微生物学通报  2023, Vol. 50 Issue (5): 1973−1987

扩展功能

文章信息

陈宝强, 马博雅, 李莹莹, 优丽图孜·乃比, 宋金迪, 刘君
CHEN Baoqiang, MA Boya, LI Yingying, YOULITUZI Naibi, SONG Jindi, LIU Jun
西瓜食酸菌Ⅲ型分泌效应物基因aopW功能初步分析
Preliminary functional analysis of the type Ⅲ secreted effector gene aopW in Acidovorax citrulli
微生物学通报, 2023, 50(5): 1973-1987
Microbiology China, 2023, 50(5): 1973-1987
DOI: 10.13344/j.microbiol.china.220662

文章历史

收稿日期: 2022-07-17
接受日期: 2022-08-25
网络首发日期: 2022-09-28
西瓜食酸菌Ⅲ型分泌效应物基因aopW功能初步分析
陈宝强 , 马博雅 , 李莹莹 , 优丽图孜·乃比 , 宋金迪 , 刘君     
新疆农业大学生命科学学院, 新疆  乌鲁木齐    830052
摘要: 【背景】 细菌性果斑病(bacterial fruit blotch, BFB)是葫芦科植物上一种严重的检疫性病害,其病原菌为西瓜食酸菌(Acidovorax citrulli)。目前已知Ⅲ型分泌效应物(type Ⅲ secreted effectors, T3SEs)是该病菌的关键致病因子,但对其效应物功能和作用机制的认识非常有限。【目的】 鉴定西瓜食酸菌Ⅲ型分泌效应物基因aopW,分析其编码蛋白质影响植物免疫的方式,为更深入地认识该基因在西瓜食酸菌致病机制中的作用奠定基础。【方法】 利用生物信息学分析其序列特征;借助荧光定量PCR技术分析aopW的表达调控及其与抗病相关基因表达间的关系;利用基因突变及基因功能互补手段,通过分析致病性、寄主活性氧积累量等解析基因功能;采用瞬时表达技术了解AopW诱导非寄主hypersensitive response (HR)能力及其亚细胞定位情况。【结果】 aopW基因启动子区存在Ⅲ型分泌系统(type Ⅲ secretion system, T3SS)核心基因结合位点,其编码的蛋白不存在信号肽和跨膜螺旋区,与Ⅲ型分泌效应物harpin蛋白同源;T3SS核心基因hrpG/hrpX突变体中aopW基因的表达量显著降低;缺失aopW基因后突变体对寄主的致病力降低,但其互作的寄主活性氧积累量增加;AopW定位于烟草细胞质和细胞质膜,可以诱导本氏烟草发生HR,影响病原相关分子模式(pathogen-associated molecular pattern, PAMP)触发的免疫(PAMP-triggered immunity, PTI)信号通路及激素信号通路相关基因的表达。【结论】 西瓜食酸菌AopW为Ⅲ型分泌效应物harpin蛋白,其在与寄主黄瓜互作中发挥毒性因子功能,与烟草互作中可能以PAMP触发植物PTI和激素抗病信号通路并引发细胞坏死。
关键词: 西瓜食酸菌    Ⅲ型分泌效应物    aopW    病原相关分子模式触发的免疫    harpin    
Preliminary functional analysis of the type Ⅲ secreted effector gene aopW in Acidovorax citrulli
CHEN Baoqiang , MA Boya , LI Yingying , YOULITUZI Naibi , SONG Jindi , LIU Jun     
College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
Abstract: [Background] Bacterial fruit blotch (BFB) is a serious quarantine disease caused by Acidovorax citrulli on the plants of Cucurbitaceae. Type Ⅲ secreted effectors (T3SEs) are known as the key pathogenic factors in the pathogen, while little is known about their roles and functioning mechanisms. [Objective] To identify the T3SE gene aopW of A. citrulli and analyze the way that the protein affects plant immunity, so as to lay a foundation for further understanding the role of aopW in the pathogenic mechanism of A. citrulli. [Methods] Bioinformatics tools were used to analyze the sequence of the gene. Fluorescence quantitative PCR was performed to determine the expression of aopW and the relationship in the expression between aopW and disease resistance genes. Gene mutagenesis and gene function complementation were employed to explore the gene functions through the analysis of pathogen pathogenicity and host accumulation of reactive oxygen species. Hypersensitive response (HR) induced by AopW and the subcellular localization of AopW in the non-host plant were investigated by transient expression technique. [Results] There was a binding site with the type Ⅲ secretion system (T3SS) core gene in the promoter region of aopW gene, and the protein encoded by aopW had no signal peptide or transmembrane domain. AopW was homologous to harpin. The expression of aopW in the mutants of T3SS core genes hrpG/hrpX was significantly down-regulated. After aopW was deleted, the pathogenicity of the mutant decreased, while the accumulation of reactive oxygen species in the host increased. AopW was mainly located in the cytoplasm and cytoplasmic membrane and induced HR in Nicotiana benthamiana. Moreover, AopW affected the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) signaling pathway and the expression of the genes involved in hormone signaling pathways. [Conclusion] The AopW of A. citrulli is a harpin of the T3SE family, which plays a role as a toxic factor in the interaction of A. citrulli with the host cucumber. It may be involved in the PAMP-triggerred plant PTI and hormone signaling pathways and induce cell necrosis in N. benthamiana.
Keywords: Acidovorax citrulli    T3SEs    aopW    PTI    harpin    

瓜类细菌性果斑病(bacterial fruit blotch, BFB)自报道发生以来已在全球范围传播,给西瓜、甜瓜等瓜类种植业造成了巨大的经济损失[1],BFB病菌的天然寄主中尚未发现免疫种质,而已有的防控措施效果不佳[2],BFB已成为瓜类生产的严重威胁。认识BFB病菌——西瓜食酸菌与其寄主的互作机制可为发掘防控该病害的新途径、新方法提供理论依据。由type Ⅲ secretion system (T3SS)分泌的type Ⅲ secreted effectors (T3SEs)是西瓜食酸菌致病过程中的关键因子[3]。目前对西瓜食酸菌T3SEs及其触发植物免疫反应的认知非常有限。鉴定和分析该菌的T3SEs可为深入解析病原菌致病机理奠定重要基础。

