[1] |
LU XL. On the sustainable development and full utilization of water resources in China[J]. Modern Economic Information, 2012(9): 10-11. (in Chinese) 陆小龙. 论我国水资源可持续发展与充分利用[J]. 现代经济信息, 2012(9): 10-11. DOI:10.3969/j.issn.1001-828X.2012.09.008 |
|
[2] |
ZHOU MH. Analysis on water resources utilization and sustainable development in China[J]. Science and Technology, 2016, 26(15): 299. (in Chinese) 周明华. 浅析我国水资源利用与可持续发展[J]. 科技展望, 2016, 26(15): 299. |
|
[3] |
QIU LP, ZHANG XF. Research and application progress of high-salt wastewater treatment technology[J]. Inorganic Chemicals Industry, 2023, 55(2): 1-9. (in Chinese) 邱立萍, 张晓凤. 高盐废水处理技术研究及应用进展[J]. 无机盐工业, 2023, 55(2): 1-9. |
|
[4] |
WU P, LI Y. Research on the transformation mechanism of Chinese water pollution control from legal perspective[J]. Law Science Magazine, 2020, 41(5): 84-90. (in Chinese) 武萍, 李颖. 法律视角下我国水污染防治模式转变机制研究[J]. 法学杂志, 2020, 41(5): 84-90. DOI:10.16092/j.cnki.1001-618x.2020.05.008 |
|
[5] |
DAN XX, CHEN ZJ, YANG HX, ZHANG CP, YUAN XL. Research status and application of high salt wastewater treatment technology[J]. Chlor-Alkali Industry, 2020, 56(6): 1-5. (in Chinese) 淡玄玄, 陈占江, 杨海霞, 张朝鹏, 原晓丽. 高含盐废水处理技术研究现状及应用[J]. 氯碱工业, 2020, 56(6): 1-5. DOI:10.3969/j.issn.1008-133X.2020.06.001 |
|
[6] |
WANG YL, YANG XY, XIE JC, WANG YX, LI T, TANG Y, LI HT. Research progress and prospect of high salinity wastewater biological treatment technology[J]. Environmental Protection of Oil & Gas Fields, 2021, 31(5): 6-10. (in Chinese) 王毅霖, 杨雪莹, 谢加才, 王玉希, 李婷, 唐宇, 李洪涛. 高含盐废水生物处理技术研究进展与展望[J]. 油气田环境保护, 2021, 31(5): 6-10. |
|
[7] |
XU JH, WAN SC, WANG NL, LIU JJ, WU XG. Petrochemical high salinity wastewater treatment and zero discharge reuse[J]. Industrial Water Treatment, 2020, 40(5): 122-125. (in Chinese) 许加海, 万树春, 王乃琳, 刘家节, 吴新国. 石化高盐废水处理及零排放回用[J]. 工业水处理, 2020, 40(5): 122-125. |
|
[8] |
JIN JL. Study on advanced treatment technology of petrochemical salt wastewater[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2019 (in Chinese). 金家龙. 石化含盐废水深度处理工艺的研究[D]. 南京: 南京农业大学硕士学位论文, 2019.
|
|
[9] |
YANG LY. Study on determination method of SS in high salt wastewater from ammonia-alkali production[J]. Soda Industry, 2012(5): 7-10. (in Chinese) 杨燎原. 氨碱法生产中高盐废水SS测定方法的研究[J]. 纯碱工业, 2012(5): 7-10. DOI:10.16554/j.cnki.issn1005-8370.2012.05.019 |
|
[10] |
WANG DY, LI ZC. The treatment technology of printing and dyeing wastewater and prospect[J]. Guangdong Chemical Industry, 2022, 49(19): 161-162, 168. (in Chinese) 王丹宇, 李子程. 印染废水处理技术与展望[J]. 广东化工, 2022, 49(19): 161-162, 168. |
|
[11] |
WANG WJ. Source and treatment of high salt wastewater[J]. Metallurgy and Materials, 2021, 41(1): 151-152. (in Chinese) 王文静. 高盐废水的来源与处理[J]. 冶金与材料, 2021, 41(1): 151-152. |
|
[12] |
FU XX. Study on electrochemical combined treatment of 2, 4-D high-salt pesticide organic wastewater[D]. Changchun: Master's Thesis of Jilin University, 2022 (in Chinese). 付祥雪. 2, 4-D高盐农药有机废水电化学组合处理方法的研究[D]. 长春: 吉林大学硕士学位论文, 2022.
