微生物学通报  2023, Vol. 50 Issue (4): 1700−1719

扩展功能

文章信息

李怡佳, 马俊伟, 李玉倩, 沈心怡, 夏星辉
LI Yijia, MA Junwei, LI Yuqian, SHEN Xinyi, XIA Xinghui
土壤微生物群落对全球气候变化响应的研究进展
Responses of soil microbial community to global climate change: a review
微生物学通报, 2023, 50(4): 1700-1719
Microbiology China, 2023, 50(4): 1700-1719
DOI: 10.13344/j.microbiol.china.230012

文章历史

收稿日期: 2023-01-05
接受日期: 2023-03-04
网络首发日期: 2023-03-15
土壤微生物群落对全球气候变化响应的研究进展
李怡佳1 , 马俊伟1 , 李玉倩2 , 沈心怡1 , 夏星辉1     
1. 北京师范大学环境学院, 北京    100875;
2. 中国环境科学研究院, 北京    100012
摘要: 全球气候变化对陆地生态系统过程和功能产生重要影响,土壤微生物群落在陆地生态系统几乎所有的生物地球化学循环过程起到关键作用。本文针对气候变化对土壤微生物的影响研究结果,主要从土壤微生物活性(土壤呼吸与酶活性)和微生物群落结构对大气CO2升高、增温、降水变化、氮沉降等全球变化单因子和多因子的直接或间接响应进行综述,并进一步阐述参与土壤碳氮循环过程的功能微生物对气候变化的响应机制与适应规律。全球变化因子改变了土壤微生物的群落组成,呈现降低、增加和无影响3种效应,且不同功能微生物也呈现不同的敏感性。多个全球变化因子对土壤微生物群落结构的交互效应可能存在加性、协同、拮抗作用,产生加和的、相互促进或抵消的整体效果。然而,目前对多种全球变化因子如三因子或四因子的组合作用,以及多因子的高阶交互作用研究较少;已有的研究地理分布不均匀,且时间和空间大尺度的研究不足;缺乏综合生态系统模型对全球变化的影响进行模拟和预测。最后指出今后的研究发展方向:进行多种全球变化因子、长时间、多生态系统点位、大空间尺度的土壤微生物群落动态研究;探究多种全球变化因子的高阶交互作用;建立综合响应的生态系统模型,精确全球气候变化及其交互作用对土壤微生物群落影响的估算。这将有助于准确预测未来全球气候变化情景下生态系统尤其是土壤微生物生态系统的响应,为生态系统的可持续发展提供科学基础。
关键词: 土壤微生物群落    气候变化    增温    大气CO2浓度升高    氮沉降    降水变化    交互作用    
Responses of soil microbial community to global climate change: a review
LI Yijia1 , MA Junwei1 , LI Yuqian2 , SHEN Xinyi1 , XIA Xinghui1     
1. School of Environment, Beijing Normal University, Beijing 100875, China;
2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: Global climate change affects the processes and functions of terrestrial ecosystems where soil microbial community plays a crucial role in almost all of the biogeochemical cycles. Here, we reviewed the direct and indirect responses of soil microbial activities (e.g., soil respiration and enzyme activities) and community structure to individual and multiple global change factors, including elevated CO2 concentration, warming, altered precipitation, and nitrogen deposition. Besides, we summarized the mechanisms for the adaptation of soil microbial community and the responses of functional microorganisms involved in soil carbon and nitrogen cycle to climate change. Generally, these global change factors may have positive, negative, or insignificant effects on soil microbial communities, and different functional microorganisms also showed different sensitivity to them. Moreover, the interactive effect of multiple global change factors on soil microbial community structure may be additive, synergistic, or antagonistic. However, there is a paucity of research on the combined effects of multiple global change factors, such as three, four, and even more factors. In addition, the distribution of the studied areas is uneven, and studies involving various ecosystems with large spatial and temporal scale are scarce. No comprehensive ecosystem model is available to simulate and predict the effects of global change on soil microbial communities. Finally, we summarized the research trends: (1) dynamic monitoring of soil microbial communities in multiple ecosystems in large spatial scale for a long time involving multiple global change factors, (2) the interaction of multiple global change factors, and (3) development of comprehensive ecosystem model to accurately estimate the impact of global climate change and factors' interaction on soil microbial community. These will help to accurately predict the response of ecosystem, especially soil microbial ecosystems, under future global climate change scenarios, and lay a basis for the sustainable development of ecosystems.
Keywords: soil microbial community    climate change    warming    elevated CO2 concentration    N deposition    altered precipitation    interaction    

联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change, IPCC)第六次会议报告指出:2019年大气二氧化碳(CO2)含量达到200万年来的最高值,甲烷(CH4)和氧化亚氮(N2O)是80万年来的最高值,2019年全球大气中CO2、CH4和N2O的体积浓度分别达到409.9、1 866.3和332.1 nL/L,与1750年相比分别增长了47.3%、157.8%和23.0%[1]。全球变暖是不争的事实。1850–2019年,地表平均气温升高了1.09 (0.95−1.20) ℃;降水格局也发生着变化,高纬度地区降水量明显增加,热带陆地区域干湿季节降水量差异增大;季风降水预计将在中长期内持续增加,尤其在南亚和东南亚、东亚和西非地区[1]。氮沉降是元素氮以气体形式或通过干沉降或湿沉降从大气进入生物圈的过程,人为源氮沉降主要来源于全球化石燃料燃烧排放的氮氧化物和农业化肥中使用的氮等[2],20世纪90年代中期,全球氮沉降总量为每年103 Tg,预计2050年将达每年195 Tg[3]

土壤是陆地生态系统的重要组成部分,也是陆生生物赖以生存的物质基础。土壤具有特殊的物理结构和复杂的化学成分,是微生物的理想栖息地,也是微生物最丰富多样的环境介质[4]。仅1 g的土壤中就包含多达10亿个细菌,由成千上万的分类单元组成[5]。土壤微生物群落在陆地生态系统几乎所有生物地球化学过程中发挥着关键作用,如有机物分解、养分循环、温室气体排放等[6-8]。土壤微生物群落组成、多样性、丰度及其功能与土壤理化性质、植被特征及气候等因素密切相关[9]。全球变化因子及其相互作用通过调节土壤微生物群落来影响生态系统功能[10-11]。然而,一旦某些气候生态位狭窄物种的生存环境受到气候变化的影响,可能导致多样性下降甚至物种灭绝[12]。微生物群落多样性、组成与功能对全球变化的响应和反馈是微生物生态学的前沿问题。大多数关于全球变化对土壤微生物群落的影响研究多集中于单一全球变化因子产生的正效应、负效应或中性效应,而全球变化往往包含着多因子的变化,这种多因子的交互作用不可忽视[4, 13]

本文对现有全球气候变化背景下土壤微生物群落结构的响应进行综述,探讨土壤微生物群落结构对CO2浓度升高、气候变暖、降水变化、氮增多单因子和多因子交互作用的响应和反馈,以期为预测全球气候变化对土壤生态系统功能的影响、土壤管理和可持续发展提供依据。

1 全球变化单因子对土壤微生物群落和功能的影响

全球变化因子对土壤微生物群落组成、丰富度和功能等产生直接或间接的影响,而且土壤微生物群落组成、丰富度、物种分布和功能对不同全球变化因子变化的敏感性可能不同[10, 14]

1.1 大气CO2浓度升高

国内外关于大气CO2浓度对土壤微生物群落结构和功能的影响研究中,CO2浓度的人工控制通常通过开顶箱(open top chamber, OTC)或自由空气CO2富集试验系统(free air CO2 enrichment, FACE)进行,以比较长期暴露于升高的CO2和环境CO2水平的情景下不同陆地生态系统的响应(表 1)。CO2不仅是动植物和微生物呼吸的产物,也是植物、光合微生物光合作用和无机自养型微生物的底物[22]。大气CO2浓度较大幅度升高,短期内会直接影响土壤微生物群落结构和生态功能。例如,碳循环功能微生物类群丰度增加,通过促进代谢活性提升微生物量碳(microbial biomass carbon, MBC)含量等[23];也可通过增强植物光合作用,增加根际沉积和凋落物的碳输入为微生物提供碳源和养分[24-26],同时促进有机碳的分解和利用[22]。不同的植物物种对大气CO2浓度升高的反应不同,从而也影响根际碳输入的数量和类型。例如,C4植物在光合作用方面比C3植物更有效[27],所以C4植物可能将更多的碳分配给根际相关的微生物,从而导致群落组成发生变化[20]。植物凋落物和根系分泌物的增加向土壤输入“复合营养物”,通过“激发效应”刺激微生物分解土壤有机碳[28-29],导致更多的CO2释放,最终影响土壤有机碳封存,这一过程被称为温室气体的正反馈效应[30]。大部分研究发现,CO2浓度升高会增加土壤呼吸[19, 31];Nie等[32]发现CO2浓度升高条件下,自养呼吸显著增加,达到58.9%。由于大气CO2长期处于较高浓度,由此引起的正反馈导致全球变暖“加速度”提升,对生态系统的碳平衡和温室效应造成显著影响。此外,CO2浓度升高也可能刺激增加土壤胞外酶活性[18, 33];Xiao等[34]进行了全球范围的META分析发现,大气CO2浓度升高对土壤β-1, 4-葡萄糖苷酶、纤维二糖水解酶、β-1, 4-N-乙酰葡糖氨糖苷酶、脲酶的活性有积极影响,而不利于酚氧化酶和酸性磷酸酶的活性。