西瓜食酸菌T3SEs相关的研究发现,亚群Ⅱ菌株Aac5的T3SS归于Ⅱ组,存在hrpXhrpG (hrp基因簇)的同源基因,为调控T3SEs表达的T3SS核心基因[4],该研究结果为鉴定与分析西瓜食酸菌T3SEs奠定了重要基础。杨琳琳研究证实西瓜食酸菌T3SEs Ace0201和Ace1242均能通过抑制活性氧(reactive oxygen species, ROS)暴发抑制烟草PAMP-triggered immunity (PTI)反应[5];张晓晓通过验证外泌功能鉴定到T3SE Ace1,分析认为该蛋白通过影响ROS暴发和胼胝质沉积影响PTI途径[6];有研究通过无毒基因报告系统验证了7个具有PIP-box保守序列的T3SEs[7];此外,Zhang等鉴定到一个新的T3SE AopP,其通过抑制ROS暴发和降低水杨酸(salicylic acid, SA)含量抑制PTI通路,增强对宿主的毒力[8]。上述研究表明,西瓜食酸菌T3SEs的研究已有一些进展,目前已鉴定的T3SEs中的大多数以抑制烟草PTI反应发挥毒性作用,有关能够触发烟草PTI反应的T3SEs,如harpin类的研究还很有限。

Harpin蛋白已在多个革兰氏阴性病原细菌中发现,如Erwinia amylovora的HrpW[9]Pseudomonas syringae pv. tomato的HrpZ1[10]。Harpin蛋白为一类水溶性的T3SEs,其主要功能是协助Avr或Dsp类效应物进入细胞内[11],由控制寄主致病性和非寄主过敏性反应的hrp基因编码[12]。Harpin蛋白作为病原相关分子模式(pathogen-associated molecular pattern, PAMP)分子被模式识别受体(pattern recognition receptors, PRRs)识别并启动PTI[13],在高浓度下能在烟草等植物上诱导过敏反应,在低浓度下可以诱导植物抗病、抗虫及抗旱等功能[14],如转harpin基因popW的烟草、SA、Jasmonic acid (JA)及hypersensitive response (HR)相关基因的表达增强,表现出对青枯菌抗性增强,病害的防治效果得以提升[15]。本研究小组前期在西瓜食酸菌Ⅰ型菌株FC440的基因组中,发现一个类harpin的效应物基因,命名为aopW。瓜类植物中至今未发现抗BFB的种质资源[2],研究西瓜食酸菌的类harpin蛋白,可以为进一步在抗性寄主烟草中发掘抗性基因、解析互作机制奠定重要基础。

1 材料与方法 1.1 植物材料及培养

植物材料黄瓜(Cucumis sativus)长春密刺、本氏烟草(Nicotiana benthamiana)和普通烟草(Nicotiana tabacum)秦烟95由西北农林科技大学单卫星教授惠赠。植物培养于28 ℃/25 ℃、16 h/8 h明暗交替条件下,其中黄瓜于栽培5 d时使用,烟草于培养30−45 d使用。

1.2 菌株、质粒及引物

研究中所用菌株、质粒见表 1,引物见表 2

表 1 供试菌株、质粒 Table 1 Bacterial strains and plasmids used in this study
Strains/Plasmids Characteristics Sources or references
Strains
FC440 (WT) AmpR; wild type Our laboratory
FC440 (∆aopW) AmpR; KanR; FC440 mutant defective in aopW This study
FC440 (∆aopW-aopW) AmpR; KanR; GmR; FC440 (∆aopW) complemented
with aopW gene expressed by vector pBBR1MCS-5
This study
FC440 (∆hrpG) AmpR; KanR; FC440 mutant defective in hrpG [16]
FC440 (∆hrpX) AmpR; KanR; FC440 mutant defective in hrpX [16]
Trans T1 (pBBR1MCS-5-aopW) GmR; Escherichia coli TransT1 strain containing vector
pBBR1MCS-5-aopW
This study
GV3101 RifR; wild type Our laboratory
GV3101 (pAPK-GFP) SpecR; RifR; GmR; GV3101 strain containing vector pAPK-GFP [16]
GV3101 (pAPK-aopW) SpecR; RifR; GmR; GV3101 strain containing vector pAPK-aopW This study
GV3101 (pBINGFP2) KanR; RifR; GmR; GV3101 strain containing vector pBINGFP2 [17]
GV3101 (pBINGFP2-aopW) KanR; RifR; GmR; GV3101 strain containing vector pBINGFP2-aopW This study
Plasmids
pMD19-T AmpR; Cloning vector TaKaRa
pMD19-T-aopW AmpR; pMD19-T vector containing a 1 458 bp
fragment with the aopW gene
This study
pK19mob2ΩHMB-aopW KanR; pK19mob2ΩHMB vector containing a 315 bp fragment with the aopW gene This study
pBBR1MCS-5-aopW GmR; pBBR1MCS-5 vector containing aopW gene;
used to complement FC440 (∆aopW)
This study
pKannibal-aopW KanR; pKannibal vector containing a 1 458 bp
fragment with the aopW gene
This study
pBINGFP2-aopW KanR; pBINGFP2 vector containing a 1 458 bp
fragment with the aopW gene
This study