|
|
[13] |
LUO LT, CHEN S, ZHANG DM, ZHANG HT, HUANG SB, NIU ZH. Present situation and development trend of pesticide wastewater resource treatment technology[J]. Science & Technology Review, 2021, 39(17): 63-68. (in Chinese) 罗莉涛, 陈珊, 张德猛, 张鸿涛, 黄守斌, 牛振华. 农药废水资源化处理技术现状及发展趋势[J]. 科技导报, 2021, 39(17): 63-68. DOI:10.3981/j.issn.1000-7857.2021.17.008 |
|
[14] | |
|
[15] |
DENG XY, CHEN GZ, GAO YL, WANG H. Progress of pharmaceutical wastewater treatment technology based on knowledge mapping[J]. Journal of Suzhou University, 2022, 37(9): 28-32. (in Chinese) 邓心悦, 陈广洲, 高雅伦, 王铧. 基于知识图谱的制药废水处理技术研究进展[J]. 宿州学院学报, 2022, 37(9): 28-32. |
|
[16] | |
|
[17] |
WANG JL, ZHAN XM, FENG YC, QIAN Y. Effect of salinity variations on the performance of activated sludge system[J]. Biomedical and Environmental Sciences: BES, 2005, 18(1): 5-8. |
|
[18] |
JIN B, WANG S, XING L, LI B, PENG Y. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis[J]. Journal of Environmental Sciences, 2016, 43: 80-90. DOI:10.1016/j.jes.2015.10.011 |
|
[19] |
CHEN Y, HE H, LIU H, LI H, ZENG G, XIA X, YANG C. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2018, 249: 890-899. DOI:10.1016/j.biortech.2017.10.092 |
|
[20] |
SUN WB, XIAO JN, LIU Y. Research progress in halotolerant bacteria and its application in sewage treatment[J]. Liaoning Chemical Industry, 2013, 42(7): 886-887, 890. (in Chinese) 孙文博, 肖景霓, 刘远. 耐盐菌及其在污水处理中的研究进展[J]. 辽宁化工, 2013, 42(7): 886-887, 890. |
|
[21] |
CAO TND, BUI XT, LE LT, DANG BT, TRAN DPH, VO TKQ, TRAN HT, NGUYEN TB, MUKHTAR H, PAN SY, VARJANI S, NGO HH, VO TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance[J]. Bioresource Technology, 2022, 363: 127831. DOI:10.1016/j.biortech.2022.127831 |
|
[22] |
SLEATOR R D, HILL C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence[J]. FEMS Microbiology Reviews, 2002, 26(1): 49-71. DOI:10.1111/j.1574-6976.2002.tb00598.x |
|
[23] |
JEONG D, CHO K, LEE CH, LEE S, BAE H. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor[J]. Process Biochemistry, 2018, 73: 132-141. DOI:10.1016/j.procbio.2018.08.008 |
|
[24] |
KANG AJ, BROWN AK, WONG CS, HUANG Z, YUAN Q. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole[J]. Bioresource Technology, 2018, 261: 322-328. DOI:10.1016/j.biortech.2018.04.054 |
|
[25] |
LEI L, YAO JC, LIU YD, LI W. Performance, sludge characteristics and microbial community in a salt-tolerant aerobic granular SBR by seeding anaerobic granular sludge[J]. International Biodeterioration & Biodegradation, 2021, 163: 105258. |
|
[26] |
MENG F, HUANG W, LIU D, ZHAO Y, HUANG W, LEI Z, ZHANG Z. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: granular stability, lipid production and symbiotic relationship between bacteria and algae[J]. Bioresource Technology, 2020, 295: 122291. DOI:10.1016/j.biortech.2019.122291 |
|
[27] |
ZOU J, TAO Y, LI J, WU S, NI Y. Cultivating aerobic granular sludge in a developed continuous-flow reactor with two-zone sedimentation tank treating real and low-strength wastewater[J]. Bioresource Technology, 2018, 247: 776-783. DOI:10.1016/j.biortech.2017.09.088 |
|
[28] |
HOU YZ, GAN CJ, CHEN RY, CHEN Y, YUAN SC, CHEN Y. Structural characteristics of aerobic granular sludge and factors that influence its stability: a mini review[J]. Water, 2021, 13(19): 2726. DOI:10.3390/w13192726 |
