微生物学通报  2023, Vol. 50 Issue (7): 3104−3121

扩展功能

文章信息

杜欣然, 王晶晶, 冉柒, 李越中
DU Xinran, WANG Jingjing, RAN Qi, LI Yuezhong
黏细菌资源及其系统分类
Resources and taxonomy of myxobacteria: a review
微生物学通报, 2023, 50(7): 3104-3121
Microbiology China, 2023, 50(7): 3104-3121
DOI: 10.13344/j.microbiol.china.220983

文章历史

收稿日期: 2022-10-09
接受日期: 2023-03-01
网络首发日期: 2023-04-12
黏细菌资源及其系统分类
杜欣然 , 王晶晶 , 冉柒 , 李越中     
山东大学微生物技术研究院 微生物技术国家重点实验室, 山东  青岛    266237
摘要: 黏细菌是一类捕食性革兰氏阴性菌,广泛分布在土壤、海洋和淡水等生境中,是多类环境的优势类群。根据16S rRNA基因序列,黏细菌被归属于变形菌门的δ分支黏细菌目(Myxococcales)。新近根据120个保守性的单拷贝标识基因和16S rRNA基因序列,对变形菌门的系统分类学研究将黏细菌类群单列为黏细菌门(Myxococcota)。本文介绍了黏细菌资源的特性,并围绕从目到门的分类地位变迁,系统简述了黏细菌分类学研究的历史演变,对黏细菌资源的应用和发展进行了展望。
关键词: 黏细菌    黏细菌门    分类地位    系统发生    微生物资源    
Resources and taxonomy of myxobacteria: a review
DU Xinran , WANG Jingjing , RAN Qi , LI Yuezhong     
State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, Shandong, China
Abstract: Myxobacteria are predatory Gram-negative bacteria ubiquitous and often predominant in soil, ocean, and freshwater environments. According to the 16S rRNA gene sequences, myxobacteria were classified as an order Myxococcales affiliated to the class δ-Proteobacteria. The recent phylogenetic studies based on 120 conserved single-copy marker genes and the 16S rRNA gene sequences have upgraded Myxococcales to the phylum Myxococcota. This review briefly summarizes the characteristics of myxobacteria and the history of the phylogenetic research and then makes a perspective on the future studies and applications of myxobacterial resources.
Keywords: myxobacteria    Myxococcota    taxonomy    phylogeny    microbial resources    

黏细菌是一类广泛分布于各种自然生境的革兰氏阴性杆状细菌,以其复杂的多细胞群体行为特性和庞大的基因组而著称。除类普通杆菌(Vulgatibacter)[1]、嗜纤维素菌(Byssovorax)[2]和厌氧黏细菌(Anaeromyxobacter)[3-4]外,已培养的其他黏细菌基因组大小为9.0−16.5 Mb,基因组GC含量为64%−75%[5]。黏细菌的复杂多细胞群体行为表现在生活周期的各个阶段,如细胞生长密度依赖、多细胞子实体发育、细胞群体运动模式及细胞的群体方式捕食等[6]

黏细菌最显著的形态特征是能够形成形态各异、肉眼可见(50−500 μm)的多细胞子实体(fruiting body)结构,其中包裹具有抗逆性的黏孢子[7]。子实体等形态特征也是黏细菌多相分类的重要指标。根据单生境未培养黏细菌的多样性和已培养黏细菌的局限性推测,自然生境中应存在大量的无子实体(non-fruiting)或子实体发育不典型的黏细菌类群[8]。已经被近年来发现的多个不能形成子实体的黏细菌新类群证实,如类普通杆菌、丝状滑行黏细菌(Labilithrix)[1]、幽灵孢子菌(Simulacricoccus)[9]及金色多囊菌(Polyangium aurulentum)[10]等。除厌氧黏细菌[1]外,其他已培养黏细菌均为好氧细菌。

黏细菌细胞通常能够在固体表面上以两种机制进行滑行运动[11]:冒险运动(adventurous motility,A-运动)和群体运动(social motility,S-运动),冒险运动是指菌落边缘个体细胞向着新环境进行探索式的滑行运动,群体运动是依赖于四型菌毛固着和收缩的大规模细胞的集体运动。这两种运动模式共同协助黏细菌完成捕食、子实体发育等多细胞群体行为,黏细菌因其复杂的多细胞行为而成为研究微生物社会学行为的模式生物[11]。值得一提的是,由于黏细菌在液体中的聚团生长或不生长特性,给黏细菌的研究和应用带来很大的困难。目前黏细菌研究所用的模式菌株黄色黏球菌(Myxococcus xanthus) DK1622是原始分离菌(FB菌株)在子实体形态突变丢失后通过恢复突变获得的兼具形成子实体和液体分散生长特性的菌株,为后续的各种遗传操作提供了可能和便利[12-13]

黏细菌的捕食策略被称为“狼群捕食”(wolf-pack attack),即通过细胞大量聚集的方式,提升胞外裂解酶浓度,实现“猎物”细胞裂解的“群体捕食”[14]。捕食性细菌的捕食策略还有附着在猎物细胞表面吸收养分的“表生型捕食”和通过分泌水解酶给猎物细胞壁打孔或改造而进入猎物细胞周质空间或细胞质的“侵入型捕食”[15]。黏细菌能够捕食各类细菌和真菌。然而并不是所有黏细菌都能够捕食其他微生物,黏细菌中也存在不能捕食活的微生物的溶纤维素类群,目前已知的仅有两个属,即堆囊菌属(Sorangium)和嗜纤维素菌属,它们不仅降解利用纤维素和糖类的能力突出,并能以无机氮化合物(NH4+, NO3)或有机氮化合物作为唯一氮源[16]。此外,近年来报道的一些黏细菌新类群既不能分解纤维素也不能捕食,如类普通杆菌、丝状滑行黏细菌和幽灵孢子菌等[1, 9]

黏细菌另一吸引人之处在于其能够产生多种具有生物活性的次级代谢产物,是公认的重要的药源微生物新类群之一[17]。在过去的40年里,从黏细菌中已鉴定出100多种新的碳骨架代谢物和600多种衍生物[18-19],这些代谢产物具有抗真菌、抗细菌、抗病毒、抗疟疾、抗肿瘤和免疫调节等活性[20]。部分黏细菌化合物已用于临床,如从纤维堆囊菌(S. cellulosum)发现的埃博霉素(epothilones)具有抗肿瘤活性[21-23],其类似物伊沙匹隆(ixabepilone)和优替德隆(utidelone)分别于2007年和2021年获批上市,用于癌症的临床治疗。此外,由于捕食特性,黏细菌在生态中具有重要作用,有可能用于农业生物防治[24-25]和污水处理[26-27]等。因此,黏细菌是一类具有重要基础研究价值和应用价值的微生物资源。

根据16S rRNA基因序列,黏细菌在系统分类上隶属于变形菌门中δ分支的黏细菌目(Myxococcales)[28]。目前基于基因组系统发育关系的分类标准,已将黏细菌目提升为黏细菌门(Myxococcota)[29]。随着已培养黏细菌类群的不断增多和微生物系统分类的发展,对黏细菌的系统分类也在逐步完善。本文以黏细菌系统分类学的发展为主线,介绍黏细菌资源的特性和研究现状,以期为黏细菌资源研究和开发利用提供参考。

1 黏细菌系统分类历史演变

黏细菌系统分类学大致经历了以下3个阶段:早期的依赖于黏细菌形态的分类,16S rRNA基因序列相似性分析和形态分类并举的黏细菌系统分类,以及基于120个保守的单拷贝标识基因和16S rRNA基因的分类。

1.1 基于黏细菌子实体形态的早期分类学体系:黏细菌目

对黏细菌的描述可以追溯到1892年,对黏细菌的最早认知是其复杂多样的子实体结构,这也是早期黏细菌分类的基础[30]。在16S rRNA基因序列相似性引入系统发育学研究之前,黏细菌的分类体系几乎完全依赖子实体等的形态学特征,并辅以抗生素、酶活等生理生化指标;早期对黏细菌的保存主要是干燥法,黏细菌的子实体也曾被当作植物标本进行干燥保藏;根据黏细菌子实体孢子囊颜色、数量、是否有柄,黏孢子形状等特征,将具有相似子实体特征的菌株进行聚类、等级划分。实际上这些“代表菌株”并不是严格意义上的“模式菌株”,更像是“模式材料”[31]

