H, MERCIER-BONIN M, COCAIGN-BOUSQUET M. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract[J]. eLife, 2022, 11: e77100. DOI:10.7554/eLife.77100 |
|
[47] |
SAITO YA, ALMAZAR AE, TILKES KE, CHOUNG RS, van NORSTRAND MD, SCHLECK CD, ZINSMEISTER AR, TALLEY NJ. Randomised clinical trial: pregabalin vs placebo for irritable bowel syndrome[J]. Alimentary Pharmacology & Therapeutics, 2019, 49(4): 389-397. |
|
[48] |
DALILE B, Van OUDENHOVE L, VERVLIET B, VERBEKE K. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(8): 461-478. |
|
[49] |
RIVIÈRE A, SELAK M, LANTIN D, LEROY F, de VUYST L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut[J]. Frontiers in Microbiology, 2016, 7: 979. |
|
[50] |
RINGEL-KULKA T, CHOI CH, TEMAS D, KIM A, MAIER DM, SCOTT K, GALANKO JA, RINGEL Y. Altered colonic bacterial fermentation as a potential pathophysiological factor in irritable bowel syndrome[J]. The American Journal of Gastroenterology, 2015, 110(9): 1339-1346. DOI:10.1038/ajg.2015.220 |
|
[51] |
GARGARI G, TAVERNITI V, GARDANA C, CREMON C, CANDUCCI F, PAGANO I, BARBARO MR, BELLACOSA L, CASTELLAZZI AM, VALSECCHI C, TAGLIACARNE SC, BELLINI M, BERTANI L, GAMBACCINI D, MARCHI S, CICALA M, GERMANÀ B, dal PONT E, VECCHI M, OGLIARI C, et al. Fecal clostridiales distribution and short-chain fatty acids reflect bowel habits in irritable bowel syndrome[J]. Environmental Microbiology, 2018, 20(9): 3201-3213. DOI:10.1111/1462-2920.14271 |
|
[52] |
YANG JY, MENG J, YANG K. Intestinal tight junction protein and intestinal barrier function[J]. Medical Recapitulate, 2022, 28(2): 235-239. (in Chinese) 杨靖源, 蒙俊, 杨堃. 肠紧密连接蛋白与肠道屏障功能[J]. 医学综述, 2022, 28(2): 235-239. DOI:10.3969/j.issn.1006-2084.2022.02.005 |
|
[53] |
HOLD GL, SCHWIERTZ A, AMINOV RI, BLAUT M, FLINT HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces[J]. Applied and Environmental Microbiology, 2003, 69(7): 4320-4324. DOI:10.1128/AEM.69.7.4320-4324.2003 |
|
[54] |
WANG HB, WANG PY, WANG X, WAN YL, LIU YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription[J]. Digestive Diseases and Sciences, 2012, 57(12): 3126-3135. DOI:10.1007/s10620-012-2259-4 |
|
[55] |
YAN H, AJUWON KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586. DOI:10.1371/journal.pone.0179586 |
|
[56] |
ZHENG L, KELLY CJ, BATTISTA KD, SCHAEFER R, LANIS JM, ALEXEEV EE, WANG RX, ONYIAH JC, KOMINSKY DJ, COLGAN SP. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2[J]. Journal of Immunology (Baltimore, Md: 1950), 2017, 199(8): 2976-2984. DOI:10.4049/jimmunol.1700105 |
|
[57] |
WANG RX, LEE JS, CAMPBELL EL, COLGAN SP. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21): 11648-11657. |
|
[58] |
SORET R, CHEVALIER J, de COPPET P, POUPEAU G, DERKINDEREN P, SEGAIN JP, NEUNLIST M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats[J]. Gastroenterology, 2010, 138(5): 1772-1782. DOI:10.1053/j.gastro.2010.01.053 |
|
[59] |
GRIDER JR, PILAND BE. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2007, 292(1): G429-G437. DOI:10.1152/ajpgi.00376.2006 |
|
[60] |
FUKUMOTO S, TATEWAKI M, YAMADA T, FUJIMIYA M, MANTYH C, VOSS M, EUBANKS S, HARRIS M, PAPPAS TN, TAKAHASHI T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2003, 284(5): R1269-R1276. DOI:10.1152/ajpregu.00442.2002 |
|
[61] |
KARAKI SI, MITSUI R, HAYASHI H, KATO I, SUGIYA H, IWANAGA T, FURNESS JB, KUWAHARA A. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine[J]. Cell and Tissue Research, 2006, 324(3): 353-360. DOI:10.1007/s00441-005-0140-x |
|
[62] |
KLEM F, WADHWA A, PROKOP LJ, SUNDT WJ, FARRUGIA G, CAMILLERI M, SINGH S, GROVER M. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis[J]. Gastroenterology, 2017, 152(5): 1042-1054.e1. DOI:10.1053/j.gastro.2016.12.039 |