|
[29] |
HAMIRUDDIN NA, AWANG NA. The relationship between the biokinetic parameters of an aerobic granular sludge system and the applied operating conditions[J]. Civil and Environmental Engineering Reports, 2021, 31(1): 161-171. DOI:10.2478/ceer-2021-0011 |
|
[30] |
HAN X, JIN Y, YU J. Rapid formation of aerobic granular sludge by bioaugmentation technology: a review[J]. Chemical Engineering Journal, 2022, 437: 134971. |
|
[31] |
SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972. |
|
[32] |
CAI W, JIN M, ZHAO Z, LEI Z, ZHANG Z, ADACHI Y, LEE DJ. Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules[J]. Bioresource Technology Reports, 2018, 2: 7-14. |
|
[33] |
WANG S, SHI WX, YU SL, YI XS, YANG X. Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature[J]. Bioprocess and Biosystems Engineering, 2012, 35(7): 1049-1055. |
|
[34] |
MAÑAS A, BISCANS B, SPéRANDIO M. Biologically induced phosphorus precipitation in aerobic granular sludge process[J]. Water Research, 2011, 45(12): 3776-3786. |
|
[35] |
WAN CL, LEE DJ, YANG X, WANG YY, WANG XZ, LIU X. Calcium precipitate induced aerobic granulation[J]. Bioresource Technology, 2015, 176: 32-37. |
|
[36] |
SU Y, YANG H, WANG X, LIU X. Response of microbial succession of anammox granular sludge (AnGS) and essential abundance under salty stress and temperature reduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106834. |
|
[37] |
LI T, GUO ZX, SHE ZL, ZHAO YG, GUO L, GAO MC, JIN CJ, JI JY. Comparison of the effects of salinity on microbial community structures and functions in sequencing batch reactors with and without carriers[J]. Bioprocess and Biosystems Engineering, 2020, 43(12): 2175-2188. |
|
[38] |
NAVADA S, VADSTEIN O, GAUMET F, TVETEN AK, SPANU C, MIKKELSEN Ø, KOLAREVIC J. Biofilms remember: osmotic stress priming as a microbial management strategy for improving salinity acclimation in nitrifying biofilms[J]. Water Research, 2020, 176: 115732. |
|
[39] |
PRONK M, BASSIN JP, de KREUK MK, KLEEREBEZEM R, van LOOSDRECHT MCM. Evaluating the main and side effects of high salinity on aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1339-1348. |
|
[40] |
LI J, MA Z, GAO M, WANG Y, YANG Z, XU H, WANG XH. Enhanced aerobic granulation at low temperature by stepwise increasing of salinity[J]. Science of the Total Environment, 2020, 722: 137660. |
|
[41] |
KIM H, AHN D. The effects of high salinity on nitrogen removal and the formation characteristics of aerobic granular sludge[J]. Environmental Engineering Research, 2020, 25(5): 659-667. |
|
[42] |
LI W, YAO JC, ZHUANG JL, ZHOU YY, SHAPLEIGH J P, LIU YD. Metagenomics revealed the phase-related characteristics during rapid development of halotolerant aerobic granular sludge[J]. Environment International, 2020, 137: 105548. |
|
[43] |
HUANG ZS, WANG YF, JIANG L, XU BH, WANG YR, ZHAO HX, ZHOU WZ. Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment[J]. Chemical Engineering Journal, 2018, 334: 732-740. |
|
[44] |
CHEN Y, HU T, XIONG W, FAN A, WANG S, SU H. Enhancing robustness of activated sludge with Aspergillus tubingensis as a protective backbone structure under high-salinity stress[J]. Journal of Environmental Management, 2021, 297: 113302. |
|
[45] |