1989年,Bergeys manual of systematic bacteriology[32]首先根据营养细胞形状、是否形成小孢囊将多囊菌科(Polyangiaceae)划分出来;再根据小孢囊形状及小孢囊是否在孢子囊中,将黏球菌科(Myxococcaceae)、原囊菌科(Archangiaceae)和孢囊杆菌科(Cystobacteraceae)区分开。此时黏细菌目共分为8个属:黏球菌属(Myxococcus)、原囊菌属(Archangium)、孢囊杆菌属(Cystobacter)、蜂窝囊菌属(Melittangium)、标桩菌属(Stigmatella)、小囊菌属(Nannocystis)、软骨霉状菌属(Chondromyces)和多囊菌属(Polyangium)。1992年,The Prokaryotes[33]根据细胞形态、黏孢子发育、菌落表型、细胞脂肪酸谱、类胡萝卜素谱、菌落黏液是否吸附刚果红,将黏细菌目划分为孢囊杆菌亚目(Cystobacterineae)和堆囊菌亚目(Sorangineae)。科级的划分主要依据黏孢子的形态。属和种的划分是基于形态特征和一些生理特征。如黏球菌科的黏孢子是光滑的球形;黏球菌属子实体通常是柔软黏滑的球状,球形底部收束或不收束;而珊瑚球菌属子实体通常是坚韧的圆柱体或垫状,有的会形成珊瑚或珊瑚枝状。

在早期分类体系下,黏球菌目分为黏球菌科(Myxococcaceae)、原囊菌科(Archangiaceae)、孢囊杆菌科(Cystobacteraceae)和堆囊菌科(Sorangiaceae)这4个科和12个属约40个种[33]。尽管如此,仍有很多属或种处于争议或者不确定的范围。例如,孢囊杆菌属(Cystobacter)到底有多少个种并不能确定,只能根据孢子囊的形态划分为4个“模式种”[33]。分类学家们曾尝试引入纤维素降解能力、几丁质降解能力、紫外线激发荧光等特性对黏细菌进行分类学研究,但都未完全成功[34-35]。黏细菌的子实体特征由于容易在分离纯化和培养的过程中退化或丢失,从而出现纯培养黏细菌子实体不典型或不形成子实体的现象,之后的系统发育学研究证实,有很多形态学特征十分“相似”的菌株并不是同一类[36]。因此,早期的系统分类是含糊的,尤其是“种”间的区分。以黏细菌形态为基础、辅以生理特征进行逐级划分的早期分类体系存在较大的不准确性。

1.2 16S rRNA基因相似性和形态分类并举的系统分类:黏细菌目

随着测序技术的发展,微生物系统分类研究进入了新阶段。1999年,Spröer等对54株黏细菌进行了16S rRNA基因的系统发育分析,证实了黏细菌中的3个深度分支,并肯定了黏细菌的形态和系统发育之间的相关性,但有少数黏细菌在系统发育上与形态分类不一致[37]。2010年,Garcia等对101株黏细菌的16S rRNA基因序列进行了系统发育分析,明确了3个亚目成员之间的分歧,并且发现了9个新的分类单元[38]。因此,引入16S rRNA基因序列相似性对细菌系统发育进行矫正之后,黏细菌的系统分类学变得更为清晰。以2005年Bergeys manual of systematic bacteriology[36]和2006年The Prokaryotes[28]为代表,根据16S rRNA基因序列相似性,将黏细菌归为δ变形菌纲的黏细菌目[39],与之亲缘关系相近的是蛭弧菌属(Bdellovibrio)和一些绝对厌氧的脱硫菌[40]。不同黏细菌亚目通过营养细胞、黏孢子和菌落形态来进行分类。菌落是否吸附刚果红作为菌落黏液的化学特性指标也被用作一个分类标准[35]。此时的黏细菌分类仍然是以形态学特征为主、16S rRNA基因序列相似性分析为辅。黏细菌目共分为3亚目5个科17个属52个种[38]。值得一提的是,黏细菌的形态学分类体系和16S rRNA基因系统分类体系在高级分类单元上有较好的一致性,但在种属分类时有较大的差异。这也导致了一些不同属黏细菌的16S rRNA基因序列相似性 > 97%的现象。此外,根据Bacteriological Code (1990年版)的命名规范[41],截止到2007年,有16个黏细菌种暂属于有效报道(effectively published)状态,因为命名不规范或缺少保藏证明等未生效发表(not validly)[42]

1.3 基于保守单拷贝标识基因的现代分类体系:黏细菌门

随着基因组测序、宏基因组拼装和单细胞测序技术的飞速发展,目前更容易从纯培养和未培养微生物中获取大量的高质量基因组序列。从基因组序列中筛选多个蛋白标识基因进行系统发育学分析已经变得越来越普遍[43-44]。2018年Parks等[45]通过数据库现有的细菌基因组及宏基因组分装得到的数据筛选出用于细菌系统发育学分析的120个单拷贝标识蛋白序列(bac120)。2020年基于bac120的系统发育学分析发现Deltaproteobacteria纲、Oligoflexia纲与热脱硫杆菌门(Thermodesulfobacteria)并非单系同源,并对其重新分类,成立了4个新的细菌门:黏细菌门(Myxococcota)、脱硫菌门(Desulfobacterota)、蛭弧菌门(Bdellovibrionota)和未培养的SAR324[29]。基于bac120和16S rRNA基因的黏细菌现代分类体系正式建立;与单个保守基因的分类相比,基于基因组的分类系统覆盖更多的信息,因此能够更好地反映生物的真实系统进化关系[29]。目前黏细菌门的分类系统兼顾了传统的分类系统和新的系统发育学研究,并将系统发育与黏细菌功能特点结合起来。

黏细菌门现有2个已培养纲:黏球菌纲(Myxococcia)和多囊菌纲(Polyangia)。此外,系统发育分析显示黏细菌门至少有一个纲处于未培养状态,包含未培养黏细菌的宏基因组拼装,如c_UBA727和c_UBA796等[29]。值得注意的是,有些已发表的黏细菌类群,由于缺乏基因组信息,其归类是根据16S rRNA基因序列构建系统发育进化树[29]。例如,原豆囊菌科(Phaselicystaceae)[46]被暂归为多囊菌科(Polyangiaceae)下的豆囊菌属(Phaselicystis);科夫勒菌科(Kofleriaceae)中科夫勒菌属(Kofleria)与海生囊菌属(Haliangium)同在16S rRNA基因序列进化树的一个分支,被归于多囊菌纲海生囊菌目,这与2006年The Prokaryotes[28]将海生囊菌属和科夫勒菌属同归于黏球菌目下科夫勒菌科相悖。以国际原核生物命名法为标准的在线统计[47],科夫勒菌属和海生囊菌属仍同在黏球菌目下的科夫勒菌科。

自黏细菌现代分类体系建立以来,黏细菌有效发表的新类群有柠檬色球菌属(Citreicoccus)[48]、珊瑚球菌属9个新种[49-50]、黏球菌属3个新种[51]和厌氧黏细菌属3个新种[3]。截至目前,黏细菌门共有效发表3纲4目8科31属,详见表 1。在低分类单元“属” “种”水平上,现代分类体系主要是对新发现的一些形态学特征如子实体不典型类群的分类,如淡黄色丝状滑行黏细菌(Labilithrix luteola)和朴素类普通杆菌(Vulgatibacter incomptus)[1]。此外,区分了形态学特征差异不显著但16S rRNA基因序列相似性达到新物种鉴定阈值(98.65%)的菌株。自1970年Colwell提出多相分类(polyphasic taxonomy)[52]的概念以来,利用微生物表型、基因型等多方面不同信息的综合系统分类已经成为主流。在目前的黏细菌分类体系中,黏细菌的形态学特征依然是新分类单元需要描述的重要内容。

表 1 黏细菌门有效发表属分类地位变迁 Table 1 Proposed taxonomy of the phylum Myxococcota with changes from the past taxonomy marked below the rank of family