表 2 供试引物 Table 2 Primers used in this study
Primers name Primers sequence (5′→3′) Size (bp) Sources or references
aopW-F CGGAATTCGAGACATCGGGCAACAGG (EcoR I) 320 This study
aopW-R CCAAGCTTGAGGGCATTGGCGAGTAC (Hind Ⅲ) This study
aopW-QF GGGGTACCCCACCAATGACAGACAGACTC (Kpn Ⅰ) 1 458 This study
aopW-QR GCTCTAGATCAGTTCACCGTTGACGAC (Xba Ⅰ) This study
AAC-1 GACCAGCCCACAACTGGGAC 246 [18]
AAC-2 CTGCCGCACTCCAGCGA [18]
aopW-CF TTTGGAGAGGACACGCTCGAGATGACAGACAGACTCAGCCGGC (Xho Ⅰ) 1 488 This study
aopW-CR TCATTAAAGCAGGACTCTAGATCAGTTCACCGTTGACGACGC (Xba Ⅰ) This study
aopW-DF AGAGGATCCGTCGACCCGGGATGACAGACAGACTCAGCCGGC (Sma Ⅰ) 1 488 This study
aopW-DR CTGTACAAGGGTACCCCCGGGTCAGTTCACCGTTGACGACGC (Sma Ⅰ) This study
RT-aopW-F GGCTCCGTCATTGATGTGCG 178 This study
RT-aopW-R CGTGCGTGGGCAGGAAATAG This study
rpoB-F GCGACAGCGTGCTCAAAGTG 104 [19]
rpoB-R GGCCTTCGTTGGTGCGTTTCT [19]
NbPti5-F CCTCCAAGTTTGAGCTCGGATAGT / [20]
NbPti5-R CCAAGAAATTCTCCATGCACTCTGTC [20]
NbAcre31-F AATTCGGCCATCGTGATCTTGGTC / [20]
NbAcre31-R GAGAAACTGGGATTGCCTGAAGGA [20]
NbGras2-F TACCTAGCACCAAGCAGATGCAGA / [20]
NbGras2-R TCATGAGGCGTTACTCGGAGCATT [20]
NbEF1α-F AAGGTCCAGTATGCCTGGGTGCTTGAC / [20]
NbEF1α-R AAGAATTCACAGGGAC AGTTCCAATACCA [20]
NbWRKY7-F CACAAGGGTACAAACAACACAG / [21]
NbWRKY7-R GGTTGCATTTGGTTCATGTAAG [21]
NbWRKY8-F AACAATGGTGCCAATAATGC / [21]
NbWRKY8-R TGCATATCCTGAGAAACCATT [21]
NbPR2b-F TCCAACTTGGAATCAAAGGG / [17]
NbPR2b-R GTGGACACTATACTCAGGTG [17]
NbLOX-F AAAACCTATGCCTCAAGAAC / [17]
NbLOX-R ACTGCTGCATAGGCTTTGG [17]
NbEFR1-F GCTCTTAACGTCGGATGGTC / [17]
NbEFR1-R AGCCAAACCCTAGCTCCATT [17]
NbGAPDH-F AGCTCAAGGGAATTCTCGATG / [22]
NbGAPDH-R AACCTTAACCATGTCATCTCCC [22]
下划线处为酶识别位点;/:片段大小未知
The restriction sites are underlined; /: The fragment size is unknown.
1.3 主要试剂和仪器

TransZol Up Plus RNA Kit、EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix、TransStart® Green qPCR SuperMix,北京全式金生物技术股份有限公司。激光共聚焦显微镜,卡尔蔡司光学有限公司;荧光定量PCR仪,罗氏生物技术有限公司。

1.4 培养基及培养条件

大肠杆菌TransT1、农杆菌GV3101和西瓜食酸菌FC440培养条件及其培养所需的培养基,以及注射缓冲液配制参考文献[19]。

研究中使用的抗生素浓度:西瓜食酸菌野生型及其衍生菌株为30 μg/mL Amp、50 μg/mL Kan和50 μg/mL Gm;农杆菌为20 μg/mL Rif、50 μg/mL Gm和100 μg/mL Spec;大肠杆菌为100 μg/mL Amp、50 μg/mL Kan和50 μg/mL Gm。

1.5 生物信息学分析

选取西瓜食酸菌FC440基因组中aopW基因(GenBank登录号为ON677301),使用fuzznuc (http://embossgui.sourceforge.net/demo/manual/fuzznuc.html)分析基因启动子区PIP-box;TMHMM (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)分析其编码蛋白跨膜螺旋区;SingalP 4.1 (https://services.healthtech.dtu.dk/service.php?SignalP-4.1)在线预测蛋白是否含有信号肽;SMART (https://smart.embl.de/)在线软件预测保守结构域;Cell-PLoc 2.0 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)在线分析软件预测亚细胞定位;MEGA 7.0构建进化树,使用邻近法(neighbor-joining method)建树并自检(bootstrap) 1 000次。

1.6 aopW基因突变菌株及功能互补菌株的制备

aopW基因突变菌株及功能互补菌株的制备方法参照颉兵兵等[23],使用天根细菌基因组DNA提取试剂盒提取FC440基因组DNA,突变菌株构建使用引物对aopW-F/R通过高保真酶PrimeSTAR® HS DNA Polymerase扩增aopW基因内部320 bp片段,使用EcoR I和Hind Ⅲ双酶切验证,通过引物对aopW-QF/QR验证突变菌株中目的基因的插入突变;功能互补菌株构建使用引物对aopW-QF/QR通过高保真酶扩增aopW基因全长1 458 bp片段,使用Kpn Ⅰ和Xba Ⅰ双酶切验证,通过引物AAC-1和AAC-2验证目的菌株为西瓜食酸菌。

1.7 病原菌侵染实验

参照张晓晓的方法[6]稍作改动。对寄主接种:以1×104 CFU/mL菌悬液注射接种黄瓜子叶,于接种后24、48、72 h分别采样记录。对非寄主接种:以OD600为0.3的菌悬液注射于秦烟95叶背面,接种1 d后采样记录。

1.8 病原菌诱导的寄主ROS积累量测定

ROS积累量的测定参照张美祥等的方法[17],调整待测菌悬液浓度OD600为0.3,注射接种黄瓜子叶1 d后进行DAB染色分析。

1.9 瞬时表达AopW后本氏烟的HR表型

参照Zhang等方法[24],将AopW与pART27-pKannibal载体连接后转化农杆菌GV3101,制备OD600为0.4的菌悬液,注射叶片2 d后观察记录。

1.10 AopW的烟草亚细胞定位

参考张美祥等的方法[17]稍作改动。将AopW与GFP融合表达的重组载体pBINGFP2-aopW转化农杆菌GV3101,调整菌悬液浓度至OD600达0.6后注射叶片,36 h后于激光共聚焦显微镜下观察绿色荧光蛋白分布情况。