WOOLARD CR, IRVINE RL. Treatment of hypersaline wastewater in the sequencing batch reactor[J]. Water Research, 1995, 29(4): 1159-1168. |
|
[46] |
CHANG LL, WEI JF. Acclimation of salt-tolerant sludge for the biochemical treatment of salt-containing wastewater[J]. Industrial Water Treatment, 2009, 29(12): 34-37. (in Chinese) 常丽丽, 魏俊峰. 含盐废水生化处理耐盐污泥驯化的研究[J]. 工业水处理, 2009, 29(12): 34-37. |
|
[47] |
NAUFAL M, WU JH. Stability of microbial functionality in anammox sludge adaptation to various salt concentrations and different salt-adding steps[J]. Environmental Pollution, 2020, 264: 114713. |
|
[48] |
GU BM, JIN CJ, WEN C, HOU JY, ZHAO YG, GAO MC. Effect of rate of salinity increase on the performance and microbial community structure of sequencing batch reactors[J]. Environmental Science, 2021, 42(7): 3413-3421. (in Chinese) 古柏铭, 金春姬, 温淳, 侯金源, 赵阳国, 高孟春. 提盐速率对序批式生物反应器性能和微生物群落结构的影响[J]. 环境科学, 2021, 42(7): 3413-3421. |
|
[49] |
RASAMIRAVAKA T, LABTANI Q, DUEZ P, EL JAZIRI M. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms[J]. BioMed Research International, 2015, 2015: 759348. |
|
[50] |
JO SJ, KWON H, JEONG SY, LEE CH, KIM TG. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors[J]. Water Research, 2016, 101: 214-225. |
|
[51] |
FENG YX, CHENG F, ZHANG JL, CAO XC, BI XM, ZHAO XX. Research progress in the treatment of Saline organic wastewater by membrane bioreactor[J]. Technology of Water Treatment, 2022, 48(6): 34-39. (in Chinese) 冯月霞, 程方, 张景丽, 曹晓畅, 毕晓敏, 赵玄玄. 膜生物反应器处理含盐有机废水研究进展[J]. 水处理技术, 2022, 48(6): 34-39. |
|
[52] |
CORNELISSEN ER, HARMSEN D, BEERENDONK EF, QIN JJ, OO H, de KORTE KF, KAPPELHOF JN. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2011, 63(8): 1557-1565. |
|
[53] |
DUC VIET N, LEE H, IM S-J, JANG A. Fate, elimination, and simulation of low-molecular-weight micropollutants in an integrated activated carbon-fertiliser drawn osmotic membrane bioreactor[J]. Bioresource Technology, 2022, 351: 126972. |
|
[54] |
LUO WH, HAI FI, PRICE WE, GUO WS, NGO HH, YAMAMOTO K, NGHIEM LD. High retention membrane bioreactors: challenges and opportunities[J]. Bioresource Technology, 2014, 167: 539-546. |
|
[55] |
LAY WCL, LIU Y, FANE AG. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review[J]. Water Research, 2010, 44(1): 21-40. |
|
[56] |
XU M, ZHOU W, CHEN X, ZHOU Y, HE B, TAN S. Analysis of the biodegradation performance and biofouling in a halophilic MBBR-MBR to improve the treatment of disinfected saline wastewater[J]. Chemosphere, 2021, 269: 128716. |
|
[57] |
QIN L, LIU Q, MENG Q, FAN Z, HE J, LIU T, SHEN C, ZHANG G. Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment[J]. Bioresource Technology, 2017, 224: 69-77. |
|
[58] |
DI TRAPANI D, DI BELLA G, MANNINA G, TORREGROSSA M, VIVIANI G. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation[J]. Bioresource Technology, 2014, 162: 60-69. |
|
[59] |
YU Z, LI W, TAN S. Real-time monitoring of the membrane biofouling based on spectroscopic analysis in a marine MBBR-MBR (moving bed biofilm reactor-membrane bioreactor) for saline wastewater treatment[J]. Chemosphere, 2019, 235: 1154-1161. |
|
[60] |
ZHANG H, ZHOU W, ZHAN X, CHI Z, LI W, HE B, TAN S. Biodegradation performance and biofouling control of a halophilic biocarriers-MBR in saline pharmaceutical (ampicillin-containing) wastewater treatment[J]. Chemosphere, 2021, 263: 127949. |