Class

Order

Family

Genus
2006-《原核生物》(科)[28]
2006-The Prokaryotes (family)[28]
1992-《原核生物》(科)[33]
1992-The Prokaryotes (family)[33]
黏球菌纲
Myxococcia
黏球菌目
Myxococcales
黏球菌科
Myxococcaceae
匣状球菌属
Pyxidicoccus (2)
nov
黏球菌属
Myxococcus (9)
珊瑚球菌属
Corallococcus (12)
聚团球菌属
Aggregicoccus (1)
nov nov
幽灵孢子属
Simulacricoccus (1)
nov nov
柠檬色球菌属
Citreicoccus (1)
nov nov
原囊菌科
Archangiaceae
孢囊杆菌属
Cystobacter (7)
孢囊杆菌科
Cystobacteraceae
孢囊杆菌科
Cystobacteraceae
原囊菌属
Archangium (4)
孢囊杆菌科
Cystobacteraceae
_
标桩菌属
Stigmatella (3)
孢囊杆菌科
Cystobacteraceae
孢囊杆菌科
Cystobacteraceae
玻璃囊菌属
Hyalangium (1)
孢囊杆菌科
Cystobacteraceae
nov
蜂窝囊菌属
Melittangium (3)
孢囊杆菌科
Cystobacteraceae
孢囊杆菌科
Cystobacteraceae
无孔菌属
Vitiosangium (2)
nov nov
类普通杆菌科
Vulgatibacteraceae
类普通杆菌属
Vulgatibacter (1)
nov nov
厌氧黏细菌科
Anaeromyxobacteraceae
厌氧黏细菌属
Anaeromyxobacter (3)
nov nov
多囊菌纲
Polyangia
多囊菌目
Polyangiales
多囊菌科
Polyangiaceae
多囊菌属
Polyangium (9)
堆囊菌科
Sorangiaceae
堆囊菌属
Sorangium (8)
堆囊菌科
Sorangiaceae
软骨霉状菌属
Chondromyces (6)
堆囊菌科
Sorangiaceae
小孢囊属
Minicystis (1)
nov nov
豆囊菌属
Phaselicystis (1)
nov nov
丝状滑行黏细菌属
Labilithrix (1)
nov nov
卓恩属
Jahnella (1)
nov
嗜纤维素菌属
Byssovorax (1)
nov
透明蠕杆菌属
Aetherobacter (2)
nov nov
簇囊菌属
Racemicystis (2)
nov nov
橙杆菌科
Sandaracinaceae
橙杆菌属
Sandaracinus (1)
nov nov
小囊菌目
Nannocystales
小囊菌科
Nannocystaceae
小囊菌属
Nannocystis (3)
堆囊菌科
Sorangiaceae
邻囊菌属
Plesiocystis (1)
nov nov
水黏细菌属
Enhygromyxa (1)
nov nov
假水黏细菌属
Pseudenhygromyxa (1)
nov nov
海生囊菌目
Haliangiales
海生囊菌科
Haliangiaceae
科夫勒菌属
Kofleria (1)
科夫勒菌科
Kofleriaceae
nov
海生囊菌属
Haliangium (2)
科夫勒菌科
Kofleriaceae
nov
−:科级分类地位未发生改变;nov:在原分类体系中该属处于“未有效发表”状态或不存在;括号中数字表示该属现有有效发表种的数量;因属名书写不规范更名:原“Jahnia”更名为Jahnella,原“Byssophaga ”更名为Byssovorax;因种属合并取消的属名:原囊球菌属(Angiococcus)模式菌Angiococcus disciformis归为原囊菌属Archangium disciforme;原单囊菌属(Haploangium)[28]归为多囊菌属(Polyangium)
−: No change in classification at the family level; nov: “Nonexistent” or “not validly”; Numbers in parentheses following genus names denote the number of currently valid published species of the genus; Some genus names have been changed due to abnormal spelling: Jahnia changed to Jahnella; Byssophaga changed to Byssovorax; The canceled genus names due to amalgamation: The type species of Angiococcus, Angiococcus disciformis classified as Archangium disciforme; Haploangium[28] classified as Polyangium.
2 已培养黏细菌的系统分类及特征简述

黏细菌是兼性捕食类群的典型代表,因其进化关系和捕食策略的不同,将黏细菌与专性捕食类群蛭弧菌分别单列成为2个独立的门[29]。现已培养的黏细菌门下包含2个纲:黏球菌纲(Myxococcia)和多囊菌纲(Polyangia),分别代表了黏细菌系统发育的两大分支[29]。以下对2个纲的相关分类特征进行了描述,包含的具体科、属见表 1。黏细菌新类群系统发育的研究报道不多,表 2总结了近20年黏细菌新菌鉴定的相关报道。这些黏细菌新菌大多分离自土壤相关生境,其次是海洋生境。值得注意的是,近两年报道的某些新种或新属与已知模式菌16S相似性水平均较高,如Corallococcus soli ZKHCc1 1396T与已知模式菌C. terminator CA054AT的相似性高达99.67%[53]Corallococcus silvisoli c25j21T与已知模式菌C. aberystwythensis DSM 108846T的相似性为99.3%[50]Citreicoccus inhibens M34T (新属)与已知珊瑚球菌属模式菌Corallococcus exercitus AB043AT的相似性为98.18%[48]

表 2 近20年黏细菌新菌的系统分类 Table 2 Systematic classification of novel myxobacteria in the last 20 years
科学命名
Scientific name
菌株
Strains
菌株来源
Habitats
分离方法
Isolation methods
菌株特性
Biological characteristics
基因组大小
Genome size (Mb)
GC含量
GC contents (%)
参考文献
Reference
Anaeromyxobacter oryzae
A. diazotrophicus
A. paludicola
Red232T
Red267T
Red630T
稻田土
Paddy soil
兼性厌氧
Facultative anaerobic
6.72
4.83
4.59
73.5
74.5
74.1
[3]
Corallococcus soli ZKHCc1 1396T 土壤
Soil
大肠杆菌诱导法
Escherichia coli baiting method
9.44 70.6 [53]
Corallococcus silvisoli c25j21T 森林土
Forest soil
大肠杆菌诱导法
Escherichia coli baiting method
9.23 70.7 [50]
Citreicoccus inhibens M34T 森林土
Forest soil
大肠杆菌诱导法
Escherichia coli baiting method
抗真菌活性、裂解病原细菌
Antifungal activity and bacteriolytic property against phytopathogens
9.05 69.5 [48]
Polyangium aurulentum
P. jinanense
SDU3-1T
SDU14T
土壤
Soil
大肠杆菌诱导法
Escherichia coli baiting method
不形成子实体
Non-fruiting
12.32
13.81
69.4
68.4
[10]
Myxococcus spp.
Pyxidicoccus spp.
5 species* 土壤
Soil
大肠杆菌诱导法
Escherichia coli baiting method
[51]
Corallococcus spp. 8 species** 土壤
Soil
标准分离方法
Standard isolation methods
[49]
Sorangium spp. 7 species*** 土壤
Soil
降解纤维素
Cellulose-decomposing
[54]
Nannocystis konarekensis MNa11734T 沙漠土
Desert soil
标准分离方法
Standard isolation methods
[55]
Simulacricoccus ruber MCy10636T 土壤
Soil
在MS21琼脂覆盖滤纸片平板形成微菌落
Tiny swarming colony on MS21 agar baited with a filter paper
微耐氧,不形成子实体、形成黏孢子
Microaerotolerant, non-fruiting, myxospore-forming
[9]
Vitiosangium cumulatum
V. subalbum
MCy10943T
MCy10944T
土壤
Soil
土壤浸提液琼脂涂抹灭活的大肠杆菌
Adding 1% (v/v) soil extract, autoclaved Escherichia coli
[56]
Racemicystis persica MSr11462T 沙滩沙土
Sand sample of beach
无机盐ST21培养基加无菌滤纸片诱导
Mineral salt ST21 agar, overlaid with sterile filter papers
[57]
Aetherobacter fasciculatus
A. rufus
SBSr002T
SBSr003T
土壤
Soil
标准分离方法
Standard isolation methods
含有独特的多不饱和脂肪酸生物合成途径
The unique PUFA biosynthetic pathways
[58]
Racemicystis crocea MSr9521T 土壤
Soil
无机盐ST21培养基加无菌滤纸片诱导
Mineral salt ST21 agar, overlaid with sterile filter papers
[59]
Aggregicoccus edonensis MCy1366T 土壤
Soil
标准分离方法
Standard isolation methods
菌体特殊的聚集现象
Unusually aggregating
[60]
Minicystis rosea SBNa008T 土壤
Soil
大肠杆菌诱导法
Escherichia coli baiting method
富含不饱和脂肪酸,产甾类化合物
Polyunsaturated fatty acid-rich-and steroid-producing
16.04 69.1 [61]
Vulgatibacter incomptus
Labilithrix luteola
B00001T
B00002T
森林土
Forest soil
稀释涂布平板法
Plate dilution method
无子实体聚集现象,不能裂解菌体,不能分解纤维素
No fruiting body-like cell aggregates, non-bacteriolytic and non-cellulolytic type of nutrition
4.35
12.19
68.9
66.1
[1]
Pseudenhygromyxa salsuginis SYR-2T 河口湿地淤泥
Estuarine marsh
改良版海洋黏细菌分离方法
Modified isolation methods for marine myxobacteria
适应低浓度的盐环境(0.0–2.5%) [62]
Sandaracinus amylolyticus NOSO-4T 土壤
Soil
标准分离方法
Standard isolation methods
分解淀粉
Starch-degrading
10.33 72.0 [63]
Phaselicystis flava SBKo001T 森林土
Forest soil
标准分离方法
Standard isolation methods
含有花生油酸
Arachidonic acid-containing
[46]
Byssovorax cruenta By c2T 土壤
Soil
标准分离方法
Standard isolation methods
降解纤维素
Cellulose-degrading
5.99 66.6 [2]
Enhygromyxa salina SHK-1T 海洋
Coastal samples (mud, sands and algae)
海洋黏细菌分离方法
Isolation methods for marine myxobacteria
微嗜盐黏细菌
Slightly halophilic myxobacterium
[64]
Plesiocystis pacifica SIR-1T 海洋
Pacific coasts
海洋黏细菌分离方法
Isolation methods for marine myxobacteria
含有脱氢甲基萘醌
Contains dihydrogenated menaquinone
10.59 70.7 [65]
Haliangium ochraceum
H. tepidum
SMP-2T
SMP-10T
海洋
Seaweed samples
海洋黏细菌分离方法
Isolation methods for marine myxobacteria
中度嗜盐;水解淀粉、DNA和明胶
Moderately halophilic; Hydrolyze starch, DNA, casein and gelatin
9.45
69.5
[66]
Anaeromyxobacter dehalogenans 2CP-1T 土壤和沉积物
Soils and sediments
醋酸盐作为唯一碳源和能源
Acetate as the sole carbon and energy source
兼性厌氧
Facultative anaerobic
5.03 74.7 [4]
−:参考文献中未显示此信息
−: This information is not displayed in the reference. *: Five species of Myxococcus eversor, M. llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis, M. vastator, Pyxidicoccus caerfyrddinensis and P. trucidator. **: Eight species of Corallococcus aberystwythensis, C. carmarthensis, C. exercitus, C. interemptor, C. llansteffanensis, C. praedator, C. sicarius and C. terminator. ***: Seven species of Sorangium ambruticinum, S. arenae, S. bulgaricum, S. dawidii, S. kenyense, S. orientale and S. reichenbachii.
2.1 黏球菌纲