表 1 大气CO2浓度升高对土壤微生物群落和功能的影响 Table 1 Study on the effect of elevated CO2 concentration on soil microbial community and function
Soil type Sample sites Experimental setup Conclusions References
Farmland soil Changshu Agricultural Ecology Experiment Station OTC Elevated CO2 concentration affected soil nutrient availability and C input by increasing plant root exudates, thus affecting soil microbial metabolic activity [15]
Farmland soil Changshu Agricultural Ecology Experiment Station OTC Elevated CO2 concentration affected bacterial: Fungal biomass ratio by promoting the production of root exudates including heterocyclic nitrogen compounds, phenolic acids and phenols, and the biomass of active bacteria in soil increased significantly [16]
Forest soil Sky Oaks Field Station in California FACE With the increase of CO2 concentration, the diversity of fungi increased, and the community change was closely related to the fine root yield [17]
Forest soil Changbai Mountain Forest Ecosystem Research Station OTC The activities of soil urease, amylase, invertase, catalase, polyphenol oxidase and dehydrogenase increased, while soil protease and phosphatase activities decreased significantly under high CO2 concentration [18]
Grassland soil Alpine steppes of Nagqu OTC Elevated CO2 concentration increased soil dissolved organic carbon content and enzyme activity, which increased soil respiration; however, there was no significant effect on microbial biomass and carbon use efficiency (CUE) [19]
Grassland soil Temperate grassland of south-eastern Tasmania FACE Elevated CO2 concentration for 5 years significantly reduced the abundance of archaea and increased the abundance of fungi in temperate grasslands; The abundance of Firmicutes and Bacteroidetes increased significantly, meanwhile, the community structure of microbial carbon functional groups was changed [20]
Grassland soil Cedar Creek Ecosystem Science Reserve in Minnesota FACE Elevated CO2 concentration for long-term (> 12 years) had different effects on functional genes related to soil nitrogen cycling, which stimulated the increase of gene abundance of organic nitrogen metabolism and nitrogen fixation, and reduced the abundance of genes related to glutamine synthesis and anammox [21]

不同生态系统中微生物对大气CO2浓度升高的响应存在差异。Li等[14]对草地、农田和森林生态系统中微生物群落的比较发现,农田生态系统对CO2浓度升高响应最敏感,丰富度和多样性分别增加了32.6%和8.7%。Dunbar等[35]在对美国6种生态系统进行6期10年的升高大气CO2的研究发现,这些生态系统中土壤细菌组成差异很大,但CO2浓度升高对6个生态系统的细菌生物量、丰富度和群落组成无一致的显著影响;随着大气CO2浓度升高,土壤酸杆菌(Acidobacteria)丰度普遍增加。Deltedesco等[36]发现大气中的CO2浓度升高不会引起土壤真菌或细菌群落结构的剧烈变化,但升温会造成共生白腐真菌的相对丰度增加。在澳大利亚的草原上,CO2浓度升高导致古细菌和真菌以及特定细菌群的迁移,CO2浓度升高增加了厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)的丰度[20]。森林作为陆地生态系统重要的碳汇,研究表明长期升高大气CO2浓度使表层土壤有机碳量增加5.6%[37];但不同土壤深度的微生物群落组成出现差异,与其他土层相比,CO2浓度升高显著增加0−5 cm土层中泉古菌门(Crenarchaeota)、绿弯菌门(Chloroflexi)和变形杆菌门(Proteobacteria)的丰度[38]。土壤微生物功能和结构基因对土壤养分循环过程的研究非常重要。研究者们通过筛选微生物后代基因组中的基因丰度,发现了在大气CO2浓度升高下土壤微生物组所发挥的潜在功能的变化。例如,在草原生态系统进行的模拟气候变化试验显示,升高的CO2浓度刺激了与分解、固氮、异化硝酸盐还原相关基因的丰度增加,而谷氨酰胺合成和厌氧氨氧化相关的基因丰度降低[21]。在干旱草原上,大气CO2浓度升高导致涉及分解、固氮、固碳、CH4代谢、氮矿化和反硝化的微生物基因丰度均增加[39]

1.2 增温

温度决定了微生物的生长速率和微生物量。研究表明,土壤温度升高促进土壤微生物生长、繁殖,但也有研究表明气候变暖导致土壤微生物生物量显著下降(表 2)。产生以上现象的原因可能是温度升高促进微生物代谢过程和酶活性,加快有机质分解;同时,温度升高使得自养微生物量总体大于非自养微生物量,增加了对有效碳的吸收,加剧养分限制[15]。Donhauser等[44]通过对8种高寒土壤进行增温处理发现,包括伯克霍尔德菌属(Burkholderia)和苯基杆菌属(Phenylobacterium)在内的具有热适应、较高生长速率和抗逆性共性特征的菌属相对丰度显著增加。土壤呼吸对温度的变化十分敏感,一些较大范围的数据统计发现增温条件下土壤呼吸显著增加了9%−12%[45-46]。哈佛森林生态研究站进行了26年的升温试验,发现微生物呼吸对增温的响应具有适应性,分4个阶段[47]:(1) 呼吸作用加快碳损失;(2) 微生物群落重组;(3) 土壤微生物向一个呼吸作用速率更快、多样性程度更高、贫营养微生物群落转变;(4) 惰性碳库减少并有望进一步改变微生物群落结构。短期内,土壤呼吸的明显适应性可能归因于微生物生物量的减少和土壤呼吸的热适应[48]。对于土壤胞外酶活性,土壤增温会增加植物底物的输入量,进而增加酶的产量,也可以刺激酶的稳定和周转,这些正面和负面影响由对各种植物和土壤变量的直接和间接影响驱动,因此导致升温对土壤酶活性的影响方向并不确定[49]。一般认为,胞外酶的活性随温度升高而升高,但增温造成的水分限制不利于酶和底物扩散及酶活性[50];同时,微生物为了补偿这一水限制,可能增加胞外酶的分泌,维持自身生存[42]。Sofi等[51]对比不同陆地生态系统中的田间试验结果发现,增温处理对参与碳元素循环过程的土壤胞外酶(水解酶和氧化酶)活性均无显著影响。

表 2 增温对土壤微生物群落和功能的影响 Table 2 Study on the effect of warming on soil microbial community and function
Soil type Sample sites Conclusions References
Grassland soil High Plains Grasslands Research Station in Cheyenne, Wyoming The effects of warming on the soil carbon dynamics of topsoil were relatively weak, while those genes involved in denitrification and ammonification were inhibited [39]
Alpine Scrub Ecosystem Research Station of Aba Warming alleviated the low temperature limiting effect of soil microbial activity, promoted fine root turnover and decomposition, increased soil available nutrient content, and increased soil microbial biomass carbon and nitrogen [40]
Garraf Natural Park, south of Barcelona The seasonal variation of soil moisture in Mediterranean climate region caused obvious change of soil microbial community structure, and when a sufficient amount of soil water was available, soil enzyme activity was increased by warming [41]
Forest soil Wuyishan National Park Warming accelerated water evapotranspiration, reduced soil moisture and increased soil porosity, and accelerated gas exchange between atmosphere and soil, which accelerated the process of soil organic carbon mineralization and reduced the substrate availability, resulting in the reduction of soil microbial biomass carbon [42]
Harvard Forest Ecological Research site, Massachusetts Warming affected the process of litter decomposition, resulting in a 23% increase of lignin content, which promoted the activity of lignin-decomposing enzymes while cellulose-decomposing enzymes were suppressed; and shifts in fungal community composition were significantly correlated with the changes in extracellular enzyme activities, in particular, ectomycorrhizal fungi were more abundant in the heated treatment than the control [43]

由于真菌和细菌在土壤环境中占据不同的生态位,Jansson等[29]认为增温可能会利于细菌生长而抑制真菌生长,并且对土壤微生物功能类群有一定的选择性。细菌在土壤氮循环过程中起着重要作用,高思齐等[52]研究表明增温使土壤中氨氧化细菌群落结构发生转移,其丰富度下降;而含nirKnirS基因的反硝化细菌的丰度分别增加33.97%和28.75%。然而,一些研究发现升温对森林生态系统真菌生物量和活性可能呈现促进或抑制相反的情况[43, 53],这些差异可能是由于不同地点土壤水分或植被等环境差异所致[54]。然而,森林和草原的升温研究发现了微生物群落组成的共性变化,包括真菌与细菌的比率下降[39]、革兰氏阳性细菌丰度增多,细菌比真菌更具备生长速度和养分的竞争优势[20, 39]。草地土壤的长期增温试验后生态响应可能是[55]:(1) 微生物群落结构的变化,主要是由植物群落结构的变化驱动的(C4植物比C3植物更倾向于在升温环境生长);(2) 对细菌有不同的影响;(3) 增强养分循环,反馈以促进植物生长。此外,温度升高导致功能基因丰度和表达的变化[56],如升温地块中的微生物胁迫生物标志物显著升高[57];升温改变细胞膜的脂质组成以减少膜的流动性并抑制热休克蛋白的表达等[24]。土壤升温也对土壤含水量具有明显影响,促使土壤水分加快蒸发损失,从而间接地影响土壤微生物的生存环境[39]

1.3 降水变化

降水变化通过改变土壤水分含量不仅直接影响土壤养分的扩散,也极大地影响了土壤微生物群落结构和活性,进而对微生物介导的碳、氮循环过程与土壤生态系统功能造成深刻的影响(表 3)。未来几十年中,半干旱或干旱地区的荒漠化可能加剧[63]。土壤干燥将限制植物和微生物对水分和养分的吸收,不利于呼吸底物的扩散,导致呼吸作用和有机质的分解速率减弱,从而减少土壤碳损失,但微生物功能也随之下降,影响生态系统的可持续性[64]。降水增加和洪水增加导致土壤湿度增加,营造有利于产甲烷和反硝化作用的厌氧环境,从而更多地释放CH4和N2O[65]。李博文等[66]研究发现,土壤呼吸对降水变化的响应特征呈现非线性反应,随着降水量的增加,土壤呼吸会达到一个峰值,之后会随着降水量的增多而下降。此外,土壤呼吸模式受降水变化的影响与生态系统类型、土壤微生物群落结构、干旱强度、时长和干湿交替频率等因素密切相关[67]。降水变化对土壤酶活性也会产生影响。一般情况下,土壤湿度的增加会提高土壤胞外酶活性;而土壤水分过高由于厌氧环境、底物扩散和氧含量的限制,会对酶活性产生抑制作用[68]。由于水分变化通过改变土壤pH、养分有效性及扩散运输能力和植被类型等多方面影响土壤微生物活性及群落结构,进而改变土壤酶活性,因此,探明这些因素的综合作用有助于进一步理解水分变化条件下微生物相关的代谢过程及胞外酶活性的变化特征[67]