|
[61] |
SONG W, LI Z, DING Y, LIU F, YOU H, QI P, WANG F, LI Y, JIN C. Performance of a novel hybrid membrane bioreactor for treating saline wastewater from mariculture: assessment of pollutants removal and membrane filtration performance[J]. Chemical Engineering Journal, 2018, 331: 695-703. |
|
[62] |
CHANG HM, SUN YC, CHIEN IC, CHANG WS, RAY SS, CAO DTN, CONG DUONG C, CHEN SS. Innovative upflow anaerobic sludge osmotic membrane bioreactor for wastewater treatment[J]. Bioresource Technology, 2019, 287: 121466. |
|
[63] |
TIAN HL, LIU J, FENG TT, LI HF, WU XL, LI BA. Assessing the performance and microbial structure of biofilms adhering on aerated membranes for domestic saline sewage treatment[J]. RSC Advances, 2017, 7(44): 27198-27205. |
|
[64] |
TIAN H, XU X, QU J, LI H, HU Y, HUANG L, HE W, LI B. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes[J]. Journal of Hazardous Materials, 2020, 392: 122463. |
|
[65] |
LI M, LI BA, LAN MC, SUN ZY, LIU RK. Research progress of biological nitrogen removal in MABR[J]. Membrane Science and Technology, 2020, 40(1): 260-265. (in Chinese) 李玫, 李保安, 兰美超, 孙治冶, 刘汝康. 新型MABR生物脱氮过程研究进展[J]. 膜科学与技术, 2020, 40(1): 260-265. |
|
[66] |
le BORGNE S, PANIAGUA D, VAZQUEZ-DUHALT R. Biodegradation of organic pollutants by halophilic bacteria and Archaea[J]. Journal of Molecular Microbiology and Biotechnology, 2008, 15(2/3): 74-92. |
|
[67] |
MARGESIN R, SCHINNER F. Potential of halotolerant and halophilic microorganisms for biotechnology[J]. Extremophiles, 2001, 5(2): 73-83. |
|
[68] |
OREN A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity[J]. Saline Systems, 2008, 15(4): 2. |
|
[69] |
GUNDE-CIMERMAN N, PLEMENITAŠ A, OREN A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations[J]. FEMS Microbiology Reviews, 2018, 42(3): 353-375. |
|
[70] |
TRÜPER H G, SEVERIN J, WOHLFARTH A, MüLLER E, GALINSKI E A. Halophily, Taxonomy, Phylogeny and Nomenclature[M]. RODRIGUEZ-VALERA F. General and Applied Aspects of Halophilic Microorganisms. Boston, MA; Springer US. 1991: 3-7.
|
|
[71] |
MAINKA T, WEIRATHMÜLLER D, HERWIG C, PFLÜGL S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics[J]. Journal of Industrial Microbiology and Biotechnology, 2021, 48(1/2): kuab015. |
|
[72] |
FATIMA T, ARORA N K. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions[J]. Microbiological Research, 2021, 244: 126671. |
|
[73] |
OU D, NING A, HU C, LIU Y. Metagenomics unraveled the characteristics and microbial response to hypersaline stress in salt-tolerant aerobic granular sludge[J]. Journal of Environmental Management, 2022, 321: 115950. |
|
[74] |
QURASHI AW, SABRI AN. Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels[J]. Journal of Basic Microbiology, 2012, 52(5): 566-572. |
|
[75] |
XU S, TAO L D, WANG J J, ZHANG X X, HUANG Z Y. Rapid in-situ aerobic biodegradation of high salt and oily food waste employing constructed synthetic microbiome[J]. Engineering in Life Sciences, 2023, 1-15. |
|
[76] |
ZHAO SQ, WANG JJ, YANG ZZ, LI QQ, YANG R, ZHAO W, XU S, ZHU D, HUANG ZY. Preparation of microbial compound agents[J]. Microbiology China, 2020, 47(5): 1492-1502. (in Chinese) 赵思崎, 王敬敬, 杨宗政, 李晴晴, 杨榕, 赵维, 徐松, 朱丹, 黄志勇. 微生物复合菌剂的制备[J]. 微生物学通报, 2020, 47(5): 1492-1502. |