黏球菌纲下只有一个黏球菌目(Myxococcales)。该目均为溶细菌型菌株,一般能够裂解细菌细胞,但不能分解纤维素。共包含5个科,黏球菌科(Myxococcaceae)、原囊菌科(Archangiaceae)、类普通杆菌科(Vulgatibacteraceae)、厌氧黏杆菌科(Anaeromyxobacteraceae)和科夫勒菌科(Kofleriaceae)。营养细胞细长杆状,黏孢子短圆且成熟后具有光学折射特性(图 1A1B)。菌落能够吸附刚果红。但也有特殊的黏细菌类群如类普通杆菌属(Vulgatibacter),无运动性,既不能裂解细菌细胞,也不能分解纤维素且无子实体形成[1]。幽灵孢子属(Simulacricoccus)不形成子实体但能够形成球状黏孢子[9]。厌氧黏细菌科(Anaeromyxobacteraceae)是黏细菌中唯一已知的兼性厌氧菌类群,能够进行滑行运动、无典型子实体形成[4]。新发现的柠檬色球菌属(Citreicoccus)能够显著抑制丝状真菌和裂解病原菌[8]

图 1 黏球菌纲、多囊菌纲的营养细胞和黏孢子形态照片 Figure 1 Morphologies of Myxococcia and Polyangia. A:黏球菌纲营养细胞长杆状[67]. B:黏孢子大而圆且具有折光性[67]. C:多囊菌纲营养细胞短杆状[10]. D:黏孢子短杆状、钝圆,与营养细胞相似[10] A: Vegetative long-rod cells of Myxococcia[67]. B: Optically refractile, large, and rounded myxospores[67]. C: Vegetative short-rod cells of Polyangia[10]. D: Short rod shaped and blunt round myxospore-like cells[10].
2.2 多囊菌纲

多囊菌纲包含多囊菌目(Polyangiales)、小囊菌目(Nannocystales)和海生囊菌目(Haliangiales)。营养细胞粗短,圆柱形、末端钝圆,黏孢子在形态上与营养细胞的区别较小(图 1C1D),菌落不吸附刚果红。多囊菌科的堆囊菌属(Sorangium)和嗜纤维素菌属(Byssovorax)是目前已知的以纤维素为主要碳源的黏细菌类群。软骨霉状菌是最早被培养的黏细菌类群,能够形成“树形”的复杂子实体结构[68]。但第一株被发现的软骨霉状菌(Chondromyces lichenicolus)[30]现已被归为原囊菌科的蜂窝囊菌属(Melittangium)[69]。堆囊菌属是最早发掘生物活性次级代谢产物的黏细菌类群之一,也是目前报道次级代谢产物最多的黏细菌类群。多囊菌属(Polyangium)形成的子实体通常包含多个聚在一起的小孢囊,但新报道的金色多囊菌(P. aurulentum)无子实体结构,而济南多囊菌(P. jinanense)的子实体只含有一个小孢囊[10]。橙杆菌科(Sandaracinaceae)目前只有一个模式种(Sandaracinus amylolyticus)[63],其子实体形态不典型:类子实体无孢子囊、在琼脂平板上散落分布。小囊菌科具有蚀刻琼脂但不使琼脂液化的特点,其中邻囊菌属(Plesiocystis)[65]和水黏细菌属(Enhygromyxa)[64]分离自海洋环境。海生囊菌目包含科夫勒菌属和海生囊菌属(Haliangium),海生囊菌属目前仅有2个模式种,是分离自海洋环境的耐盐黏细菌类群[66]

3 未培养黏细菌

由于黏细菌的胞外黏液、液体培养细胞易聚集难分散、难以形成单菌落等限制,使用稀释涂布平板法、拮抗平板筛选法等传统的微生物分离技术几乎不能获得黏细菌。近年来,微生物分离技术已经逐步向高通量培养、针对性分离方法方向发展,并衍生出一些高效分离方法,如拉曼活细胞分选[70]、反向基因组学[71]等。但遗憾的是这些新分离技术也未成功应用于黏细菌的分离培养。目前分离黏细菌的方法主要是通过底物富集诱导法(大肠杆菌、酵母、兔粪和滤纸都是经典的底物)挑取子实体,再反复转接纯化[28, 72]。黏细菌分离方法学研究一直都在进行,但基本离不开底物富集诱导法[73-77]。目前尚未实现高通量培养和对某类黏细菌的特异性富集,建立高效的黏细菌培养方法任重而道远。

长久以来,黏细菌被认为是土壤细菌。实际上黏细菌是地球上已知的最多样化、分布最为广泛的细菌类群之一,温带、热带、北极苔原、沙漠、酸性土壤、海洋及淡水都是其合适的栖息地[29, 66, 78-79],显示了黏细菌对环境的广泛适应能力。我们前期基于全球微生物组(earth microbiome project, EMP)数据对黏细菌类群的分析显示,已培养黏细菌OTU和已测序的黏细菌OTU只占全部黏细菌OTU的10.01%和7.29%,属于已培养率和基因组测序率均较低的类群[79]。2019年对GenBank中的全部黏细菌16S rRNA基因序列分析显示,黏细菌目可分为20个亚目,有17个新亚目尚未得到纯培养[80]。基于bac120对黏细菌门的系统发育分析显示黏细菌门仍有至少一个纲处于未培养状态[29]。综上所述,环境中仍有大量的黏细菌处于未培养状态。近年来,组学技术的发展产生了大量的微生物基因组数据[81-82]。经宏基因组组装基因组(metagenome-assembled genomes, MAG)数据预测,黏细菌的捕食和子实体形成等群体行为与对土壤生境的适应性密切相关,而未培养黏细菌的高分类单元多半来自非土壤生境或是厌氧类群[83]。在已培养黏细菌基因组和MAGs数据中预测到反硝化、芳烃降解、甲胺降解、好氧甲基营养和氢营养呼吸等方面的代谢基因,黏细菌在与其他甲基营养降解菌的竞争中可能发挥着意想不到的作用,并参与全球碳和氮循环[84]。此外,我们发现利用细菌通用引物对黏细菌进行多样性分析并不准确和全面,可能会忽略掉很多环境中的稀有黏细菌类群[8]。利用黏细菌半特异性引物对深海沉积物和海洋热泉口样品进行系统发育分析,结果表明黏细菌在海洋环境也普遍大量存在,且海洋黏细菌与陆生黏细菌在高分类地位上出现分化[85]。虽然来自海洋环境的黏细菌菌株已有纯培养(如海生囊菌),但由于缺乏更多数据和系统的研究,海洋黏细菌的生理特点与基因进化等信息我们还知之甚少[86-88]