|
[63] |
KIM MH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406.e10. DOI:10.1053/j.gastro.2013.04.056 |
|
[64] |
MASLOWSKI KM, VIEIRA AT, NG A, KRANICH J, SIERRO F, YU D, SCHILTER HC, ROLPH MS, MACKAY F, ARTIS D, XAVIER RJ, TEIXEIRA MM, MACKAY CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286. DOI:10.1038/nature08530 |
|
[65] |
YANG WJ, YU TM, HUANG XS, BILOTTA AJ, XU LQ, LU Y, SUN JR, PAN F, ZHOU J, ZHANG WB, YAO SX, MAYNARD CL, SINGH N, DANN SM, LIU ZJ, CONG YZ. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nature Communications, 2020, 11: 4457. DOI:10.1038/s41467-020-18262-6 |
|
[66] |
SLATTERY SA, NIAZ O, AZIZ Q, FORD AC, FARMER AD. Systematic review with meta-analysis: the prevalence of bile acid malabsorption in the irritable bowel syndrome with diarrhoea[J]. Alimentary Pharmacology & Therapeutics, 2015, 42(1): 3-11. |
|
[67] |
VIJAYVARGIYA P. Bile acid deficiency in a subgroup of patients with irritable bowel syndrome with constipation based on biomarkers in serum and fecal samples[J]. Clinical Gastroenterology and Hepatology, 2018, 16(4): 522-527. DOI:10.1016/j.cgh.2017.06.039 |
|
[68] |
ZHAO L, YANG W, CHEN Y, HUANG FJ, LU L, LIN CY, HUANG T, NING ZW, ZHAI LX, ZHONG LL, LAM W, YANG Z, ZHANG X, CHENG C, HAN LJ, QIU QW, SHANG XX, HUANG RY, XIAO HT, REN ZX, et al. A clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome[J]. The Journal of Clinical Investigation, 2020, 130(1): 438-450. |
|
[69] |
ALEMI F, POOLE DP, CHIU J, SCHOONJANS K, CATTARUZZA F, GRIDER JR, BUNNETT NW, CORVERA CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice[J]. Gastroenterology, 2013, 144(1): 145-154. DOI:10.1053/j.gastro.2012.09.055 |
|
[70] |
DUBOC H, RAINTEAU D, RAJCA S, HUMBERT L, FARABOS D, MAUBERT M, GRONDIN V, JOUET P, BOUHASSIRA D, SEKSIK P, SOKOL H, COFFIN B, SABATÉ JM. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome[J]. Neurogastroenterology & Motility, 2012, 24(6): 513-520. |
|
[71] |
WEI W, WANG HF, ZHANG YL, ZHANG Y, NIU BY, CHEN S, ZHANG WX, YAO SK. Faecal bile acids and colonic bile acid membrane receptor correlate with symptom severity of diarrhoea-predominant irritable bowel syndrome: a pilot study[J]. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 2021, 53(9): 1120-1127. |
|
[72] |
XU XJ, ZHANG YL, LIU L, PAN L, YAO SK. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study[J]. Alimentary Pharmacology & Therapeutics, 2017, 45(1): 100-114. |
|
[73] |
LI WT, LUO QQ, WANG B, CHEN X, YAN XJ, QIU HY, CHEN SL. Bile acids induce visceral hypersensitivity via mucosal mast cell-to-nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis[J]. The FASEB Journal, 2019, 33(2): 2435-2450. DOI:10.1096/fj.201800935RR |
|
[74] |
CREMONINI F, NICANDRO JP, ATKINSON V, SHRINGARPURE R, CHUANG E, LEMBO A. Randomised clinical trial: alosetron improves quality of life and reduces restriction of daily activities in women with severe diarrhoea-predominant IBS[J]. Alimentary Pharmacology & Therapeutics, 2012, 36(5): 437-448. |
|
[75] |
ZHAO XY, WANG JW, YIN Y, LI K, ZHANG M, YAN FP. Effect of Tong Xie Yao Fang on endogenous metabolites in urine of irritable bowel syndrome model rats[J]. World Journal of Gastroenterology, 2019, 25(34): 5134-5151. DOI:10.3748/wjg.v25.i34.5134 |
|
[76] |
WEI DN, ZHAO YF, ZHANG MM, ZHU L, WANG L, YUAN X, WU CJ. The volatile oil of Zanthoxylum bungeanum pericarp improved the hypothalamic-pituitary-adrenal axis and gut microbiota to attenuate chronic unpredictable stress-induced anxiety behavior in rats[J]. Drug Design, Development and Therapy, 2021, 15: 769-786. DOI:10.2147/DDDT.S281575 |
|