|
[77] |
ABOU-ELELA SI, KAMEL MM, FAWZY ME. Biological treatment of saline wastewater using a salt-tolerant microorganism[J]. Desalination, 2010, 250(1): 1-5. |
|
[78] |
DANG BT, TRAN DPH, NGUYEN NKQ, CAO HTN, TOMOAKI I, HUYNH KPH, PHAM TT, VARJANI S, HAO NGO H, WANG YF, YOU SJ, BUI XT. Comparison of degradation kinetics of tannery wastewater treatment using a nonlinear model by salt-tolerant Nitrosomonas sp. and Nitrobacter sp.[J]. Bioresource Technology, 2022, 351: 127000. |
|
[79] |
KANNAN R R, DURAI G, RAMSENTHIL R, DILIPKUMAR M, BALAMURUGAN P. Colour removal of tannery wastewater using salt tolerant microorganisms in a sequential batch reactor[J]. Desalination and Water Treatment, 2022, 251: 18-26. |
|
[80] |
SRIVASTAVA A, PARIDA V K, MAJUMDER A, GUPTA B, GUPTA A K. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105775. |
|
[81] |
SIVAPRAKASAM S, MAHADEVAN S, SEKAR S, RAJAKUMAR S. Biological treatment of tannery wastewater by using salt-tolerant bacterial strains[J]. Microbial Cell Factories, 2008, 7(1): 15. |
|
[82] |
AHMADI M, JORFI S, KUJLU R, GHAFARI S, DARVISHI CHESHMEH SOLTANI R, JAAFARZADEH HAGHIGHIFARD N. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater[J]. Journal of Environmental Management, 2017, 191: 198-208. |
|
[83] |
DAN NP, VISVANATHAN C, POLPRASERT C, BEN AIM R. High salinity wastewater treatment using yeast and bacterial membrane bioreactors[J]. Water Science and Technology, 2002, 46(9): 201-209. |
|
[84] |
JUANG RS, HUANG WC, HSU YH. Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation[J]. Journal of Hazardous Materials, 2009, 164(1): 46-52. |
|
[85] |
WANG J, YUAN H, SHI LY, GAO XL, LIU Y, SHANG ZJ, HUANG ZY, WANG XB. Research on the bio-augmentation treatment process of coking wastewater[J]. Industrial Water Treatment, 2017, 37(8): 41-45. (in Chinese) 王津, 苑辉, 侍浏洋, 高小龙, 刘永, 商振杰, 黄志勇, 王兴彪. 焦化废水生物强化处理工艺研究[J]. 工业水处理, 2017, 37(8): 41-45. |
|
[86] |
KHANSHA J, RANJBARAN M, AMOOZEGAR M A. Isolation and identification of halophilic and halotolerant bacteria from Badab-e Surt Travertine Spring, Kiasar, Iran, and investigation of calcite biomineralization induction[J]. Geomicrobiology Journal, 2018, 35(1): 64-73. |
|
[87] |
SHAMIM RS, ROMANA S, NAFISA T. Isolation and identification of halotolerant soil bacteria from coastal Patenga area[J]. BMC Research Notes, 2017, 10(1): 531. |
|
[88] |
AZPIAZU-MUNIOZGUREN M, GARCÍA M, LAORDEN L, MARTINEZ-MALAXETXEBARRIA I, SEOANE S, BIKANDI J, GARAIZAR J, MARTÍNEZ-BALLESTEROS I. Anianabacter salinae Gen. nov., sp. nov. ASV31T, a facultative alkaliphilic and extremely halotolerant bacterium isolated from brine of a millennial continental saltern[J]. Diversity, 2022, 14(11): 1009. |
|
[89] |
DU HT, ZHAO YQ, CHEN JC, CHEN GQ. Next generation industrial biotechnology based on synthetic biology of halophiles[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 385-390. (in Chinese) 杜鹤童, 赵倚晴, 陈金春, 陈国强. 基于嗜盐微生物合成生物学的下一代工业生物技术[J]. 生命科学, 2019, 31(4): 385-390. |
|
[90] |
MA YY, CHEN JC, CHEN GQ. Halophilic microorganisms as microbial chassis: applications and prospects[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. (in Chinese) 马悦原, 陈金春, 陈国强. 嗜盐微生物底盘细胞: 应用和前景[J]. 化工进展, 2021, 40(3): 1178-1186. |
|