4 总结与展望

捕食性黏细菌是一类具有重要应用潜力的微生物资源。然而受限于分离培养和纯化的困难,黏细菌资源和系统发育研究发展相对缓慢[89]。黏细菌分布极为广泛,但属于培养率较低的原核生物类群[79]。自2000年以来黏细菌新类群的报道绝大多数为新属和新种级别,而根据16S rRNA基因序列分析显示自然界存在的20个黏细菌亚目中有17个尚未得到纯培养[80]。目前黏细菌类群绝大多数分离自陆地土壤相关生境,海洋生境的黏细菌仅有小囊菌目和海生囊菌目下的4个属,并且来源较为单一。但细菌多样性及宏基因组分析显示海洋生境蕴藏大量海洋专属黏细菌类群,且多为未培养的高分类单元[82, 90]。此外,厌氧黏细菌由于生长较为缓慢和分离培养条件更为复杂,也是一类关注度较少的黏细菌资源。因此,改良和创新黏细菌分离培养技术显然是获取未培养黏细菌资源的关键所在。黏细菌的次级代谢产物挖掘和基因调控次级代谢产物等方面一直以来都是黏细菌应用研究中的热点[91-92]。除了具有药物先导化合物筛选价值,黏细菌还能够产生多种水解酶[93],包括淀粉酶、几丁质酶、脂肪酶、木聚糖酶等[24, 94-97],这些降解大分子的酶具有应用潜力。有些水解酶还具有降解毒素的作用,如从黏球菌属黏细菌(Myxococcus fulvus)的蛋白粗提物中获得的黄曲霉素降解酶[98]。此外,研究表明黏细菌在污水处理过程中能够稳定存在且是一类优势菌,可能在污水有害物质降解的过程中发挥着重要的作用[26-27]。MAGs数据中预测到来自热泉的黏细菌中存在聚羟基脂肪酸酯解聚酶基因,是潜在的塑料降解菌[99]。黏细菌因捕食其他微生物、形成孢子和耐受恶劣环境等生防特性,被用来尝试治理很多顽固的农业病害[100]。如珊瑚球菌属黏细菌EGB菌株能够抑制稻瘟病真菌(Magnaporthe oryzae)的孢子萌发[24]和调控黄瓜根系的菌群结构防治黄瓜枯萎病[25]等。因此,黏细菌在工业、农业、生物医学和环境保护中均具有广泛的应用潜力。但黏细菌资源的应用尚有待于对黏细菌性质的深入了解和认识,如黏细菌基因组中多拷贝分子伴侣[101-102]、黏细菌之间如何相互识别[103-104]、黏细菌的毒素分泌与免疫系统[105-107],以及捕食机制[11]等方面正在被深入探索。此外,缺乏有效的遗传操作方法也是黏细菌研发的重要限制。

近年来,微生物培养组学的发展极大地促进了未培养和难培养微生物的分离培养,丰富了微生物资源库。未培养黏细菌的分离培养离不开组学技术的进步,基因组学研究已经为黏细菌生态、社会行为和次级代谢产物形成等方面提供了重要的理论依据,间接促进了黏细菌资源的挖掘[108]。充分利用宏基因组学、培养组学等多组学技术,结合黏细菌捕食、形成黏孢子等生活习性及生理生化特点,开展未培养黏细菌的定向富集分离和尝试高通量培养,建立起黏细菌的培养组学以及资源评估体系,已成为黏细菌资源研究和利用的迫切需求。