1.11 mRNA表达分析

aopW基因表达分析:以FC440 (WT)、FC440 (∆hrpG)及FC440 (∆hrpX)菌株为材料,于T3SS诱导培养基中28 ℃、220 r/min培养过夜至OD600为0.55,使用全式金试剂盒进行待测菌株的RNA提取、cDNA合成及RT-qPCR,荧光定量PCR反应体系及条件参照文献[19],引物序列见表 2,以rpoB基因为西瓜食酸菌内参基因进行归一化处理,采用2−ΔΔCT法进行定量分析。

烟草抗病基因表达分析:分别取瞬时表达GFP和AopW 36 h的烟草叶片提取总RNA,反转录后用于植物激素抗病信号通路下游基因和PTI信号通路下游基因表达量检测。RNA提取、cDNA合成及荧光定量PCR方法同上,选取GADPH为本氏烟内参基因作归一化处理。

1.12 数据统计与分析

每个实验均为3个生物学重复。使用Image J进行相对染色强度分析,GraphPad Prism 8进行数据统计,IBM SPSS Statistics 19进行单因素方差分析,P > 0.05表示差异不显著;P < 0.05为显著性差异,在图中用*表示;P < 0.01为极显著差异,在图中用**表示。

2 结果与分析 2.1 AopW的生物信息学分析

2.1.1 AopW基本信息及同源比对分析

西瓜食酸菌亚群Ⅰ菌株FC440基因组中编号GE03673的基因编码的蛋白类似harpin效应蛋白,本研究中定名为AopW;序列分析显示,AopW含有485个氨基酸残基,富含甘氨酸(9.5%),含有极少数的半胱氨酸(0.6%);与西瓜食酸菌亚群Ⅱ菌株AAC00-1中Aave_1548的序列相似度为96.7%。序列比对表明,AopW与Pseudomonas syringae中HopW1-1相似性较高,序列相似度为55.66%。

2.1.2 AopW序列特征

序列分析发现,aopW基因启动子区有一个HrpG结合位点PIP-box (图 1A),位于基因起始密码子ATG上游50 bp处,−10区序列为CATATT,aopW的PIP-box模体为TTCGC-N15-TTCGC-N32-CATATT。预测分析显示,AopW无跨膜螺旋区(图 1B)和信号肽(图 1C),无保守结构域(图 1D),定位于细菌细胞外和细胞质(图 1E)。

图 1 AopW序列的生物信息学分析 Figure 1 Bioinformatics analysis of AopW sequence. A:aopW基因转录起始位点上游PIP-box分析. 第1行为革兰氏阴性菌T3SEs启动子区的保守基序的模体; 第2行为aopW基因启动子区序列,A、T、C、G、B、N、Y、R为碱基单字母缩写. B:AopW蛋白的跨膜结构域预测. C:AopW蛋白的信号肽预测. D:AopW蛋白的结构域预测. E:AopW蛋白在细菌中的亚细胞定位预测 A: PIP-box Analysis of upstream of aopW gene transcription start site. The first is the motifs of the conservative sequences in the T3SEs promoter region of Gram-negative bacteria; The second is the sequence of the aopW gene promoter region, A, T, C, G, B, N, Y, R are the single letter abbreviations of bases. B: Predicted transmembrane domains of AopW. C: Predicted signal peptide of AopW. D: Predicted domains of AopW. E: Predicted subcellular localization of AopW in bacteria.

2.1.3 系统发育树构建分析

BLAST序列比对显示,西瓜食酸菌AopW蛋白与多种革兰氏阴性菌的外泌蛋白W具有较高的相似性,以AopW为标记、与革兰氏阴性植物病原细菌两大群的3种代表细菌的同源蛋白进行系统发育分析的结果显示(图 2):西瓜食酸菌与Pseudomonas syringae的HopW属于同一分支,相似性较高,与Ralstonia solanacearum的PopW和Xanthomonas campestris的XopW属于不同的分支,亲缘关系较远。

图 2 革兰氏阴性菌中外泌蛋白W的系统发育树 Figure 2 Phylogenetic tree of outer protein W in Gram-negative bacteria. 距离标尺表示单位长度置信值;分支节点上的数字为bootstrap自展值;虚线框中为西瓜食酸菌AopW蛋白;括号中为不同细菌外泌蛋白W的基因或蛋白GenBank登录号 The distance scale is expressed as the confidence value of unit length; At the branch nodes are 1 000 bootstrap replicates represented as percentage values; The dotted box shows the AopW protein of Acidovorax citrulli; The gene or protein GenBank accession number of different bacteria outer protein W are in parentheses.
2.2 aopW基因在hrpGhrpX突变体中的表达分析

RT-qPCR结果显示(图 3):aopW基因在FC440 (ΔhrpG)及FC440 (ΔhrpX)中表达量相较于野生型显著下降,表明基因aopW的表达受西瓜食酸菌T3SS核心基因正调控。

图 3 aopW基因在西瓜食酸菌hrpG/hrpX基因突变体中的表达分析 Figure 3 The expression analysis of aopW gene in hrpG or hrpX gene mutant in Acidovorax citrulli. **: P < 0.01.
2.3 aopW基因突变对病菌致病力的影响

黄瓜子叶接种后的表型显示(图 4A):接种1 d后,FC440 (WT)处理的子叶出现大面积水浸状病斑;而FC440 (ΔaopW)处理下的子叶仅出现零星的病斑,接种FC440 (ΔaopW-aopW)的子叶片发病症状基本与接种野生型相同。病情指数调查结果显示(图 4B):接种后随着时间的推移,接种FC440 (ΔaopW)的子叶病情指数均显著低于野生型和功能互补菌株,接种功能互补菌株的子叶病情指数基本恢复至接种野生型的水平。秦烟95 HR表型结果显示(图 4C):接种FC440 (WT)和FC440 (ΔaopW)均能引发非寄主秦烟95的HR反应,且坏死程度无显著差异。