表 3 降水变化对土壤微生物群落和功能的影响 Table 3 Study on the effect of altered precipitation on soil microbial community and function
Soil type Sample sites Conclusions References
Grassland soil Semiarid temperate steppe of Inner Mongolia The metabolic characteristics of soil microbial community were different in response to precipitation. The increase of precipitation changed the mineralization rate of soil nutrients, and then affected the metabolic activity of soil microorganisms [58]
Desert steppe of Yanchi County, Ningxia In water-deficient environment, precipitation increased soil moisture, accelerated the leaching of litter, and promoted the soluble matter in the surface litter and humus to enter the soil, which increased the available substrate for microorganisms and the activities of sucrase, urease and phosphatase [59]
Hulunbuir Grassland Ecosystem Research Station Increasing precipitation did not affect soil respiration, and drought significantly reduced soil moisture; when the soil water content was too low, the diffusion of soluble organic carbon was hindered, bacteria and other microorganisms could not grow and metabolize normally, thus inhibiting soil respiration [60]
Forest soil Tiantong National Forest Park Drought significantly altered fatty acid content that characterized bacteria biomass, but had no significant effect on the ratio of soil fungi to bacteria, as well as the ratio of gram-positive bacteria to gram-negative bacteria [61]
Seasonal dry forest of Oaxaca Changes in precipitation could affect arbuscular mycorrhizal fungi (AMF), and the AMF infectivity and spore density were higher in rainy season than that in dry season, but there were no significant differences in AMF diversity [62]

干旱的长期效应可能间接地改变土壤细菌群落结构,在干旱环境下植被将逐渐转移到耐受力强的植物物种上,并随之发生根系相关微生物的变化,这比干旱对土壤细菌群落的直接影响更大[69]。相较细菌而言,真菌对水分胁迫的耐受性更强,真菌的菌丝有助于桥连分散的微生物和养分资源,以减缓干旱胁迫带来的生理压力[70-71];除具有生理结构上的优势外,真菌可以在缺水环境下合成海藻糖、甘油等溶质,使细胞膜处于正常形态,提升其适应干旱的能力[72]。Preece等[73]利用扩增子测序和磷脂脂肪酸分析研究了长期干旱对森林土壤微生物群落的影响,结果表明,细菌群落α多样性和生物量显著降低,真菌则不受影响。另外,一些研究发现,与植物根系形成共生体的丛枝菌根(arbuscular mycorrhiza, AM)真菌在侵染率、孢子密度和多样性等方面也呈现季节性(干湿)差异[62]。土壤微生物已经进化出各种生理策略来应对干旱胁迫。例如,渗透压调节、休眠和再活化、胞外酶合成等[74-75],具体表现为:为了在较低的土壤基质水势中生存,微生物会积聚溶质(渗透质)以保持细胞充盈[71];土壤微生物可能在脱水或低水状态(芽孢、孢子等)持续生存,无水分胁迫时恢复生长[76]。某些细菌类群的成员,如放线菌属和芽孢杆菌,由于能够保持活性并在干燥条件下休眠,产生胞外聚合物含有羧基、羟基、氨基等多种亲水活性官能基团,使其对水分具有更强的持留能力[77],因此它们可以在受干旱影响的土壤中持续存在[78]。此外,土壤微生物群落的功能冗余也被证明是一种有效应对水分胁迫的细胞生理策略。例如,经历长期干旱的高山森林土壤,与灌区土壤相比,虽然细菌和真菌群落结构均出现显著变化,但却具有相似的根系分解速率,确保了土壤碳周转过程的正常进行[79]。微生物群落结构具有弹性,但近些年来研究发现,干旱对土壤生态系统产生的“遗留效应”不可忽视[80],即干旱胁迫对土壤微生物群落组成的影响具有不可逆性,即便水分恢复到适宜条件,微生物群落结构发生不同程度的改变。Anderud等[80]利用18O标记的H2O研究发现,不同生态系统土壤经历干旱事件再恢复到适宜水分条件时,69%−74%的原有低丰度稀有物种能够快速响应水分变化,恢复代谢活性,增强了环境干扰下自然生态中的微生物生态网络的抵抗力和恢复力,这对于维持土壤生态系统功能和稳定性至关重要。

1.4 氮沉降

氮沉降的施肥作用增加植被净生产力,地上植被及凋落物等增加土壤碳输入,可能导致微生物生物量和活性升高;也可能导致土壤养分失衡,造成养分限制,限制胞外酶的合成(表 4)。研究表明,土壤微生物群落和功能对氮添加的响应具有生态系统依赖性,在高寒草原生态系统中,氮沉降增加降低碳相关水解酶活性和氧化酶活性[81],而显著提高了马尾松混交林中β-1-4葡萄糖苷酶、纤维二糖水解酶和过氧化物酶的活性[85]。此外,氮沉降增加显著降低微生物呼吸和微生物量[86-87]。李素新等[88]模拟氮沉降增加对土壤呼吸的影响,结果表明低水平的氮沉降可以促进土壤呼吸,而高水平的氮沉降对土壤呼吸产生了抑制作用。除在试验室培养和实地调查研究外,研究人员还通过全球范围内的META分析研究其对氮添加的响应特征,结果表明,氮的增加导致土壤呼吸显著增加约2.0%[89-90]

表 4 氮沉降对土壤微生物群落和功能的影响 Table 4 Study on the effect of nitrogen deposition on soil microbial community and function
Soil type Sample sites Conclusions References
Grassland soil Naqu Alpine Grassland and Wetland Ecosystem Research Station Soil microorganisms prefer low molecular weight organic nitrogen and carbon compounds after 5 years of nitrogen addition, which would depress the carbon hydrolase and oxidase, and activate the urase. Nitrogen addition activated plants and increased the absorption of phosphorus, which would improve the activity of phosphatase. The changes in the plant property under nitrogen addition were the most important factors for the soil enzyme at alpine steppe [81]
Forest soil Tropical camphor plantation of Jiu Jiang The increase of nitrogen deposition promoted the decomposition of soil surface organic matter, resulting in the accumulation of organic carbon, and the activities of sucrase, acid phosphatase and amylase decreased with the increase of soil depth [82]
Temperate forest in central Massachusetts The chronic nitrogen (N) enrichment decreased the active fungi biomass, the diversity of ectomycorrhizal fungal community and the fungal: bacterial biomass ratios. This shift in microbial community composition was accompanied by a significant reduction in the activity of lignin-degrading enzyme and catabolic evenness [83]
Wetland soil Sanjiang Plain Wetland Ecological Research Station There were significant differences in functional diversity of microbial communities at different nitrogen deposition treatments. The increase of nitrogen deposition would change soil physiochemical properties and the pattern of microbial substrate use, thus resulting in the change of microbial community structure [84]

对于土壤微生物群落对外源氮输入的敏感响应,学者使用营养生存策略理论解释加氮条件下细菌相对丰度的变化:土壤养分(N)的增加有利于富营养型细菌(copiotrophic)的生长,而不利于寡营养型细菌(oligotrophic)的生长[13]。因此,加氮可以改变真菌和细菌群落结构。Sha等[91]发现,加氮增加真菌肉座菌目和细菌放线菌门、绿弯菌门的相对丰度,减少细菌变形菌门、酸杆菌门、厚壁菌门的相对丰度。一般认为,AM真菌对氮添加的响应相对敏感,其主要作用机制可能是氮沉降导致土壤可利用N含量增加,通过改变植物群落特征间接影响AM真菌的生物量、群落组成与多样性[92]。氮沉降增加给微生物带来的影响也与土壤碳供应有关,当生态系统长期处于氮增加状态时,植物倾向于将更多的碳用于自身生长,进而供应给土壤微生物的碳减少,抑制微生物生长[93]。Ramirez等[94]对分布于北美洲多组土壤样品进行无机氮添加试验,发现加氮可以改变微生物的新陈代谢能力,抑制微生物分泌胞外酶,导致稳定碳的分解减少,增加固碳潜势。Eisenlord等[95]利用GeoChip 4.0技术研究了氮增加条件下森林生态系统碳循环过程中微生物的介导机制,结果发现氮沉降显著减少了淀粉等碳化合物解聚基因的多样性和丰度,微生物对氮沉降的响应对生态系统碳循环造成反作用。氮沉降增加对氮循环相关功能物种和功能基因的影响也是研究的重点,如氮沉降增加导致氨氧化细菌(ammonia oxidizing bacteria, AOB)、硝化菌属(Nitrobacter)丰度的增加,以及硝化螺旋菌属(Nitrospira)丰度的减少,说明土壤氮循环过程显著受到土壤可利用氮的影响,且土壤氨氧化菌和亚硝酸盐氧化菌存在耦合[13, 96-97]。Nie等[98]也发现N添加显著降低了氨氧化细菌和含nosZ基因的反硝化细菌的丰度,而增加了含nirK基因的反硝化细菌的丰度。氮沉降增加影响土壤的过程是一个比已有认知更为复杂的过程,氮沉降增加对微生物群落和功能的影响在不同的生态系统和氮沉降增加时间、强度不同的条件下可能有较大差异。

2 全球变化因子对土壤微生物群落和功能的交互作用

多因子交互作用分为拮抗作用(多因子效应小于单因子效应之和)、协同作用(多因子效应大于单因子效应之和)和加和作用(多因子效应和单因子效应和差异不显著)[13]。当多因子交互作用的效应明显时,单因子试验对于生态系统的预测不能代表多因子的影响。从前文关于全球变化因子对土壤微生物影响的讨论中可以看出,单个全球变化因子与多因子组合的复合效应难以解耦。因此,了解全球变化因子之间的交互作用对预测土壤生态系统的响应至关重要[24]