REFERENCES
[1]
YAMAMOTO E, MURAMATSU H, NAGAI K. Vulgatibacter incomptus Gen. nov., sp. nov. and Labilithrix luteola Gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 10): 3360-3368.
[2]
REICHENBACH H, LANG E, SCHUMANN P, SPRÖER C. Byssovorax cruenta Gen. nov., sp. nov., nom. rev., a cellulose-degrading myxobacterium: rediscovery of 'Myxococcus cruentus' thaxter 1897[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(Pt 10): 2357-2363.
[3]
ITOH H, XU ZX, MISE K, MASUDA Y, USHIJIMA N, HAYAKAWA C, SHIRATORI Y, SENOO K. Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov., isolated from paddy soils[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(10).
[4]
SANFORD RA, COLE JR, TIEDJE JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium[J]. Applied and Environmental Microbiology, 2002, 68(2): 893-900. DOI:10.1128/AEM.68.2.893-900.2002
[5]
LI SG, ZHOU XW, WU ZH, LI YZ. Population ecology and survival strategy of myxobacteria[J]. Microbiology China, 2013, 40(1): 172-179. (in Chinese)
李曙光, 周秀文, 吴志红, 李越中. 粘细菌的种群生态及其生存策略[J]. 微生物学通报, 2013, 40(1): 172-179. DOI:10.13344/j.microbiol.china.2013.01.016
[6]
SHIMKETS LJ. Social and developmental biology of the myxobacteria[J]. Microbiological Reviews, 1990, 54(4): 473-501. DOI:10.1128/mr.54.4.473-501.1990
[7]
MOHR KI. Diversity of myxobacteria-we only see the tip of the iceberg[J]. Microorganisms, 2018, 6(3): 84. DOI:10.3390/microorganisms6030084
[8]
JIANG DM, WU ZH, ZHAO JY, LI YZ. Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group[J]. Molecular Phylogenetics and Evolution, 2007, 44(2): 545-552. DOI:10.1016/j.ympev.2007.04.004
[9]
GARCIA R, MÜLLER R. Simulacricoccus ruber Gen. nov., sp. nov., a microaerotolerant, non-fruiting, myxospore-forming soil myxobacterium and emended description of the family Myxococcaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(10): 3101-3110. DOI:10.1099/ijsem.0.002936
[10]
WANG JJ, RAN Q, DU XR, WU SG, WANG JN, SHENG DH, CHEN Q, DU ZJ, LI YZ. Two new Polyangium species, P. aurulentum sp. nov. and P. jinanense sp. nov., isolated from a soil sample[J]. Systematic and Applied Microbiology, 2021, 44(6): 126274. DOI:10.1016/j.syapm.2021.126274
[11]
MUÑOZ-DORADO J, MARCOS-TORRES FJ, GARCÍA-BRAVO E, MORALEDA-MUÑOZ A, PÉREZ J. Myxobacteria: moving, killing, feeding, and surviving together[J]. Frontiers in Microbiology, 2016, 7: 781.
[12]
CHEN H, KESELER IM, SHIMKETS LJ. Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis[J]. Journal of Bacteriology, 1990, 172(8): 4206-4213. DOI:10.1128/jb.172.8.4206-4213.1990
[13]
MCVITTIE A, MESSIK F, ZAHLER SA. Developmental biology of Myxococcus[J]. Journal of Bacteriology, 1962, 84(3): 546-551. DOI:10.1128/jb.84.3.546-551.1962
[14]
THIERY S, KAIMER C. The predation strategy of Myxococcus xanthus[J]. Frontiers in Microbiology, 2020, 11: 2. DOI:10.3389/fmicb.2020.00002
[15]
PÉREZ J, MORALEDA-MUÑOZ A, MARCOS-TORRES FJ, MUÑOZ-DORADO J. Bacterial predation: 75 years and counting![J]. Environmental Microbiology, 2016, 18(3): 766-779. DOI:10.1111/1462-2920.13171
[16]
ROSENBERG E, DELONG E F, LORY S, STACKEBRANDT E, THOMPSON F. The Family Polyangiaceae[M]. The Prokaryotes. New York, NY: Springer New York, 2014, (Chapter 308): 247-279.
[17]
WENZEL SC, MÜLLER R. Myxobacteria: 'microbial factories' for the production of bioactive secondary metabolites[J]. Molecular BioSystems, 2009, 5(6): 567-574. DOI:10.1039/b901287g
[18]
HOFFMANN T, KRUG D, BOZKURT N, DUDDELA S, JANSEN R, GARCIA R, GERTH K, STEINMETZ H, MÜLLER R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria[J]. Nature Communications, 2018, 9: 803. DOI:10.1038/s41467-018-03184-1
[19]
LANDWEHR W, WOLF C, WINK J. Actinobacteria and myxobacteria-two of the most important bacterial resources for novel antibiotics[J]. Current Topics in Microbiology and Immunology, 2016, 398: 273-302.
[20]
BHAT MA, MISHRA AK, BHAT MA, BANDAY MI, BASHIR O, RATHER IA, RAHMAN S, SHAH AA, JAN AT. Myxobacteria as a source of new bioactive compounds: a perspective study[J]. Pharmaceutics, 2021, 13(8): 1265. DOI:10.3390/pharmaceutics13081265
[21]
HERRMANN J, FAVAD AA, MÜLLER R. Natural products from myxobacteria: novel metabolites and bioactivities[J]. Natural Product Reports, 2017, 34(2): 135-160. DOI:10.1039/C6NP00106H
[22]
SCHÄBERLE TF, LOHR F, SCHMITZ A, KÖNIG GM. Antibiotics from myxobacteria[J]. Natural Product Reports, 2014, 31(7): 953-972. DOI:10.1039/c4np00011k
[23]
WEISSMAN KJ, MÜLLER R. Myxobacterial secondary metabolites: bioactivities and modes-of-action[J]. Natural Product Reports, 2010, 27(9): 1276-1295. DOI:10.1039/c001260m
[24]
LI ZK, XIA CY, WANG YX, LI X, QIAO Y, LI CY, ZHOU J, ZHANG L, YE XF, HUANG Y, CUI ZL. Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties[J]. International Journal of Biological Macromolecules, 2019, 132: 1235-1243. DOI:10.1016/j.ijbiomac.2019.04.056
[25]
YE XF, LI ZK, LUO X, WANG WH, LI YK, LI R, ZHANG B, QIAO Y, ZHOU J, FAN JQ, WANG H, HUANG Y, CAO H, CUI ZL, ZHANG RF. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1): 49. DOI:10.1186/s40168-020-00824-x
[26]
ZHOU Z, QIAO W, XING C, SHEN X, HU D, WANG L. A micro-aerobic hydrolysis process for sludge in situ reduction: performance and microbial community structure[J]. Bioresource Technology, 2014, 173: 452-456. DOI:10.1016/j.biortech.2014.09.119
[27]
WU LW, NING DL, ZHANG B, LI Y, ZHANG P, SHAN XY, ZHANG QT, BROWN MR, LI ZX, van NOSTRAND JD, LING FQ, XIAO NJ, ZHANG Y, VIERHEILIG J, WELLS GF, YANG YF, DENG Y, TU QC, WANG AJ, ZHANG T, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants[J]. Nature Microbiology, 2019, 4(7): 1183-1195. DOI:10.1038/s41564-019-0426-5
[28]
SHIMKETS LJ, DWORKIN M, REICHENBACH H. The Myxobacteria[M]. The Prokaryotes. New York, NY: Springer New York, 2006: 31-115.
[29]
WAITE DW, CHUVOCHINA M, PELIKAN C, PARKS DH, YILMAZ P, WAGNER M, LOY A, NAGANUMA T, NAKAI R, WHITMAN WB, HAHN MW, KUEVER J, HUGENHOLTZ P. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11): 5972-6016. DOI:10.1099/ijsem.0.004213
[30]
THAXTER R. On the Myxobacteriaceae, a new order of schizomycetes[J]. Botanical Gazette, 1892, 17(12): 389-406. DOI:10.1086/326866
[31]
BUCHANAN RE, GIBBONS NE. Bergey's Manual of Determinative Bacteriology[M]. Institute of Microbiology, Chinese Academy of Sciences, trans. 8th ed. Beijing: Science Press, 1984 (in Chinese).
BUCHANAN RE, GIBBONS NE. 伯杰细菌鉴定手册[M]. 中国科学院微生物研究所, 译. 8版. 北京: 科学出版社, 1984
[32]
MCCURDY HD. Order Myxococcales. Tchan, Pochon, Prevot 1948, 398 (with contributions of BROCKMAN ER, REICHENBACH H, WHITE D). In: STALEY JT, BRYANT MP, PFENNIG N, HOLT JG (Eds.)[M]// Bergey's Manual of Systematic Bacteriology. Baltimore: The Williams & Wilkins Co., 1989: vol. 3, 2139-2170.
[33]
REICHENBACH H, DWORKIN M. The myxobacteria[M]// The Prokaryotes. New York, NY: Springer New York, 1992: 3416-3487.
[34]
LAMPKY JR, BROCKMAN ER. Note: fluorescence of Myxococcus stipitatus[J]. International Journal of Systematic Bacteriology, 1977, 27(2): 161. DOI:10.1099/00207713-27-2-161
[35]
MCCURDY HD. Studies on the taxonomy of the Myxobacterales. Ⅰ. Record of Canadian isolates and survey of methods[J]. Canadian Journal of Microbiology, 1969, 15(12): 1453-1461. DOI:10.1139/m69-259
[36]
REICHENBACH H. The Myxococcales. Part 3: the Beta-, Delta-, and Epsilonproteobacteria. [M]// Bergey's Manual of Systematic Bacteriology. Garrity GM (ed.). New York, USA: Springer Verlag, 2005, 2: 1059-1143.
[37]
SPRÖER C, REICHENBACH H, STACKEBRANDT E. The correlation between morphological and phylogenetic classification of myxobacteria[J]. International Journal of Systematic Bacteriology, 1999, 49 Pt 3: 1255-1262.
[38]
GARCIA R, GERTH K, STADLER M, DOGMA I J, MÜLLER R. Expanded phylogeny of myxobacteria and evidence for cultivation of the 'unculturables'[J]. Molecular Phylogenetics and Evolution, 2010, 57(2): 878-887. DOI:10.1016/j.ympev.2010.08.028
[39]
STACKEBRANDT E, MURRAY RGE, TRUPER HG. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives"[J]. International Journal of Systematic Bacteriology, 1988, 38(3): 321-325. DOI:10.1099/00207713-38-3-321
[40]
OYAIZU H, WOESE CR. Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria[J]. Systematic and Applied Microbiology, 1985, 6(3): 257-263. DOI:10.1016/S0723-2020(85)80028-X
[41]