图 4 西瓜食酸菌aopW基因突变体及其互补菌株的致病力表型 Figure 4 The virulence phenotype of Acidovorax citrulli aopW gene mutants and complementary strains. A:黄瓜子叶发病表型,图片采集于接菌1 d时. B:病情指数分析; **:P < 0.01. C:秦烟95的HR表型,图片采集于接菌1 d时 A: The disease phenotype of cucumber cotyledon; Photos were taken at 1 d after inoculation. B: Disease index analysis; **: P < 0.01. C: HR phenotype of Qin-Yan 95; Photos were taken at 1 d after inoculation.
2.4 aopW基因突变对病菌侵染下的黄瓜ROS产量的影响

DAB染色结果显示(图 5),在接种野生型、FC440 (ΔaopW)及其功能互补菌株1 d后,对寄主黄瓜子叶ROS含量进行检测,结果显示在接种FC440 (ΔaopW)的情况下,寄主积累了更多活性氧,且功能互补菌株恢复至野生型。

图 5 西瓜食酸菌aopW基因突变体及其互补菌株侵染下黄瓜ROS产量分析 Figure 5 Analysis of ROS production after cucumber infected by Acidovorax citrulli aopW gene mutants and complementary strains. A:黄瓜子叶ROS染色表型,图片采集于叶片接菌后1 d时. B:相对染色强度分析,**:P < 0.01 A: ROS staining phenotype of cucumber cotyledon; Photos were taken at 1 d after inoculation. B: Relative staining intensity analysis; **: P < 0.01.
2.5 AopW的亚细胞定位分析

激光共聚焦显微镜下的结果显示(图 6):GFP单独表达时,本氏烟整个细胞中均能观察到绿色荧光;AopW与GFP蛋白融合表达后,本氏烟细胞质和细胞质膜呈现出绿色荧光,显示AopW主要定位于本氏烟细胞质和细胞质膜。

图 6 AopW在本氏烟的亚细胞定位图片采集于接菌36 h后 Figure 6 Subcellular localization of AopW in Nicotiana benthamiana. Photos were taken at 36 h after inoculation.
2.6 AopW在本氏烟草叶片瞬时表达的表型

瞬时表达AopW结果显示(图 7):注射农杆菌GV3101 (pAPK-aopW)区域叶片出现明显的HR细胞坏死表型;而注射空载体GV3101 (pAPK-GFP)的区域则没有出现坏死,表明AopW可以诱导本氏烟发生HR反应。

图 7 AopW在本氏烟草叶片瞬时表达的表型图片采集于接菌2 d时 Figure 7 The phenotype of transient expression of AopW in Nicotiana benthamiana. Photos were taken at 2 d after inoculation.
2.7 AopW的表达对本氏烟PTI和激素抗病通路下游基因表达量的影响

本氏烟PTI通路下游5个基因(WRKY7WRKY8GRAS2ACRE31PTI5)的表达量检测结果显示(图 8A):AopW瞬时表达后,WRKY7表达量无显著性差异,WRKY8GRAS2ACRE31PTI5的表达量显著上调,表明AopW激活了烟草的PTI信号通路。

图 8 AopW对本氏烟抗病信号通路的影响 Figure 8 Effect of AopW on disease resistance signal pathway in Nicotiana benthamiana. A:AopW对PTI信号通路的影响分析. B:AopW对植物激素信号通路的影响分析. 叶片于瞬时表达36 h时取样. *:P < 0.05;**:P < 0.01 A: Analysis of the effect of AopW on PTI signal pathway. B: Analysis of the effect of AopW on plant hormone signal pathway. Leaf samples were taken 36 h after transient expression. *: P < 0.05; **: P < 0.01.

本氏烟植物激素抗病信号通路下游基因(PR2bLOXERF2)表达量检测结果显示(图 8B):水杨酸(SA)信号通路中的PR2b、茉莉酸(JA)信号通路中的LOX和乙烯(ET)信号通路中的ERF2,表达量在AopW瞬时表达后均显著上调,表明AopW可以显著提高烟草激素抗病信号通路基因的表达。

3 讨论与结论

T3SEs在病原菌侵染寄主过程中发挥至关重要的作用,西瓜食酸菌的T3SEs研究尚处于早期筛选鉴定阶段[7],仍有大量的T3SEs有待鉴定和功能分析。本研究分析了西瓜食酸菌类harpin效应蛋白AopW潜在的毒力机制。

西瓜食酸菌种内至少存在2个在遗传和生化上存在差异的亚群[25],亚群I菌株间对葫芦科植物的致病力比较一致[26],亚群Ⅱ菌株对西瓜的致病力强于对其他葫芦科植物的[27]。Eckshtain-Levi等研究发现西瓜食酸菌亚群I菌株和亚群Ⅱ菌株的T3SEs库不同,虽然大多数效应蛋白在不同亚群菌株中高度保守,但某些效应物基因中可以检测到一些导致氨基酸替换的单核苷酸多态性(single nucleotide polymorphism, SNP),推测T3SEs同源蛋白间的这种差异影响了它们对不同葫芦科植物的攻击模式和偏好性[28]。Yan等研究证实,亚群Ⅱ菌株中YopJ蛋白同源基因Aave-2166在所有亚群I的菌株中均存在碱基缺失,进而影响其功能,认为亚群I菌株和亚群Ⅱ菌株对不同寄主的致病偏好性可能与这种碱基改变相关[29]。在本研究中,AopW与西瓜食酸菌亚群Ⅱ菌株AAC00-1中Aave-1548均可以引起非寄主的HR反应,序列分析显示二者相似度达96.7%,氨基酸残基数一致,14处氨基酸残基差异存在于140−180 aa之间,其余两处差异存在于第5个和第320个氨基酸残基位点。因此本研究推测,AopW在不同亚群菌株间的序列差异可能与其宿主偏好性相关。