以往的研究发现,升高的CO2浓度和增温对土壤N2O排放以及氨氧化菌和反硝化菌的丰度具有不同程度的拮抗作用,从而影响土壤N循环过程[16, 99]。在美国怀俄明州草原上进行12年的大气CO2浓度升高结合增温试验研究表明,半干旱草原生态系统中,氮循环中涉及的基因对升高CO2浓度和增温共同作用的响应与单独升高CO2浓度处理更为相似,均发生富集;但仅升温的情景下,氮循环相关基因被抑制[35]。此外,温度对土壤微生物活动的影响通常受到水分调节[100],有研究认为,在降水充足的情况下,增温可以促进土壤微生物活动,但在干旱的情况下,增温却对土壤微生物活动具有抑制作用[101]。另有研究发现,增温和降水的增加会影响土壤微生物群落结构和群落间的潜在相互作用关系[102-103]。例如,降水的增加缓解了由增温引起的青藏高原高寒草原土壤微生物多样性的减少,为微生物物种共存提供更多的生态位;但与单独增加降水相比,两者的共同作用降低了微生物之间的相互作用强度[104],同时显著改变了土壤有机碳含量[105]。土壤微生物在调控土壤养分循环及释放的过程中发挥重要作用,水和氮作为生态系统中常发生耦合的两个因子,土壤微生物群落对其变化的响应较为复杂[106]。吴文超等[107]研究温带沙漠不同季节的土壤微生物碳氮(MBC, MBN)对环境因子的响应时发现,水氮交互作用在各个季节均显著降低MBC、MBN和MBC/MBN比值,且土壤微生物群落中细菌较真菌占据优势,可能是因为降水变化改变了土壤的通透性,减少了微生物对氮源和碳源的利用;同时高氮降低了土壤pH值,进而影响土壤微生物群落结构[108]。然而Yan等[109]发现干旱与氮添加的共同处理对温带森林生态系统土壤微生物群落具有拮抗作用,显著影响了细菌和真菌的群落组成,增加CO2释放量,但增幅小于单因子处理。也有研究认为,微生物对水氮交互作用的响应取决于当前生态系统中氮含量,当处于氮饱和状态且降水充足的情况下,施加少量氮对系统影响不大,细菌的多样性和碳源利用率均无显著变化[110]。许多陆地生态系统的相关研究表明,氮沉降和增温对土壤呼吸和微生物群落组成有显著的交互作用,所产生的协同和拮抗效应主要取决于现有土壤C、N含量,加氮量和温度升高的范围及研究区域自然概况[111-113]

草地生态系统作为陆地生态系统的主体类型之一,全球变化多因子交互作用对其影响的研究受到众多学者的关注[114]。Reich等[115]对美国明尼苏达州草地生态系统进行了为期8年的4种全球变化因子(CO2浓度升高、增温、降水减少、N增加)控制试验,发现4个因素任意组合之间均存在两两交互作用。Thakur等[116]通过在北美温带地区草地进行田间试验,研究了4个全球变化因子(CO2浓度升高、增温、N增加、夏季干旱)对土壤微生物和酶的影响,发现土壤酶活性及其化学计量受到全球变化因子之间高阶相互作用的强烈影响,表现在:CO2浓度升高、降水量降低、升温之间的同时作用降低了土壤中碳磷吸收酶和氮磷吸收酶的比例,土壤中有机磷分解相对增加;也改变了土壤中的主要分解途径,向细菌主导的能量通道发展;大气氮沉降量增加、降水量减少、升温之间的共同作用增强了酸性磷酸酶活性;微生物生物量的变化主要由CO2浓度和温度升高驱动。有研究认为,多因子相互作用之间的关系主要由水的变化驱动[117],在干旱的荒漠草原,季节性降水强烈地调节了土壤微生物对增温和N增加的响应,显著提高了土壤微生物生物量[118]。另有研究发现,CO2浓度升高、增温、N增加和降水增加及其相互作用对半干旱草地AM真菌群落存在不同程度的影响[119],在各处理组合中,特别是增温和CO2浓度升高的共同作用下,随着N的添加,Paraglomus的相对丰度增加,而Glomus的相对丰度降低;同时,三者的共同作用显著影响了微生物α多样性,但对AM真菌生物量无明显影响。全球变化因子的高阶相互作用也可能互相抵消影响。例如,升温和干旱对土壤生物的有害影响在CO2浓度升高时减弱或消失[120];干旱会减缓升温引起的氮矿化和土壤呼吸速率的增加[121-122],随之增加土壤的氮限制[123],因此氮沉降增加可以解除干旱带来的氮限制,但在升温和增加湿度的土壤条件下,氮沉降增加也可能会对土壤微生物的生长产生抑制作用[124]。因此,与单一因子的影响相比,多种全球变化因子的综合作用可能引起土壤微生物群落及功能较小的变化,多重因子相互作用的结果通常是非加性的,不能基于单一作用预测联合效应[125]

3 已有研究的不足及未来研究方向 3.1 全球变化多因子交互作用研究

全球气候变化对土壤微生物群落组成和功能的影响是多种全球变化因子综合作用的结果,且多个全球变化因子之间存在交互作用,不同因子的影响可能相互促进或抵消,增加了研究结果的不确定性[126]。目前已有研究大多为单因子或两因子组合的模拟试验,Rillig等[10]通过对已发表的关于全球变化如何影响土壤微生物群落和过程的试验研究文献整理,发现约80%的研究为单因子试验,19%的研究考察了2个环境因素的交互作用,仅有不足2%的研究考虑3个或更多环境因素的影响,尤其是对多因子的高阶交互作用(higher-order interaction)研究不足,难以准确分析全球变化整体对土壤生态系统的影响[116]。因此,需要设计完善的多种全球变化因子试验来探究高阶交互作用,以便准确量化土壤变量对未来全球气候变化情景的反馈,其结果将有助于预测未来生态系统的变化,并为完善地球系统模型提供证据和建议。

3.2 长时间、大尺度、多生态系统的监测

陆地生态系统具有复杂的植物、微生物、土壤的交互作用和代偿作用,在受到全球变化因子的影响时,陆地生态系统的反馈可能随着时间的推移产生意想不到的效果[127]。例如,Zhou等[31]发现土壤呼吸对氮增加的响应随着试验时间的延长而逐渐减弱,而土壤呼吸对干旱单因子,以及干旱和升温联合作用的响应与试验时间呈正相关。因此,土壤微生物群落随时间的变化可能存在一定的滞后性,导致响应需要较长时间才能显现[128]。因此,长期定位观测有助于准确理解微生物在生态系统中介导的关键过程。此外,由于全球变化对土壤微生物群落多样性的直接影响可能有限,植物-微生物的相互作用在调控陆地生态系统对环境变化的响应方面具有重要影响。气候变化引起的植物群落特征变化通过改变土壤的碳输入量和方式间接影响微生物群落组成和代谢功能。已有研究表明,增雨影响植物-微生物之间的正向反馈关系[129];通过增加植被的多样性可缓解干旱对微生物群落造成的长期影响,提高微生物群落对干旱胁迫的耐受性[130]。然而,目前关于全球变化对土壤微生物与地上植被相互作用的影响研究较少,涉及不同陆地生态系统中地上-地下的关联性研究更为匮乏,且生态系统的异质性限制了对不同生态系统对全球变化的响应的比较分析。另外,现有相关研究的尺度一般较小且单一,地理分布不均匀,主要集中在北半球[126]。因此,全球变化背景下长期多点位、多生态系统监测网络建立,以研究陆地生态系统随气候变化的时间演变,有利于更准确地预测土壤微生物群落对未来全球变化的响应[131]

3.3 土壤微生物群落的响应机制和模型模拟

近年来,微生物群落对全球变化的响应和反馈是微生物生态学研究的热点问题之一。目前,大多数相关研究集中在土壤呼吸、微生物量、多样性指数等指标,仅提供了有限数据的理论推断,难以阐明土壤微生物群落对全球气候变化的潜在响应机制。随着现代分子技术的出现,宏基因组学技术如稳定性同位素探测、qPCR、基因芯片和高通量测序等新技术手段将有助于深入理解全球变化对土壤微生物群落及生态功能的影响。基因芯片可用于检测微生物参与物质循环等生态活动的功能基因,为理解微生物功能多样性以及相关土壤碳氮生物地球化学过程如氨氧化、甲烷氧化和固氮作用提供新的见解[132]。宏基因组学在揭示微生物群落结构和功能及其与环境因子之间的相互关系提供了有力途径,为深入探究气候变化下不同类型微生物群落的演化特点和代谢能力奠定了基础[133]。全球气候变化对土壤微生物的影响应充分认识,另一方面,适当调控微生物群落以减缓气候变化,在未来应该受到更多的关注。Peng等[134]研究发现,由真菌分泌的球囊霉素具有很大的固碳潜能,它可以帮助土壤微粒形成团聚体从而减缓土壤有机质的分解。Meena等[135]认为将基因工程菌作为微生物接种剂加入土壤中,通过诱导碳酸酐酶基因的表达以增强土壤碳封存能力,是减缓温室气体排放、缓解气候变化风险的有效途径。此外,数据-模型的融合在全球气候变化的研究中至关重要。根据多种全球变化因子及其交互作用,以及土壤微生物群落响应机制,建立综合响应的生态系统模型,将有助于准确预测未来气候变化情景下生态系统的响应动态,为制定相关管理措施,充分发挥微生物减缓全球气候变化的作用,以及维持生态系统的可持续发展提供技术支持。

4 结论

土壤微生物群落结构对全球气候变化的响应至关重要。大气CO2浓度升高、升温、降水变化、氮沉降增加对土壤微生物群落组成和功能产生直接或间接的影响,影响的大小、方向不同且呈现不同的敏感性。多个全球变化因子对土壤微生物群落结构的交互效应可能存在加性、协同、拮抗的交互作用,产生加和的、相互促进或抵消的整体效果。多全球变化因子的长时间、多生态系统、大空间尺度试验设计,以探究多因子的高阶交互作用,建立综合响应的生态系统模型,有助于准确预测未来气候变化情景下生态系统的响应。