LAPAGE S, PHA S, LESSEL E, VBD S, HPR S, CLARK WAV. International code of nomenclature of bacteria: bacteriological code, 1990 revision[J] Washington DC: American Society for Microbiology Press, 1992.
[42]
EUZÉBY J. List of new names and new combinations previously effectively, but not validly, published[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(Pt 5): 893-897.
[43]
TONINI J, MOORE A, STERN D, SHCHEGLOVITOVA M, ORTÍ G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions[J]. PLoS Currents, 2015, 7: ecurrents.tol.34260cc27551a527b124ec5f6334b6be.
[44]
GADAGKAR SR, ROSENBERG MS, KUMAR S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree[J]. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B(1): 64-74. DOI:10.1002/jez.b.21026
[45]
PARKS DH, CHUVOCHINA M, WAITE DW, RINKE C, SKARSHEWSKI A, CHAUMEIL PA, HUGENHOLTZ P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life[J]. Nature Biotechnology, 2018, 36(10): 996-1004. DOI:10.1038/nbt.4229
[46]
GARCIA RO, REICHENBACH H, RING MW, MÜLLER R. Phaselicystis flava Gen. nov., sp. nov., an arachidonic acid-containing soil myxobacterium, and the description of Phaselicystidaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 6): 1524-1530.
[47]
PARTE AC, SARDÀ CARBASSE J, MEIER-KOLTHOFF JP, REIMER LC, GÖKER M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11): 5607-5612. DOI:10.1099/ijsem.0.004332
[48]
ZHOU Y, YI SX, ZANG Y, YAO Q, ZHU HH. The predatory myxobacterium Citreicoccus inhibens Gen. nov. sp. nov. showed antifungal activity and bacteriolytic property against phytopathogens[J]. Microorganisms, 2021, 9(10): 2137. DOI:10.3390/microorganisms9102137
[49]
LIVINGSTONE PG, INGLEBY O, GIRDWOOD S, COOKSON AR, MORPHEW RM, WHITWORTH DE. Predatory organisms with untapped biosynthetic potential: descriptions of novel Corallococcus species C. aberystwythensis sp. nov., C. carmarthensis sp. nov., C. exercitus sp. nov., C. interemptor sp. nov., C. llansteffanensis sp. nov., C. praedator sp. nov., C. sicarius sp. nov., and C. terminator sp. nov[J]. Applied and Environmental Microbiology, 2020, 86(2): e01931-e01919.
[50]
ZHANG XJ, FENG GD, LIU Y, ZHOU Y, DENG XQ, YAO Q, ZHU HH. Corallococcus silvisoli sp. nov, a novel myxobacterium isolated from subtropical forest soil[J]. Archives of Microbiology, 2022, 204(2): 141. DOI:10.1007/s00203-021-02725-5
[51]
CHAMBERS J, SPARKS N, SYDNEY N, LIVINGSTONE PG, COOKSON AR, WHITWORTH DE. Comparative genomics and pan-genomics of the Myxococcaceae, including a description of five novel species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov., and Pyxidicoccus trucidator sp. nov.[J]. Genome Biology and Evolution, 2020, 12(12): 2289-2302. DOI:10.1093/gbe/evaa212
[52]
COLWELL RR. Polyphasic taxonomy of bacteria[J]. Culture Collections of Microorganisms, 1970, 104(1): 421-436.
[53]
BABADI ZK, GARCIA R, EBRAHIMIPOUR GH, RISDIAN C, KÄMPFER P, JAREK M, MÜLLER R, WINK J. Corallococcus soli sp. nov., a soil myxobacterium isolated from subtropical climate, chalus County, Iran, and its potential to produce secondary metabolites[J]. Microorganisms, 2022, 10(7): 1262. DOI:10.3390/microorganisms10071262
[54]
MOHR KI, WOLF C, NÜBEL U, SZAFRAŃSKA AK, STEGLICH M, HENNESSEN F, GEMPERLEIN K, KÄMPFER P, MARTIN K, MÜLLER R, WINK J. A polyphasic approach leads to seven new species of the cellulose-decomposing genus Sorangium, Sorangium ambruticinum sp. nov., Sorangium arenae sp. nov., Sorangium bulgaricum sp. nov., Sorangium dawidii sp. nov., Sorangium kenyense sp. nov., Sorangium orientale sp. nov. and Sorangium reichenbachii sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(11): 3576-3586. DOI:10.1099/ijsem.0.003034
[55]
MOHR KI, MORADI A, GLAESER SP, KÄMPFER P, GEMPERLEIN K, NÜBEL U, SCHUMANN P, MÜLLER R, WINK J. Nannocystis konarekensis sp. nov., a novel myxobacterium from an Iranian Desert[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(3): 721-729. DOI:10.1099/ijsem.0.002569
[56]
AWAL RP, GARCIA R, GEMPERLEIN K, WINK J, KUNWAR B, PARAJULI N, MÜLLER R. Vitiosangium cumulatum Gen. nov., sp. nov. and Vitiosangium subalbum sp. nov., soil myxobacteria, and emended descriptions of the genera Archangium and Angiococcus, and of the family Cystobacteraceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1422-1430. DOI:10.1099/ijsem.0.001829
[57]
MORADI A, EBRAHIMIPOUR GH, MOHR KI, KÄMPFER P, GLAESER SP, HENNESSEN F, GEMPERLEIN K, AWAL RP, WOLF C, MÜLLER R, WINK J. Racemicystis persica sp. nov., a myxobacterium from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(2): 472-478. DOI:10.1099/ijsem.0.001655
[58]
GARCIA R, STADLER M, GEMPERLEIN K, MÜLLER R. Aetherobacter fasciculatus Gen. nov., sp. nov. and Aetherobacter rufus sp. nov., novel myxobacteria with promising biotechnological applications[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 928-938. DOI:10.1099/ijsem.0.000813
[59]
AWAL RP, GARCIA R, MÜLLER R. Racemicystis crocea Gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(6): 2389-2395. DOI:10.1099/ijsem.0.001045
[60]
SOOD S, AWAL RP, WINK J, MOHR KI, ROHDE M, STADLER M, KÄMPFER P, GLAESER SP, SCHUMANN P, GARCIA R, MÜLLER R. Aggregicoccus edonensis Gen. nov., sp. nov., an unusually aggregating myxobacterium isolated from a soil sample[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt 3): 745-753.
[61]
GARCIA R, GEMPERLEIN K, MÜLLER R. Minicystis rosea Gen. nov., sp. nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 11): 3733-3742.
[62]
IIZUKA T, JOJIMA Y, HAYAKAWA A, FUJII T, YAMANAKA S, FUDOU R. Pseudenhygromyxa salsuginis Gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 4): 1360-1369.
[63]
MOHR KI, GARCIA RO, GERTH K, IRSCHIK H, MÜLLER R. Sandaracinus amylolyticus Gen. nov., sp. nov., a starch-degrading soil myxobacterium, and description of Sandaracinaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 5): 1191-1198.
[64]
LIZUKA T, JOJIMA Y, FUDOU R, TOKURA M, HIRAISHI A, YAMANAKA S. Enhygromyxa salina Gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan[J]. Systematic and Applied Microbiology, 2003, 26(2): 189-196. DOI:10.1078/072320203322346038
[65]
IIZUKA T, JOJIMA Y, FUDOU R, HIRAISHI A, AHN JW, YAMANAKA S. Plesiocystis pacifica Gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 1): 189-195.
[66]
FUDOU R, JOJIMA Y, IIZUKA T, YAMANAKA S. Haliangium ochraceum Gen. nov., sp. nov. and Haliangium tepidum sp. nov. : novel moderately halophilic myxobacteria isolated from coastal saline environments[J]. The Journal of General and Applied Microbiology, 2002, 48(2): 109-116. DOI:10.2323/jgam.48.109
[67]
GARCIA R, MÜLLER R. The family Myxococcaceae[M]// In: ROSENBERG E, DELONG EF, LORY S, STACKEBRANDT E, THOMPSON F (editors). The Prokaryotes, 4th ed, vol. 10. Heidelberg: Springer; 2014: 191-212.
[68]
THAXTER R. Contributions from the cryptogamic laboratory of Harvard University. XXXIX. further observations on the Myxobacteriaceae[J]. Botanical Gazette, 1897, 23(6): 395-411. DOI:10.1086/327531
[69]
MCCURDY HD. Studies on the taxonomy of the Myxobacterales: IV. Melittangium[J]. International Journal of Systematic Bacteriology, 1971, 21(1): 50-54. DOI:10.1099/00207713-21-1-50
[70]
LEE KS, PEREIRA FC, PALATINSZKY M, BEHRENDT L, ALCOLOMBRI U, BERRY D, WAGNER M, STOCKER R. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions[J]. Nature Protocols, 2021, 16(2): 634-676. DOI:10.1038/s41596-020-00427-8
[71]
CROSS KL, CAMPBELL JH, BALACHANDRAN M, CAMPBELL AG, COOPER CJ, GRIFFEN A, HEATON M, JOSHI S, KLINGEMAN D, LEYS E, YANG Z, PARKS JM, PODAR M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J]. Nature Biotechnology, 2019, 37(11): 1314-1321. DOI:10.1038/s41587-019-0260-6
[72]
LI YZ, LI J. Isolation and purification of myxobacteria[J]. Microbiology China, 1997, 24(4): 237-240. (in Chinese)
李越中, 李健. 粘细菌的分离与纯化[J]. 微生物学通报, 1997, 24(4): 237-240. DOI:10.13344/j.microbiol.china.1997.04.015
[73]
ZHANG YT, HUI M, TIAN Q. Screening of myxobacteria and its application prospects[J]. Biotechnology, 2010, 20(6): 95-98. (in Chinese)
张宜涛, 惠明, 田青. 粘细菌的分离筛选方法及其应用前景[J]. 生物技术, 2010, 20(6): 95-98. DOI:10.3969/j.issn.1004-311X.2010.06.209
[74]
CHANG NN, OU YX, XU QY, QIAN XM, ZHENG ZH, HUANG YJ. The isolation, identification and activity assays of the myxobacteria[J]. Journal of Xiamen University (Natural Science Edition), 2012, 51(1): 112-116. (in Chinese)
常宁宁, 欧一新, 徐庆妍, 钱晓鸣, 郑忠辉, 黄耀坚. 粘细菌的分离鉴定及活性检测[J]. 厦门大学学报(自然科学版), 2012, 51(1): 112-116.