依据植物病原细菌T3SS的hrp基因簇结构特征将其分为两类,一类是以Pseudomonas spp.为代表的I组基因簇;另一类是以Xanthomonas spp.为代表的Ⅱ组基因簇[30]。西瓜食酸菌AAC00-1菌株全基因组测序结果分析显示,其T3SS同源性及结构与Ⅱ组hrp基因簇更相似[31]。在本研究中,系统发育进化树显示AopW与含I组基因簇的Pseudomonas syringae pv. helianthi的HopW相似性最高,而与含Ⅱ组基因簇的Xanthomonas spp.的XopW不在同一分支,这种矛盾的结果与西瓜食酸菌AopW可能是由水平基因转移获得有关。因为有研究发现,与管家基因相比,西瓜食酸菌大量的T3SEs表现出具有较低的密码子偏好性和GC含量,显示水平基因转移是该菌获得T3SEs的主要机制[28]

革兰氏阴性病原细菌T3SEs具有2个特点:受T3SS核心基因hrpG/hrpX调控,并具有外泌功能[6]。革兰氏阴性病原细菌T3SEs启动子区通常存在2个顺式作用元件PIP-box和‒10 box,转录因子HrpX通过结合顺式作用元件调控T3SEs基因表达[32]。序列分析表明,AopW启动子区存在PIP-box和‒10 box序列,推测AopW受到T3SS核心基因hrpX调控,本研究的结果证实了AopW受T3SS核心基因hrpXhrpG的正调控。在西瓜食酸菌中,AopN、AopP、Aave-4066等T3SEs均被证明受到T3SS调控[33]。近期有研究通过无毒基因报告系统在亚群I菌株中证实了aopW同源基因APS58_3289的外泌功能[7]。因此,本研究认为AopW为西瓜食酸菌的一种T3SE。

Harpin蛋白是一类重要的T3SEs,在病原菌侵染寄主植物过程中,一些harpin蛋白作为病原菌的毒性因子发挥作用[34]。例如,当编码harpin蛋白的基因hrpN突变后,Dickeya dadantii致病性减弱,但对其寄主依然保持着较强的毒性[35]。本研究中aopW基因的缺失导致西瓜食酸菌对寄主黄瓜的毒力减弱,同时表现为病菌侵染下的寄主有了更多的活性氧积累量,说明AopW对西瓜食酸菌的毒力有贡献,为西瓜食酸菌重要的T3SE。

效应蛋白在植物体内的定位与功能密不可分,研究表明harpin蛋白的受体在植物细胞中普遍存在,且受体位于细胞的位置也并不一致[36]。Hoyos等发现harpinPss的结合位点位于烟草的细胞壁并与果胶化合物结合[36];PopA蛋白通过与细胞膜结合后形成离子通道,从而使阳离子和致病性T3SEs通过质膜进入植物细胞中[37]。本研究表明AopW主要定位于细胞质和细胞质膜,其定位与功能的关系还需进一步探究。

诱导烟草的HR反应是harpin蛋白的一个重要特征,侵染位点的细胞迅速死亡能够限制病原菌进一步扩散,产生局部抗病反应[38],同时HR可以诱导植物启动防卫系统,防止病原菌再次侵染[39]。在本研究中,瞬时表达AopW产生了类似Pseudomonas syringae中HopW1-1在烟草上诱导的HR反应[40],进一步支持了AopW为潜在的harpin效应蛋白。研究表明效应蛋白PopW仅N端1−159个氨基酸残基就可以引起HR反应[41],AopW的N端是否存在诱导HR反应的关键基序还需进一步实验探究。Harpin蛋白可以诱发植物的防御反应,例如在烟草中过表达hpa1后能显著增强防御相关基因表达[42],在棉花中过表达hpa1后转录组分析显示多个防御相关通路基因显著上调[43];PopA1通过诱导SA信号通路抵御病原菌侵染[15]。本研究发现AopW可以作为harpin蛋白诱导依赖于PTI和植物激素的抗病相关基因的表达,从而增强植物的抗病性,但其诱导的抗病免疫机制和作用靶标还需进一步探究。

本研究对西瓜食酸菌T3SE基因aopW进行了生物信息学分析及初步功能验证,明确了其序列特征、harpin效应物的特点及其与烟草互作时激活的通路,为进一步深入认识该效应物作用机理、发掘非寄主中的抗性基因、解析互作机制奠定了基础。