REFERENCES
[1]
IPCC, 2021: Summary for Policymakers[M]// MASSON-DELMOTTE V, ZHAI P, PIRANI A, CONNORS SL, PÉAN C, BERGER S, CAUD N, CHEN Y, GOLDFARB L, GOMIS MI, HUANG M, LEITZEDLL K, LONNOY E, MATTHEWS JBR, MAYCOCK TK, WATERFIELD T, YELEKÇI O, YU R, ZHOU B, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2021: 3-32.
[2]
REAY DS, DENTENER F, SMITH P, GRACE J, FEELY RA. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430-437. DOI:10.1038/ngeo230
[3]
GALLOWAY JN, COWLING EB. Reactive nitrogen and the world: 200 years of change[J]. Ambio, 2002, 31(2): 64-71. DOI:10.1579/0044-7447-31.2.64
[4]
YANG SH. Effects of multiple climate changes on soil microbial communities in a typical temperate grassland in the United States[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2019 (in Chinese).
杨思航. 气候多因子对典型温带草原土壤微生物群落的影响研究[D]. 北京: 清华大学博士学位论文, 2019.
[5]
LOCEY KJ, LENNON JT. Scaling laws predict global microbial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 5970-5975. DOI:10.1073/pnas.1521291113
[6]
CROWTHER TW, van den HOOGEN J, WAN J, MAYES MA, KEISER AD, MO L, AVERILL C, MAYNARD DS. The global soil community and its influence on biogeochemistry[J]. Science, 2019, 365(6455): eaav0550. DOI:10.1126/science.aav0550
[7]
KAPPLER A, BRYCE C, MANSOR M, LUEDER U, BYRNE JM, SWANNER ED. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374. DOI:10.1038/s41579-020-00502-7
[8]
LI ZL, TIAN DS, WANG BX, WANG JS, WANG S, CHEN HYH, XU XF, WANG CH, HE NP, NIU SL. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078-1088.
[9]
GAO Q, YANG YF, FENG JJ, TIAN RM, GUO X, NING DL, HALE L, WANG MM, CHENG JM, WU LW, ZHAO MX, ZHAO JS, WU LY, QIN YJ, QI Q, LIANG YT, SUN B, CHU HY, ZHOU JZ. The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil[J]. Global Ecology and Biogeography, 2019, 28(8): 1093-1105.
[10]
RILLIG MC, RYO M, LEHMANN A, AGUILAR-TRIGUEROS CA, BUCHERT S, WULF A, IWASAKI A, ROY J, YANG GW. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467): 886-890. DOI:10.1126/science.aay2832
[11]
XUE K, M YUAN M, SHI ZJ, QIN YJ, DENG Y, CHENG L, WU LY, HE ZL, van NOSTRAND JD, BRACHO R, NATALI S, SCHUUR EAG, LUO CW, KONSTANTINIDIS KT, WANG Q, COLE JR, TIEDJE JM, LUO YQ, ZHOU JZ. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6): 595-600. DOI:10.1038/nclimate2940
[12]
LIU H, YE Q, WIENS JJ. Climatic-niche evolution follows similar rules in plants and animals[J]. Nature Ecology & Evolution, 2020, 4(5): 753-763.
[13]
MA XY. Response traits of soil microbial communities to multi-factor environmental disturbances in the typical grassland and forest of China[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2018 (in Chinese).
马星宇. 我国典型草原和森林土壤微生物对多因子扰动的响应[D]. 北京: 清华大学博士学位论文, 2018.
[14]
Li YQ, MA JW, YU Y, LI YJ, SHEN XY, HUO SL, XIA XH. Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: a meta-analysis[J]. Science of the Total Environment, 2022, 815: 152737. DOI:10.1016/j.scitotenv.2021.152737
[15]
LIU Y, ZHANG H, XIONG MH, LI F, LI LQ, WANG GL, PAN GX. Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature[J]. Biology and Fertility of Soils, 2017, 53(1): 3-8. DOI:10.1007/s00374-016-1159-8
[16]
XIONG L, LIU XY, VINCI G, SPACCINI R, DROSOS M, LI LQ, PICCOLO A, PAN GX. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air[J]. Soil Biology and Biochemistry, 2019, 137: 107544. DOI:10.1016/j.soilbio.2019.107544
[17]
LIPSON DA, KUSKE CR, GALLEGOS-GRAVES LV, OECHEL WC. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem[J]. Global Change Biology, 2014, 20(8): 2555-2565. DOI:10.1111/gcb.12609
[18]
JIA X, HAN SJ, ZHAO YH, ZHOU YM. Effects of elevated CO2 on soil enzyme activities associated with Pinus sylvestriformis seedlings[J]. Journal of Northwest A & F University (Natural Science Edition), 2010, 38(12): 87-92, 98. (in Chinese)
贾夏, 韩士杰, 赵永华, 周玉梅. 大气CO2浓度升高对长白赤松幼苗土壤酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(12): 87-92, 98.
[19]
CHEN Y, ZHANG YJ, BAI E, PIAO SL, CHEN N, ZHAO G, ZHENG ZT, ZHU YX. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition[J]. The Science of the Total Environment, 2022, 813: 151907. DOI:10.1016/j.scitotenv.2021.151907
[20]
HAYDEN HL, MELE PM, BOUGOURE DS, ALLAN CY, NORNG S, PICENO YM, BRODIE EL, DeSANTIS TZ, ANDERSEN GL, WILLIAMS AL, HOVENDEN MJ. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil[J]. Environmental Microbiology, 2012, 14(12): 3081-3096. DOI:10.1111/j.1462-2920.2012.02855.x
[21]
TU QC, HE ZL, WU LY, XUE K, XIE G, CHAIN P, REICH PB, HOBBIE SE, ZHOU JZ. Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem[J]. Soil Biology and Biochemistry, 2017, 106: 99-108. DOI:10.1016/j.soilbio.2016.12.017
[22]
XU MP, REN CJ, ZHANG W, CHEN ZX, FU SY, LIU WC, YANG GH, HAN XH. Responses mechanism of C: N: P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454. (in Chinese)
许淼平, 任成杰, 张伟, 陈正兴, 付淑月, 刘伟超, 杨改河, 韩新辉. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7): 2445-2454. DOI:10.13287/j.1001-9332.201807.041
[23]
NAYLOR D, SADLER N, BHATTACHARJEE A, GRAHAM EB, ANDERTON CR, McCLURE R, LIPTON M, HOFMOCKEL KS, JANSSON JK. Soil microbiomes under climate change and implications for carbon cycling[J]. Annual Review of Environment and Resources, 2020, 45: 29-59. DOI:10.1146/annurev-environ-012320-082720
[24]
TERRER C, VICCA S, STOCKER BD, HUNGATE BA, PHILLIPS RP, REICH PB, FINZI AC, PRENTICE IC. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition[J]. New Phytologist, 2018, 217(2): 507-522. DOI:10.1111/nph.14872
[25]
FANG R, YU ZH, LI YS, XIE ZH, LIU JJ, WANG GH, LIU XB, CHEN Y, LIU JD, ZHANG SQ, WU JJ, HERBERT S, JIN J. Effects of elevated CO2 concentration and warming on soil carbon pools and microbial community composition in farming soil[J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679. (in Chinese)
房蕊, 于镇华, 李彦生, 谢志煌, 刘俊杰, 王光华, 刘晓冰, 陈渊, 刘居东, 张少庆, 吴俊江, Stephen J HERBERT, 金剑. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 2021, 54(17): 3666-3679. DOI:10.3864/j.issn.0578-1752.2021.17.009
[26]
WANG GZ, JIA JY, ZHANG JL. Plant soil feedback theory and its applications and prospects in natural and agricultural ecosystems[J]. Acta Ecologica Sinica, 2021, 41(23): 9130-9143. (in Chinese)
王光州, 贾吉玉, 张俊伶. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展[J]. 生态学报, 2021, 41(23): 9130-9143.
[27]
JANSSON C, VOGEL J, HAZEN S, BRUTNELL T, MOCKLER T. Climate-smart crops with enhanced photosynthesis[J]. Journal of Experimental Botany, 2018, 69(16): 3801-3809. DOI:10.1093/jxb/ery213
[28]
QIAO N, SCHAEFER D, BLAGODATSKAYA E, ZOU XM, XU XL, KUZYAKOV Y. Labile carbon retention compensates for CO2 released by priming in forest soils[J]. Global Change Biology, 2014, 20(6): 1943-1954. DOI:10.1111/gcb.12458
[29]
JANSSON JK, HOFMOCKEL KS. Soil microbiomes and climate change[J]. Nature Reviews Microbiology, 2020, 18(1): 35-46. DOI:10.1038/s41579-019-0265-7
[30]
HU S, CHAPIN FS, FIRESTONE MK, FIELD CB, CHIARIELLO NR. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J]. Nature, 2001, 409(6817): 188-191. DOI:10.1038/35051576
[31]
ZHOU LY, ZHOU XH, SHAO JJ, NIE YY, HE YH, JIANG LL, WU ZT, BAI SH. Interactive effects of global change factors on soil respiration and its components: a meta-analysis[J]. Global Change Biology, 2016, 22(9): 3157-3169. DOI:10.1111/gcb.13253
[32]
NIE M, LU M, BELL J, RAUT S, PENDALL E. Altered root traits due to elevated CO2: a meta-analysis[J]. Global Ecology and Biogeography, 2013, 22(10): 1095-1105. DOI:10.1111/geb.12062
[33]
LI YF, XIAO ML, YUAN HC, ZHU ZK, WANG JR, LI KL, GE TD, WU JS. Effects of doubled concentration of CO2 on soil hydrolase activities related to turnover of soil C and N in a rice-cropping system[J]. China Environmental Science, 2018, 38(9): 3474-3480. (in Chinese)