[75]
WANG T. Isolation of a new biocontrol Myxococcus sp. BS and the myxobacterial predation mechanism against bacterial soft rot[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2018 (in Chinese).
王婷. 新型生防粘细菌Myxococcus sp. BS的分离及粘细菌对细菌性软腐病菌的捕食机理研究[D]. 南京: 南京农业大学硕士学位论文, 2018.
[76]
ZHOU Y, YI SX, ZHANG XJ, YAO Q, ZHU HH. Isolation of soil myxobacteria based on bacterial co-occurrence network[J]. Biotic Resources, 2020, 42(5): 531-539. (in Chinese)
周杨, 蚁烁星, 张鲜姣, 姚青, 朱红惠. 基于细菌共现网络的土壤粘细菌分离[J]. 生物资源, 2020, 42(5): 531-539.
[77]
YI SX, ZHOU Y, ZHANG XJ, YAO Q, LI HP, ZHU HH. Effects of different methods on the formation of fruiting bodies and isolation of myxobacteria[J]. Acta Microbiologica Sinica, 2021, 61(4): 923-934. (in Chinese)
蚁烁星, 周杨, 张鲜姣, 姚青, 李华平, 朱红惠. 不同分离方法对子实体形成和粘细菌分离的影响[J]. 微生物学报, 2021, 61(4): 923-934. DOI:10.13343/j.cnki.wsxb.20200340
[78]
DAWID W. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews, 2000, 24(4): 403-427. DOI:10.1111/j.1574-6976.2000.tb00548.x
[79]
WANG JJ, WANG JN, WU SG, ZHANG Z, LI YZ. Global geographic diversity and distribution of the myxobacteria[J]. Microbiology Spectrum, 2021, 9(1): e0001221. DOI:10.1128/Spectrum.00012-21
[80]
LIU Y, YAO Q, ZHU HH. Meta-16S rRNA gene phylogenetic reconstruction reveals the astonishing diversity of cosmopolitan myxobacteria[J]. Microorganisms, 2019, 7(11): 551. DOI:10.3390/microorganisms7110551
[81]
ANANTHARAMAN K, BROWN CT, HUG LA, SHARON I, CASTELLE CJ, PROBST AJ, THOMAS BC, SINGH A, WILKINS MJ, KARAOZ U, BRODIE EL, WILLIAMS KH, HUBBARD SS, BANFIELD JF. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system[J]. Nature Communications, 2016, 7: 13219. DOI:10.1038/ncomms13219
[82]
PARKS DH, RINKE C, CHUVOCHINA M, CHAUMEIL PA, WOODCROFT BJ, EVANS PN, HUGENHOLTZ P, TYSON GW. Recovery of nearly 8, 000 metagenome-assembled genomes substantially expands the tree of life[J]. Nature Microbiology, 2017, 2(11): 1533-1542. DOI:10.1038/s41564-017-0012-7
[83]
MURPHY CL, YANG R, DECKER T, CAVALLIERE C, ANDREEV V, BIRCHER N, CORNELL J, DOHMEN R, PRATT CJ, GRINNELL A, HIGGS J, JETT C, GILLETT E, KHADKA R, MARES S, MEILI C, LIU J, MUKHTAR H, ELSHAHED MS, YOUSSEF NH. Genomes of novel Myxococcota reveal severely curtailed machineries for predation and cellular differentiation[J]. Applied and Environmental Microbiology, 2021, 87(23): e0170621. DOI:10.1128/AEM.01706-21
[84]
LANGWIG MV, de ANDA V, DOMBROWSKI N, SEITZ KW, RAMBO IM, GREENING C, TESKE AP, BAKER BJ. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups[J]. The ISME Journal, 2022, 16(1): 307-320. DOI:10.1038/s41396-021-01057-y
[85]
LI ZF, LI X, LIU H, LIU X, HAN K, WU ZH, HU W, LI FF, LI YZ. Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1[J]. Journal of Bacteriology, 2011, 193(18): 5015-5016. DOI:10.1128/JB.05516-11
[86]
LI YZ, HU W, ZHANG YQ, QIU ZJ, ZHANG Y, WU BH. A simple method to isolate salt-tolerant myxobacteria from marine samples[J]. Journal of Microbiological Methods, 2002, 50(2): 205-209. DOI:10.1016/S0167-7012(02)00029-5
[87]
ZHANG YQ, LI YZ, WANG B, WU ZH, ZHANG CY, GONG X, QIU ZJ, ZHANG Y. Characteristics and living patterns of marine myxobacterial isolates[J]. Applied and Environmental Microbiology, 2005, 71(6): 3331-3336. DOI:10.1128/AEM.71.6.3331-3336.2005
[88]
JIANG DM, KATO C, ZHOU XW, WU ZH, SATO T, LI YZ. Phylogeographic separation of marine and soil myxobacteria at high levels of classification[J]. The ISME Journal, 2010, 4(12): 1520-1530. DOI:10.1038/ismej.2010.84
[89]
WANG CL, LÜ YY, YAO Q, LI AZ, ZHU HH. Research progress in resources mining and polyphase classification of myxobacteria[J]. Microbiology China, 2021, 48(8): 2870-2880. (in Chinese)
王春玲, 吕颖颖, 姚青, 李安章, 朱红惠. 粘细菌资源挖掘与多相分类研究进展[J]. 微生物学通报, 2021, 48(8): 2870-2880. DOI:10.13344/j.microbiol.china.200771
[90]
BRINKHOFF T, FISCHER D, VOLLMERS J, VOGET S, BEARDSLEY C, THOLE S, MUSSMANN M, KUNZE B, WAGNER-DÖBLER I, DANIEL R, SIMON M. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria[J]. The ISME Journal, 2012, 6(6): 1260-1272. DOI:10.1038/ismej.2011.190
[91]
HU JQ, WANG JJ, LI YL, ZHUO L, ZHANG A, SUI HY, LI XJ, SHEN T, YIN YZ, WU ZH, HU W, LI YZ, WU CS. Combining NMR-based metabolic profiling and genome mining for the accelerated discovery of archangiumide, an allenic macrolide from the myxobacterium Archangium violaceum SDU8[J]. Organic Letters, 2021, 23(6): 2114-2119. DOI:10.1021/acs.orglett.1c00265
[92]
LI YL, ZHUO L, LI XB, ZHU YQ, WU SG, SHEN T, HU W, LI YZ, WU CS. Myxadazoles, myxobacterium-derived isoxazole-benzimidazole hybrids with cardiovascular activities[J]. Angewandte Chemie (International Ed in English), 2021, 60(40): 21679-21684. DOI:10.1002/anie.202106275
[93]
XU X, LI AZ, XU SS, YAO Q, ZHU HH. Research progress on hydrolytic enzymes produced by Myxobacteria[J]. Microbiology China, 2021, 48(1): 253-265. (in Chinese)
徐欣, 李安章, 徐帅帅, 姚青, 朱红惠. 粘细菌产生的水解酶类研究进展[J]. 微生物学通报, 2021, 48(1): 253-265. DOI:10.13344/j.microbiol.china.200025
[94]
SÁNCHEZ-SUTIL MC, GÓMEZ-SANTOS N, MORALEDA-MUÑOZ A, MARTINS LO, PÉREZ J, MUÑOZ-DORADO J. Differential expression of the three multicopper oxidases from Myxococcus xanthus[J]. Journal of Bacteriology, 2007, 189(13): 4887-4898. DOI:10.1128/JB.00309-07
[95]
CHENG YY, QIAN YK, LI ZF, WU ZH, LIU H, LI YZ. A novel cold-adapted lipase from Sorangium cellulosum strain So0157-2: gene cloning, expression, and enzymatic characterization[J]. International Journal of Molecular Sciences, 2011, 12(10): 6765-6780. DOI:10.3390/ijms12106765
[96]
WANG SY, HU W, LIN XY, WU ZH, LI YZ. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization[J]. Applied Microbiology and Biotechnology, 2012, 93(4): 1503-1512. DOI:10.1007/s00253-011-3480-3
[97]
SHARMA G, KHATRI I, SUBRAMANIAN S. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T[J]. Genome Biology and Evolution, 2016, 8(8): 2520-2529. DOI:10.1093/gbe/evw151
[98]
ZHAO LH, GUAN S, GAO X, MA QG, LEI YP, BAI XM, JI C. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068[J]. Journal of Applied Microbiology, 2011, 110(1): 147-155. DOI:10.1111/j.1365-2672.2010.04867.x
[99]
VILJAKAINEN VR, HUG LA. The phylogenetic and global distribution of bacterial polyhydroxyalkanoate bioplastic-degrading genes[J]. Environmental Microbiology, 2021, 23(3): 1717-1731. DOI:10.1111/1462-2920.15409
[100]
LI ZK, YE XF, YANG F, HUANG Y, FAN JQ, WANG H, CUI ZL. The predation biology of myxobacteria and its application in agricultural field[J]. Journal of Nanjing Agricultural University, 2021, 44(2): 208-216. (in Chinese)
李周坤, 叶现丰, 杨凡, 黄彦, 范加勤, 王辉, 崔中利. 黏细菌捕食生物学研究进展及其在农业领域的应用潜力[J]. 南京农业大学学报, 2021, 44(2): 208-216.
[101]
ZHUO L, ZHANG Z, PAN Z, SHENG DH, HU W, LI YZ. CIRCE element evolved for the coordinated transcriptional regulation of bacterial duplicate groELs[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2018, 1861(10): 928-937.
[102]
PAN Z, ZHANG Z, ZHUO L, WAN TY, LI YZ. Bioinformatic and functional characterization of Hsp70s in Myxococcus xanthus[J]. mSphere, 2021, 6(3): e00305-21.
[103]
GONG Y, ZHANG Z, ZHOU XW, ANWAR MN, HU XZ, LI ZS, CHEN XJ, LI YZ. Competitive interactions between incompatible mutants of the social bacterium Myxococcus xanthus DK1622[J]. Frontiers in Microbiology, 2018, 9: 1200.
[104]
GONG Y, ZHANG Z, LIU Y, ZHOU XW, ANWAR MN, LI ZS, HU W, LI YZ. A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus[J]. Environmental Microbiology, 2018, 20(7): 2552-2567.
[105]
LIU Y, WANG JN, ZHANG Z, WANG F, GONG Y, SHENG DH, LI YZ. Two PAAR proteins with different C-terminal extended domains have distinct ecological functions in Myxococcus xanthus[J]. Applied and Environmental Microbiology, 2021, 87(9): e00080-e00021.
[106]
ZHANG Z, LIU Y, ZHANG P, WANG JN, LI DD, LI YZ. PAAR proteins are versatile clips that enrich the antimicrobial weapon arsenals of prokaryotes[J]. mSystems, 2021, 6(6): e0095321.
[107]
LIU Y. Study on the function of PAAR protein of Myxococcus flavus and its toxin-carrying mechanism[D]. Ji'nan: Doctoral Dissertation of Shandong University, 2021 (in Chinese).
刘亚. 黄色黏球菌PAAR蛋白功能及其携带毒素机制研究[D]. 济南: 山东大学博士学位论文, 2021.
[108]
WANG CL, FENG GD, YAO Q, LI AZ, ZHU HH. Research progress in genomics of myxobacteria[J]. Microbiology China, 2019, 46(9): 2394-2403. (in Chinese)
王春玲, 冯广达, 姚青, 李安章, 朱红惠. 粘细菌基因组学研究进展[J]. 微生物学通报, 2019, 46(9): 2394-2403.
黏细菌资源及其系统分类
杜欣然 , 王晶晶 , 冉柒 , 李越中