REFERENCES
[1]
KUMAGAI LB, WOODS PW, WALCOTT R, MOUA X. First report of bacterial fruit blotch on melon caused by Acidovorax citrulli in California[J]. Plant Disease, 2014, 98(10): 1423.
[2]
CHUNG MY, KIM H, BEUCHAT LR, RYU JH. Antimicrobial activities of plant essential oil vapours against Acidovorax citrulli and Xanthomonas campestris on Cucurbitaceae, Brassicaceae and Solanaceae seeds[J]. Journal of Applied Microbiology, 2022, 132(3): 2189-2202. DOI:10.1111/jam.15352
[3]
BAHAR O, de la FUENTE L, BURDMAN S. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers[J]. FEMS Microbiology Letters, 2010, 312(1): 33-39. DOI:10.1111/j.1574-6968.2010.02094.x
[4]
ZHANG XX, ZHAO M, YAN JP, YANG LL, YANG YW, GUAN W, WALCOTT R, ZHAO TC. Involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits[J]. Frontiers in Microbiology, 2018, 9: 507. DOI:10.3389/fmicb.2018.00507
[5]
YANG LL. Identification and biological function of the effector Ace0201 and Ace1242 in Acidovorax citrulli[D]. Shenyang: Master՚s Thesis of Shenyang Agricultural University, 2019 (in Chinese).
杨琳琳. 西瓜噬酸菌效应蛋白Ace0201和Ace1242的鉴定及生物学功能初步分析[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019.
[6]
ZHANG XX. Functional study of effector Ace1 & analysis of pathogenicity differences under light and dark conditions in Acidovorax citrulli[D]. Beijing: Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2018 (in Chinese).
张晓晓. 西瓜噬酸菌效应蛋白Ace1功能研究及光照黑暗条件下致病性差异分析[D]. 北京: 中国农业科学院博士学位论文, 2018.
[7]
JIMÉNEZ-GUERRERO I, PÉREZ-MONTAÑO F, da SILVA GM, WAGNER N, SHKEDY D, ZHAO M, PIZARRO L, BAR M, WALCOTT R, SESSA G, PUPKO T, BURDMAN S. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type Ⅲ-secreted effectors in the cucurbit pathogenic bacterium Acidovorax citrulli and novel effectors in the Acidovorax genus[J]. Molecular Plant Pathology, 2020, 21(1): 17-37. DOI:10.1111/mpp.12877
[8]
ZHANG XX, YANG YW, ZHAO M, YANG LL, JIANG J, WALCOTT R, YANG SS, ZHAO TC. Acidovorax citrulli type Ⅲ effector AopP suppresses plant immunity by targeting the watermelon transcription factor WRKY6[J]. Frontiers in Plant Science, 2020, 11: 579218. DOI:10.3389/fpls.2020.579218
[9]
KIM JF, BEER SV. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class[J]. Journal of Bacteriology, 1998, 180(19): 5203-5210. DOI:10.1128/JB.180.19.5203-5210.1998
[10]
FU ZQ, GUO M, ALFANO JR. Pseudomonas syringae HrpJ is a type Ⅲ secreted protein that is required for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 harpin[J]. Journal of Bacteriology, 2006, 188(17): 6060-6069. DOI:10.1128/JB.00718-06
[11]
STASKAWICZ BJ. Genetics of plant-pathogen interactions specifying plant disease resistance[J]. Plant Physiology, 2001, 125(1): 73-76. DOI:10.1104/pp.125.1.73
[12]
SUGIO A, YANG B, WHITE FF. Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant-Microbe Interactions, 2005, 18(6): 546-554. DOI:10.1094/MPMI-18-0546
[13]
GÜRLEBECK D, THIEME F, BONAS U. Type Ⅲ effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant[J]. Journal of Plant Physiology, 2006, 163(3): 233-255. DOI:10.1016/j.jplph.2005.11.011
[14]
LEE J, KLESSIG DF, NÜRNBERGER T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity[J]. The Plant Cell, 2001, 13(5): 1079-1093. DOI:10.1105/tpc.13.5.1079
[15]
WANG C. Identification of popW-transgenic tobacco lines and analysis of disease resistance and oxidative stress tolerence[D]. Nanjing: Master՚s Thesis of Nanjing Agricultural University, 2014 (in Chinese).
王翠. 转popW基因烟草的鉴定及其抗病抗氧化分析[D]. 南京: 南京农业大学硕士学位论文, 2014.
[16]
YOULITUZI NB. Transcriptome analysis of Acidovorax citrulli-cucumber interaction and preliminary identification of T3SE genes in Acidovorax citrulli[D]. Urumqi: Master՚s Thesis of Xinjiang Agricultural University, 2021 (in Chinese).
优丽图孜·乃比. 西瓜食酸菌与黄瓜互作转录组分析及T3SEs基因的初步鉴定[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2021.
[17]
ZHANG MX, AN YY, LIU TL, RU YY, LI WH, DOU DL. Transient expression of the PsCRN127 effector gene enhances Nicotiana benthamiana resistance to Phytophthora parasitica[J]. Journal of Nanjing Agricultural University, 2015, 38(6): 930-935. (in Chinese)
张美祥, 安玉艳, 刘廷利, 茹艳艳, 李文号, 窦道龙. 在本氏烟中瞬时表达效应因子PsCRN127基因提高其对寄生疫霉的抗性[J]. 南京农业大学学报, 2015, 38(6): 930-935.
[18]
WALCOTT RR, FESSEHAIE A, CASTRO AC. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts[J]. Journal of Phytopathology, 2004, 152(5): 277-285. DOI:10.1111/j.1439-0434.2004.00841.x
[19]
YOULITUZI·NB, WANG XD, LIU J, CHEN BQ, SONG JD. Transcriptome analysis of the interaction between Acidovorax citrulli and cucumber[J]. Microbiology China, 2021, 48(10): 3667-3681. (in Chinese)
优丽图孜·乃比, 王希东, 刘君, 陈宝强, 宋金迪. 西瓜食酸菌与黄瓜互作转录组分析[J]. 微生物学通报, 2021, 48(10): 3667-3681. DOI:10.13344/j.microbiol.china.210026
[20]
CHEN CL, LIU SS, LIU Q, NIU JH, LIU P, ZHAO JL, JIAN H. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense[J]. PLoS One, 2015, 10(4): e0122256. DOI:10.1371/journal.pone.0122256
[21]
LIU LS, HE X, LI HM, YUAN Q, WANG X. Effects of TRV-mediated silencing of the E3 ubiquitin ligase gene NbE3R14 in Nicotiana benthamiana on the plant basal immunity and the parasitism of Meloidogyne incognita[J]. Journal of Nanjing Agricultural University, 2020, 43(1): 65-71. (in Chinese)
刘琳硕, 贺祥, 李红梅, 元青, 王暄. TRV介导的E3泛素连接酶基因NbE3R14沉默对烟草基础免疫及南方根结线虫寄生的影响[J]. 南京农业大学学报, 2020, 43(1): 65-71.
[22]