李奕霏, 肖谋良, 袁红朝, 祝贞科, 王久荣, 李科林, 葛体达, 吴金水. CO2倍增对稻田土壤碳氮水解酶活性的影响[J]. 中国环境科学, 2018, 38(9): 3474-3480. DOI:10.3969/j.issn.1000-6923.2018.09.034
[34]
XIAO W, CHEN X, JING X, ZHU B. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018, 123: 21-32. DOI:10.1016/j.soilbio.2018.05.001
[35]
DUNBAR J, EICHORST SA, GALLEGOS-GRAVES LV, SILVA S, XIE G, HENGARTNER NW, DAVID EVANS R, HUNGATE BA, JACKSON RB, MEGONIGAL JP, SCHADT CW, VILGALYS R, ZAK DR, KUSKE CR. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J]. Environmental Microbiology, 2012, 14(5): 1145-1158. DOI:10.1111/j.1462-2920.2011.02695.x
[36]
DELTEDESCO E, KEIBLINGER KM, PIEPHO HP, ANTONIELLI L, PÖTSCH EM, ZECHMEISTER- BOLTENSTERN S, GORFER M. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment[J]. Soil Biology and Biochemistry, 2020, 142: 107704. DOI:10.1016/j.soilbio.2020.107704
[37]
JASTROW JD, MICHAEL MILLER R, MATAMALA R, NORBY RJ, BOUTTON TW, RICE CW, OWENSBY CE. Elevated atmospheric carbon dioxide increases soil carbon[J]. Global Change Biology, 2005, 11(12): 2057-2064. DOI:10.1111/j.1365-2486.2005.01077.x
[38]
YU H, HE ZL, WANG AJ, XIE JP, WU LY, van NOSTRAND JD, JIN DC, SHAO ZM, SCHADT CW, ZHOU JZ, DENG Y. Divergent responses of forest soil microbial communities under elevated CO2 in different depths of upper soil layers[J]. Applied and Environmental Microbiology, 2018, 84(1): e01694-e01617.
[39]
YU H, DENG Y, HE ZL, van NOSTRAND JD, WANG S, JIN DC, WANG AJ, WU LY, WANG DH, TAI X, ZHOU JZ. Elevated CO2 and warming altered grassland microbial communities in soil top-layers[J]. Frontiers in Microbiology, 2018, 9: 1790. DOI:10.3389/fmicb.2018.01790
[40]
MA ZL, ZHAO WQ, LIU M, LIU Q. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1893-1900. (in Chinese)
马志良, 赵文强, 刘美, 刘庆. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 2019, 30(6): 1893-1900. DOI:10.13287/j.1001-9332.201906.024
[41]
ZUCCARINI P, ASENSIO D, OGAYA R, SARDANS J, PEÑUELAS J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Global Change Biology, 2020, 26(6): 3698-3714. DOI:10.1111/gcb.15077
[42]
HUANG SD. Responses of soil respiration to warming and cooling at different elevations of Wuyi Mountain[J]. Chinese Journal of Ecology, 2022, 41(1): 98-107. (in Chinese)
黄石德. 武夷山不同海拔土壤呼吸对变暖和变冷的响应[J]. 生态学杂志, 2022, 41(1): 98-107. DOI:10.13292/j.1000-4890.202201.012
[43]
MORRISON EW, PRINGLE A, van DIEPEN LT, MELILLO J, FREY SD. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks[J]. Soil Biology and Biochemistry, 2019, 132: 120-130. DOI:10.1016/j.soilbio.2019.02.005
[44]
DONHAUSER J, NIKLAUS PA, ROUSK J, LAROSE C, FREY B. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils[J]. Soil Biology and Biochemistry, 2020, 148: 107873. DOI:10.1016/j.soilbio.2020.107873
[45]
LU M, ZHOU XH, YANG Q, LI H, LUO YQ, FANG CM, CHEN JK, YANG X, LI B. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis[J]. Ecology, 2013, 94(3): 726-738. DOI:10.1890/12-0279.1
[46]
WANG X, LIU LL, PIAO SL, JANSSENS IA, TANG JW, LIU WX, CHI YG, WANG J, XU S. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3229-3237. DOI:10.1111/gcb.12620
[47]
MELILLO JM, FREY SD, DeANGELIS KM, WERNER WJ, BERNARD MJ, BOWLES FP, POLD G, KNORR MA, GRANDY AS. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[J]. Science, 2017, 358(6359): 101-105. DOI:10.1126/science.aan2874
[48]
BRADFORD MA, DAVIES CA, FREY SD, MADDOX TR, MELILLO JM, MOHAN JE, REYNOLDS JF, TRESEDER KK, WALLENSTEIN MD. Thermal adaptation of soil microbial respiration to elevated temperature[J]. Ecology Letters, 2008, 11(12): 1316-1327. DOI:10.1111/j.1461-0248.2008.01251.x
[49]
CHEN J, LUO YQ, GARCÍA-PALACIOS P, CAO JJ, DACAL M, ZHOU XH, LI JW, XIA JY, NIU SL, YANG HY, SHELTON S, GUO W, van GROENIGEN KJ. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration[J]. Global Change Biology, 2018, 24(10): 4816-4826. DOI:10.1111/gcb.14394
[50]
ZHANG H, WU HT. Research progresses in effects of climate warming on soil fauna community structure[J]. Chinese Journal of Ecology, 2020, 39(2): 655-664. (in Chinese)
张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制[J]. 生态学杂志, 2020, 39(2): 655-664. DOI:10.13292/j.1000-4890.202002.008
[51]
SOFI JA, LONE AH, GANIE MA, DAR NA, BHAT SA, MUKHTAR M, DAR MA, RAMZAN S. Soil microbiological activity and carbon dynamics in the current climate change scenarios: a review[J]. Pedosphere, 2016, 26(5): 577-591. DOI:10.1016/S1002-0160(15)60068-6
[52]
GAO SQ, SONG YY, SONG CC, MA XY, JIANG L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020, 40(13): 4617-4627. (in Chinese)
高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13): 4617-4627.
[53]
ALLISON SD, TRESEDER KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 2008, 14(12): 2898-2909. DOI:10.1111/j.1365-2486.2008.01716.x
[54]
ROMERO-OLIVARES AL, ALLISON SD, TRESEDER KK. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies[J]. Soil Biology and Biochemistry, 2017, 107: 32-40. DOI:10.1016/j.soilbio.2016.12.026
[55]
ZHOU JZ, XUE K, XIE JP, DENG Y, WU LY, CHENG XL, FEI SF, DENG SP, HE ZL, van NOSTRAND JD, LUO YQ. Microbial mediation of carbon-cycle feedbacks to climate warming[J]. Nature Climate Change, 2012, 2(2): 106-110. DOI:10.1038/nclimate1331
[56]
ZHANG QF, ZHOU JC, LI XJ, ZHENG Y, XIE L, YANG ZJ, LIU XF, XU C, LIN HY, YUAN XC, LIU C, ZHU B, CHEN Y, YANG YS. Contrasting effects of warming and N deposition on soil microbial functional genes in a subtropical forest[J]. Geoderma, 2022, 408: 115588. DOI:10.1016/j.geoderma.2021.115588
[57]
SCHINDLBACHER A, RODLER A, KUFFNER M, KITZLER B, SESSITSCH A, ZECHMEISTER- BOLTENSTERN S. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology & Biochemistry, 2011, 43(7): 1417-1425.
[58]
AKINYEMI DS, ZHU YK, ZHAO MY, ZHANG PJ, SHEN HH, FANG JY. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia[J]. Global Ecology and Conservation, 2020, 23: e01175. DOI:10.1016/j.gecco.2020.e01175
[59]
ZHU WW, WANG P, XU YX, LI CH, YU HL, HUANG JY. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition[J]. Chinese Journal of Plant Ecology, 2021, 45(3): 309-320. (in Chinese)
朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320.
[60]
TAO DX, LI WJ, YANG T, KE YG, XU C, ZHAO JL, WU HH, YU Q. Effects of precipitation change and nutrient addition on soil respiration in Hulunber meadow steppe[J]. Chinese Journal of Ecology, 2022, 41(3): 465-472. (in Chinese)
陶冬雪, 李文瑾, 杨恬, 柯玉广, 徐翀, 赵晋灵, 吴红慧, 庾强. 降水变化和养分添加对呼伦贝尔草甸草原土壤呼吸的影响[J]. 生态学杂志, 2022, 41(3): 465-472. DOI:10.13292/j.1000-4890.202202.031
[61]
NIE YY, ZHOU GY, SHAO JJ, ZHOU LY, LIU RQ, ZHAI DP, ZHOU XH. Effects of simulating drought on soil microbial biomass and community structure in subtropical forest[J]. Journal of Fudan University (Natural Science), 2017, 56(1): 97-105. (in Chinese)
聂园园, 周贵尧, 邵钧炯, 周灵燕, 刘瑞强, 翟德苹, 周旭辉. 模拟干旱对亚热带森林土壤微生物生物量及群落结构的影响[J]. 复旦学报(自然科学版), 2017, 56(1): 97-105. DOI:10.15943/j.cnki.fdxb-jns.2017.01.011
[62]
GUADARRAMA P, CASTILLO S, RAMOS-ZAPATA JA, HERNÁNDEZ-CUEVAS LV, CAMARGO- RICALDE SL. Arbuscular mycorrhizal fungal communities in changing environments: the effects of seasonality and anthropogenic disturbance in a seasonal dry forest[J]. Pedobiologia, 2014, 57(2): 87-95. DOI:10.1016/j.pedobi.2014.01.002
[63]
HUANG JP, YU HP, GUAN XD, WANG GY, GUO RX. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166-171. DOI:10.1038/nclimate2837
[64]
MCHUGH TA, COMPSON Z, van GESTEL N, HAYER M, BALLARD L, HAVERTY M, HINES J, IRVINE N, KRASSNER D, LYONS T, MUSTA EJ, SCHIFF M, ZINT P, SCHWARTZ E. Climate controls prokaryotic community composition in desert soils of the southwestern United States[J]. FEMS Microbiology Ecology, 2017, 93(10): fix116.
[65]
MI J, LI JJ, CHEN DM, XIE YC, BAI YF. Predominant control of moisture on soil organic carbon mineralization across a broad range of arid and semiarid ecosystems on the Mongolia Plateau[J]. Landscape Ecology, 2015, 30(9): 1683-1699. DOI:10.1007/s10980-014-0040-0