CHI JL, ZHAO YB, GUO JB, ZHANG L, LIU HY, XIN CH. Screening of internal reference genes for real-time fluorescence quantitative PCR under different concentrations of Cd2+ stress in tobacco[J]. Journal of Southern Agriculture, 2019, 50(10): 2133-2140. (in Chinese)
池俊玲, 赵一博, 郭江波, 张龙, 刘汉阳, 辛翠花. 不同浓度Cd2+胁迫下烟草实时荧光定量PCR内参基因的筛选[J]. 南方农业学报, 2019, 50(10): 2133-2140. DOI:10.3969/j.issn.2095-1191.2019.10.01
[23]
XIE BB, LIU J, YOULITUZI NB, ZHANG CB. Bioinformatics analysis and functional verification of copper resistance gene cueR in Acidovorax citrulli[J]. Microbiology China, 2020, 47(5): 1534-1543. (in Chinese)
颉兵兵, 刘君, 优丽图孜·乃比, 张春博. 西瓜食酸菌抗铜基因cueR的生物信息学分析及功能验证[J]. 微生物学通报, 2020, 47(5): 1534-1543.
[24]
ZHANG XX, ZHAO M, JIANG J, YANG LL, YANG YW, YANG SS, WALCOTT R, QIU DW, ZHAO TC. Identification and functional analysis of AopN, an Acidovorax citrulli effector that induces programmed cell death in plants[J]. International Journal of Molecular Sciences, 2020, 21(17): 6050. DOI:10.3390/ijms21176050
[25]
LIU J. Creation of Tn5 insertional mutants of bacterial fruit blotch pathogen Acidovorax citrulli and identification of pathogenicity altered mutants[D]. Yangling: Doctoral Dissertation of Northwest A & F University, 2012 (in Chinese).
刘君. 西瓜食酸菌(Acidovorax citrulli) Tn5转座子插入突变体的制备和致病性缺失突变体的鉴定与分析[D]. 杨凌: 西北农林科技大学博士学位论文, 2012.
[26]
BURDMAN S, KOTS N, KRITZMAN G, KOPELOWITZ J. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel[J]. Plant Disease, 2005, 89(12): 1339-1347. DOI:10.1094/PD-89-1339
[27]
YAN SS, YANG YW, WANG TL, ZHAO TC, SCHAAD NW. Genetic diversity analysis of Acidovorax citrulli in China[J]. European Journal of Plant Pathology, 2013, 136(1): 171-181. DOI:10.1007/s10658-012-0152-9
[28]
ECKSHTAIN-LEVI N, MUNITZ T, ŽIVANOVIĆ M, TRAORE SM, SPRÖER C, ZHAO BY, WELBAUM G, WALCOTT R, SIKORSKI J, BURDMAN S. Comparative analysis of type Ⅲ secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages[J]. Phytopathology, 2014, 104(11): 1152-1162. DOI:10.1094/PHYTO-12-13-0350-R
[29]
YAN LC, HU BS, CHEN G, ZHAO M, WALCOTT RR. Further evidence of cucurbit host specificity among Acidovorax citrulli groups based on a detached melon fruit pathogenicity assay[J]. Phytopathology, 2017, 107(11): 1305-1311. DOI:10.1094/PHYTO-11-16-0416-R
[30]
WENGELNIK K, van den ACKERVEKEN G, BONAS U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators[J]. Molecular Plant-Microbe Interactions: MPMI, 1996, 9(8): 704-712. DOI:10.1094/MPMI-9-0704
[31]
BURDMAN S, WALCOTT R. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry[J]. Molecular Plant Pathology, 2012, 13(8): 805-815. DOI:10.1111/j.1364-3703.2012.00810.x
[32]
JIANG W, JIANG BL, XU RQ, HUANG JD, WEI HY, JIANG GF, CEN WJ, LIU J, GE YY, LI GH, SU LL, HANG XH, TANG DJ, LU GT, FENG JX, HE YQ, TANG JL. Identification of six type Ⅲ effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(11): 1401-1411. DOI:10.1094/MPMI-22-11-1401
[33]
FUJIWARA S, TOSHIO M, NAKAYAMA E, TANAKA N, TABUCHI M. Host-specific activation of a pathogen effector Aave_4606 from Acidovorax citrulli, the causal agent for bacterial fruit blotch[J]. Biochemical and Biophysical Research Communications, 2022, 616: 41-48. DOI:10.1016/j.bbrc.2022.05.071
[34]
SANDS LB, CHEEK T, REYNOLDS J, MA Y, BERKOWITZ GA. Effects of harpin and Flg22 on growth enhancement and pathogen defense in Cannabis sativa seedlings[J]. Plants, 2022, 11(9): 1178. DOI:10.3390/plants11091178
[35]
YANG SH, PENG Q, SAN FRANCISCO M, WANG YJ, ZENG Q, YANG CH. Type Ⅲ secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids[J]. PLoS One, 2008, 3(8): e2973. DOI:10.1371/journal.pone.0002973
[36]
HOYOS ME. The interaction of harpinPss, with plant cell walls[J]. Molecular Plant-Microbe Interactions, 1996, 9(7): 608. DOI:10.1094/MPMI-9-0608
[37]
SHIKUMA NJ, FONG JCN, YILDIZ FH. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT[J]. PLoS Pathogens, 2012, 8(5): e1002719. DOI:10.1371/journal.ppat.1002719
[38]
LI JG, LIU HX, CAO J, CHEN LF, GU C, ALLEN C, GUO JH. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall[J]. Molecular Plant Pathology, 2010, 11(3): 371-381. DOI:10.1111/j.1364-3703.2010.00610.x
[39]
ZUMAQUERO A, MACHO AP, RUFIÁN JS, BEUZÓN CR. Analysis of the role of the type Ⅲ effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant[J]. Journal of Bacteriology, 2010, 192(17): 4474-4488. DOI:10.1128/JB.00260-10
[40]
LI JG. Characterization and evaluation of biological and disease resistant function of PopW from Ralstonia solanacearum[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2009 (in Chinese).
李建刚. 青枯劳尔氏菌PopW蛋白生物学特性及其抗病功能研究[D]. 南京: 南京农业大学博士学位论文, 2009.
[41]
LIU Y, ZHOU XY, LIU WB, MIAO WG. The stability of the coiled-coil structure near to N-terminus influence the heat resistance of harpin proteins from Xanthomonas[J]. BMC Microbiology, 2020, 20(1): 344. DOI:10.1186/s12866-020-02029-6
[42]
MIAO WG, WANG XB, SONG CF, WANG Y, REN YH, WANG JS. Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signaling pathways related to disease resistance[J]. Journal of Experimental Botany, 2010, 61(15): 4263-4275. DOI:10.1093/jxb/erq227
[43]
BELBAHRI L, BOUCHER C, CANDRESSE T, NICOLE M, RICCI P, KELLER H. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible[J]. The Plant Journal: for Cell and Molecular Biology, 2001, 28(4): 419-430.