[66]
LI BW, WANG Q, LÜ WW, ZHOU Y, JIANG LL, LIU PP, MENG FD, ZHANG LR, ZHANG SR, A WANG, LI YM, TSECHOE DJ. The effects of warming and added water on key processes of grassland carbon cycle[J]. Acta Ecologica Sinica, 2021, 41(4): 1668-1679. (in Chinese)
李博文, 王奇, 吕汪汪, 周阳, 姜丽丽, 刘培培, 孟凡栋, 张立荣, 张苏人, 阿旺, 李耀明, 斯确多吉, 汪诗平. 增温增水对草地生态系统碳循环关键过程的影响[J]. 生态学报, 2021, 41(4): 1668-1679.
[67]
ZHU YZ, LI YY, HAN JG, YAO HY. Effects of changes in water status on soil microbes and their response mechanism: a review[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4323-4332. (in Chinese)
朱义族, 李雅颖, 韩继刚, 姚槐应. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12): 4323-4332. DOI:10.13287/j.1001-9332.201912.031
[68]
LOOBY CI, TRESEDER KK. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest[J]. Soil Biology and Biochemistry, 2018, 117: 87-96. DOI:10.1016/j.soilbio.2017.11.014
[69]
de VRIES FT, GRIFFITHS RI, BAILEY M, CRAIG H, GIRLANDA M, GWEON HS, HALLIN S, KAISERMANN A, KEITH AM, KRETZSCHMAR M, LEMANCEAU P, LUMINI E, MASON KE, OLIVER A, OSTLE N, PROSSER JI, THION C, THOMSON B, BARDGETT RD. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9: 3033. DOI:10.1038/s41467-018-05516-7
[70]
GUHR A, BORKEN W, SPOHN M, MATZNER E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14647-14651. DOI:10.1073/pnas.1514435112
[71]
JIA YY, van der HEIJDEN MGA, WAGG C, FENG G, WALDER F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition[J]. Journal of Ecology, 2021, 109(9): 3171-3181. DOI:10.1111/1365-2745.13521
[72]
CROWE JH, CROWE LM, CHAPMAN D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose[J]. Science, 1984, 223(4637): 701-703. DOI:10.1126/science.223.4637.701
[73]
PREECE C, VERBRUGGEN E, LIU L, WEEDON JT, PENUELAS J. Effects of past and current drought on the composition and diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 131: 28-39. DOI:10.1016/j.soilbio.2018.12.022
[74]
BARNARD RL, OSBORNE CA, FIRESTONE MK. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 2013, 7(11): 2229-2241. DOI:10.1038/ismej.2013.104
[75]
BRANGARI AC, LYONNARD B, ROUSK J. Soil depth and tillage can characterize the soil microbial responses to drying-rewetting[J]. Soil Biology and Biochemistry, 2022, 173: 108806. DOI:10.1016/j.soilbio.2022.108806
[76]
MEISNER A, LEIZEAGA A, ROUSK J, BAATH E. Partial drying accelerates bacterial growth recovery to rewetting[J]. Soil Biology and Biochemistry, 2017, 112: 269-276. DOI:10.1016/j.soilbio.2017.05.016
[77]
POINTING SB, BELNAP J. Microbial colonization and controls in dryland systems[J]. Nature Reviews Microbiology, 2012, 10(8): 551-562. DOI:10.1038/nrmicro2831
[78]
NAYLOR D, DEGRAAF S, PURDOM E, COLEMAN-DERR D. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal, 2017, 11(12): 2691-2704. DOI:10.1038/ismej.2017.118
[79]
HERZOG C, HARTMANN M, FREY B, STIERLI B, RUMPEL C, BUCHMANN N, BRUNNER I. Microbial succession on decomposing root litter in a drought-prone Scots pine forest[J]. The ISME Journal, 2019, 13(9): 2346-2362. DOI:10.1038/s41396-019-0436-6
[80]
ANDERUD ZT, JONES SE, FIERER N, LENNON JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity[J]. Frontiers in Microbiology, 2015, 6: 24.
[81]
WU JB, WANG XD. Responses of soil enzyme activities to nitrogen addition and its impact factors at the alpine steppe of northern Tibet[J]. Acta Agrestia Sinica, 2021, 29(3): 555-562. (in Chinese)
吴建波, 王小丹. 藏北高寒草原土壤酶活性对氮添加的响应及其影响因素[J]. 草地学报, 2021, 29(3): 555-562.
[82]
WEI F, WANG HJ, QIU XW, ZHOU GX, YANG LL, GUO XM. Effects of simulated nitrogen deposition on soil enzyme activities in Cinnamomum camphora plantation[J]. Jiangsu Agricultural Sciences, 2019, 47(19): 129-133. (in Chinese)
魏枫, 王慧娟, 邱秀文, 周桂香, 杨丽丽, 郭晓敏. 模拟氮沉降对樟树人工林土壤酶活性的影响[J]. 江苏农业科学, 2019, 47(19): 129-133. DOI:10.15889/j.issn.1002-1302.2019.19.031
[83]
FREY SD, KNORR M, PARRENT JL, SIMPSON RT. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. DOI:10.1016/j.foreco.2004.03.018
[84]
SUI X, ZHANG RT, LIU YN, XU N, NI HW. Influence of simulation nitrogen deposition on soil microbial functional diversity of Calamagrostis angustifolia wetland in Sanjiang plain[J]. Acta Agrestia Sinica, 2016, 24(6): 1226-1233. (in Chinese)
隋心, 张荣涛, 刘赢男, 许楠, 倪红伟. 模拟氮沉降对三江平原小叶章湿地土壤微生物功能多样性的影响[J]. 草地学报, 2016, 24(6): 1226-1233.
[85]
WANG LJ, CHENG RM, XIAO WF, SUN PF, SHEN YF, ZENG LX, CHEN T. Effects of nitrogen addition on soil microbial biomass and enzyme activities of Pinus massoniana-Quercus variabilis mixed plantations in the Three Gorges Reservoir Area[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 42-50. (in Chinese)
王丽君, 程瑞梅, 肖文发, 孙鹏飞, 沈雅飞, 曾立雄, 陈天. 氮添加对三峡库区马尾松-栓皮栎混交林土壤微生物生物量和酶活性的影响[J]. 应用生态学报, 2022, 33(1): 42-50.
[86]
WANG C, LIU DW, BAI E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology and Biochemistry, 2018, 120: 126-133. DOI:10.1016/j.soilbio.2018.02.003
[87]
ZHANG TA, CHEN HYH, RUAN HH. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7): 1817-1825. DOI:10.1038/s41396-018-0096-y
[88]
LI SX, TAN ZJ, LIU TR, GUO JP. Effects of simulated nitrogen deposition on soil microbial carbon and nitrogen dynamics of Larix principis-rupprechtii plantation[J]. Journal of Soil and Water Conservation, 2020, 34(1): 268-274. (in Chinese)
李素新, 覃志杰, 刘泰瑞, 郭晋平. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响[J]. 水土保持学报, 2020, 34(1): 268-274. DOI:10.13870/j.cnki.stbcxb.2020.01.039
[89]
LU M, ZHOU XH, LUO YQ, YANG YH, FANG CM, CHEN JK, LI B. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 234-244.
[90]
ZHOU LY, ZHOU XH, ZHANG BC, LU M, LUO YQ, LIU LL, LI B. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis[J]. Global Change Biology, 2014, 20(7): 2332-2343. DOI:10.1111/gcb.12490
[91]
SHA MH, XU J, ZHENG ZC, FA KY. Enhanced atmospheric nitrogen deposition triggered little change in soil microbial diversity and structure in a desert ecosystem[J]. Global Ecology and Conservation, 2021, 31: e01879. DOI:10.1016/j.gecco.2021.e01879
[92]
CHEN YL, XU ZW, XU TL, VERESOGLOU SD, YANG GW, CHEN BD. Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2017, 115: 233-242. DOI:10.1016/j.soilbio.2017.08.024
[93]
VANCE ED, CHAPIN FS. Substrate limitations to microbial activity in taiga forest floors[J]. Soil Biology and Biochemistry, 2001, 33(2): 173-188. DOI:10.1016/S0038-0717(00)00127-9
[94]
RAMIREZ KS, CRAINE JM, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 2012, 18(6): 1918-1927. DOI:10.1111/j.1365-2486.2012.02639.x
[95]
EISENLORD SD, FREEDMAN Z, ZAK DR, XUE K, HE ZL, ZHOU JZ. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition[J]. Applied and Environmental Microbiology, 2013, 79(4): 1191-1199. DOI:10.1128/AEM.03156-12
[96]
SIMONIN M, LE ROUX X, POLY F, LERONDELLE C, HUNGATE BA, NUNAN N, NIBOYET A. Coupling between and among ammonia oxidizers and nitrite oxidizers in grassland mesocosms submitted to elevated CO2 and nitrogen supply[J]. Microbial Ecology, 2015, 70(3): 809-818. DOI:10.1007/s00248-015-0604-9
[97]
MA WB, JIANG SJ, ASSEMIEN F, QIN MS, MA BB, XIE Z, LIU YJ, FENG HY, DU GZ, MA XJ, LE ROUX X. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows[J]. Soil Biology and Biochemistry, 2016, 101: 195-206. DOI:10.1016/j.soilbio.2016.07.023
[98]
NIE YX, HAN XG, CHEN J, WANG MC, SHEN WJ. The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil[J]. Biogeosciences, 2019, 16(21): 4277-4291. DOI:10.5194/bg-16-4277-2019
[99]
LIU Y, GAO K, GUO ZH, LIU XY, BIAN RJ, SUN BB, LI J, CHEN JH. An antagonistic effect of elevated CO2 and warming on soil N2O emissions related to nitrifier and denitrifier communities in a Chinese wheat field[J]. Plant and Soil, 2022, 470(1): 97-110.
[100]
SCHIMEL J, BALSER TC, WALLENSTEIN M. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6): 1386-1394. DOI:10.1890/06-0219
[101]
SHEIK CS, BEASLEY WH, ELSHAHED MS, ZHOU XH, LUO YQ, KRUMHOLZ LR. Effect of warming and drought on grassland microbial communities[J]. The ISME Journal, 2011, 5(10): 1692-1700. DOI:10.1038/ismej.2011.32
[102]
LI GL, KIM S, HAN SH, CHANG HN, DU DL, SON Y. Precipitation affects soil microbial and extracellular enzymatic responses to warming[J]. Soil Biology and Biochemistry, 2018, 120: 212-221. DOI:10.1016/j.soilbio.2018.02.014
[103]
LIU WX, ALLISON SD, XIA JY, LIU LL, WAN SQ. Precipitation regime drives warming responses of microbial biomass and activity in temperate steppe soils[J]. Biology and Fertility of Soils, 2016, 52(4): 469-477. DOI:10.1007/s00374-016-1087-7
[104]
HU YL, WANG S, NIU B, CHEN QY, WANG J, ZHAO JX, LUO TX, ZHANG GX. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe[J]. Environmental Research, 2020, 189: 109917. DOI:10.1016/j.envres.2020.109917
[105]
LI D, XIAO X, SUN B, LIANG YT. Co-occurrence network of bacterial communities in mollisol soils under increasing hydrothermal conditions[J]. Acta Microbiologica Sinica, 2021, 61(6): 1715-1727. (in Chinese)
李东, 肖娴, 孙波, 梁玉婷. 水热增加下黑土细菌群落共生网络特征[J]. 微生物学报, 2021, 61(6): 1715-1727. DOI:10.13343/j.cnki.wsxb.20210142
[106]
LIN WQ, XUE L. Analysis of effects of nitrogen deposition and precipitation on soil microbial function diversity based on BIOLOG technique[J]. Acta Ecologica Sinica, 2020, 40(12): 4188-4197. (in Chinese)
林婉奇, 薛立. 基于BIOLOG技术分析氮沉降和降水对土壤微生物功能多样性的影响[J]. 生态学报, 2020, 40(12): 4188-4197.
[107]
WU WC, YUE P, CUI XQ, LI KH, LIU XJ. Response of soil microbial biomass carbon and nitrogen deposition to precipitation and temperature in the Gurbantunggut Desert[J]. Arid Zone Research, 2018, 35(3): 515-523. (in Chinese)
吴文超, 岳平, 崔晓庆, 李凯辉, 刘学军. 古尔班通古特沙漠土壤微生物碳氮对环境因子的响应[J]. 干旱区研究, 2018, 35(3): 515-523. DOI:10.13866/j.azr.2018.03.03
[108]
HUANG G, LI Y, SU YG. Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China[J]. Soil Biology and Biochemistry, 2015, 83: 52-56. DOI:10.1016/j.soilbio.2015.01.007
[109]
YAN GY, XING YJ, LÜ XT, XU LJ, ZHANG JH, DAI GH, LUO W, LIU GC, DONG XD, WANG QG. Effects of artificial nitrogen addition and reduction in precipitation on soil CO2 and CH4 effluxes and composition of the microbial biomass in a temperate forest[J]. European Journal of Soil Science, 2019, 70(6): 1197-1211.
[110]
XI NX, BLOOR JMG. Interactive effects of precipitation and nitrogen spatial pattern on carbon use and functional diversity in soil microbial communities[J]. Applied Soil Ecology, 2016, 100: 207-210. DOI:10.1016/j.apsoil.2015.11.030
[111]
CHEN XP, WANG GX, ZHANG T, MAO TX, WEI D, SONG CL, HU ZY, HUANG KW. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. The Science of the Total Environment, 2017, 601/602: 1389-1399. DOI:10.1016/j.scitotenv.2017.06.028
[112]
FANG C, LI FM, PEI JY, REN J, GONG YH, YUAN ZQ, KE WB, ZHENG Y, BAI XK, YE JS. Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment[J]. Agricultural and Forest Meteorology, 2018, 248: 449-457. DOI:10.1016/j.agrformet.2017.10.032
[113]
LIU XF, YANG ZJ, LIN CF, GIARDINA CP, XIONG DC, LIN WS, CHEN SD, XU C, CHEN GS, XIE JS, LI YQ, YANG YS. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?[J]. Agricultural and Forest Meteorology, 2017, 246: 78-85. DOI:10.1016/j.agrformet.2017.06.010
[114]
SUN SQ, WU YH, ZHANG J, WANG GX, DELUCA TH, ZHU WZ, LI AD, DUAN M, HE L. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283-292. DOI:10.1016/j.geoderma.2019.07.023
[115]
REICH PB, HOBBIE SE, LEE TD, RICH R, PASTORE MA, WORM K. Synergistic effects of four climate change drivers on terrestrial carbon cycling[J]. Nature Geoscience, 2020, 13(12): 787-793. DOI:10.1038/s41561-020-00657-1
[116]
THAKUR MP, del REAL IM, CESARZ S, STEINAUER K, REICH PB, HOBBIE S, CIOBANU M, RICH R, WORM K, EISENHAUER N. Soil microbial, nematode, and enzymatic responses to elevated CO2, N fertilization, warming, and reduced precipitation[J]. Soil Biology and Biochemistry, 2019, 135: 184-193. DOI:10.1016/j.soilbio.2019.04.020
[117]
SHEN FF, LIU Y, LUO CT, LIU WF, DUAN HL, LIAO YC, WU CS, FAN HB. Research progress on response and adaptation of plant and soil microbial community diversity to global change in terrestrial ecosystem[J]. Ecology and Environmental Sciences, 2019, 28(10): 2129-2140. (in Chinese)
沈芳芳, 刘影, 罗昌泰, 刘文飞, 段洪浪, 廖迎春, 吴春生, 樊后保. 陆地生态系统植物和土壤微生物群落多样性对全球变化的响应与适应研究进展[J]. 生态环境学报, 2019, 28(10): 2129-2140. DOI:10.16258/j.cnki.1674-5906.2019.10.025
[118]
ZHU Y, YU KL, WU Q, CHENG X, LI ZG, WANG ZW, ZHAO ML, WILKES A, BISSELLING T, HAN GD, REN HY. Seasonal precipitation and soil microbial community influence plant growth response to warming and N addition in a desert steppe[J]. Plant and Soil, 2023, 482(1): 245-259.
[119]
ZHENG JQ, CUI MM, WANG C, WANG J, WANG SL, SUN ZJ, REN FR, WAN SQ, HAN SJ. Elevated CO2, warming, N addition, and increased precipitation affect different aspects of the arbuscular mycorrhizal fungal community[J]. Science of the Total Environment, 2022, 806: 150522. DOI:10.1016/j.scitotenv.2021.150522
[120]
KARDOL P, CREGGER MA, CAMPANY CE, CLASSEN AT. Soil ecosystem functioning under climate change: plant species and community effects[J]. Ecology, 2010, 91(3): 767-781. DOI:10.1890/09-0135.1
[121]
CAREY JC, TANG JW, TEMPLER PH, KROEGER KD, CROWTHER TW, BURTON AJ, DUKES JS, EMMETT B, FREY SD, HESKEL MA, JIANG LF, MACHMULLER MB, MOHAN J, PANETTA AM, REICH PB, REINSCH S, WANG X, ALLISON SD, BAMMINGER C, BRIDGHAM S, et al. Temperature response of soil respiration largely unaltered with experimental warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13797-13802. DOI:10.1073/pnas.1605365113
[122]
THAKUR MP, REICH PB, HOBBIE SE, STEFANSKI A, RICH R, RICE KE, EDDY WC, EISENHAUER N. Reduced feeding activity of soil detritivores under warmer and drier conditions[J]. Nature Climate Change, 2018, 8(1): 75-78. DOI:10.1038/s41558-017-0032-6
[123]
MELILLO JM, BUTLER S, JOHNSON J, MOHAN J, STEUDLER P, LUX H, BURROWS E, BOWLES F, SMITH R, SCOTT L, VARIO C, HILL T, BURTON A, ZHOU YM, TANG J. Soil warming, carbon-nitrogen interactions, and forest carbon budgets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(23): 9508-9512. DOI:10.1073/pnas.1018189108
[124]
REICH PB, HOBBIE SE, LEE TD. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nature Geoscience, 2014, 7(12): 920-924. DOI:10.1038/ngeo2284
[125]
PHILIPPOT L, GRIFFITHS BS, LANGENHEDER S. Microbial community resilience across ecosystems and multiple disturbances[J]. Microbiology and Molecular Biology Reviews: MMBR, 2021, 85(2): e00026-e00020.
[126]
YUE K, YANG WQ, PENG Y, PENG CH, TAN B, XU ZF, ZHANG L, NI XY, ZHOU W, WU FZ. Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: a meta-analysis[J]. The Science of the Total Environment, 2018, 630: 181-188. DOI:10.1016/j.scitotenv.2018.02.213
[127]
REICH PB, SENDALL KM, STEFANSKI A, RICH RL, HOBBIE SE, MONTGOMERY RA. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 2018, 562(7726): 263-267. DOI:10.1038/s41586-018-0582-4
[128]
SU XL, LI YB, YANG B, LI Q. Effects of plant diversity on soil microbial community in a subtropical forest[J]. Chinese Journal of Ecology, 2018, 37(8): 2254-2261. (in Chinese)
宿晓琳, 李英滨, 杨波, 李琪. 植物多样性对亚热带森林土壤微生物群落的影响[J]. 生态学杂志, 2018, 37(8): 2254-2261. DOI:10.13292/j.1000-4890.201808.014
[129]
LI H, XU ZW, YANG S, LI XB, TOP EM, WANG RZ, ZHANG YG, CAI JP, YAO F, HAN XG, JIANG Y. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation[J]. Microbial Ecology, 2016, 71(4): 974-989. DOI:10.1007/s00248-016-0730-z
[130]
HICKS LC, RAHMAN MM, CARNOL M, VERHEYEN K, ROUSK J. The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation[J]. Soil Biology and Biochemistry, 2018, 124: 227-235. DOI:10.1016/j.soilbio.2018.05.027
[131]
YUE K, PENG Y, FORNARA DA, van MEERBEEK K, VESTERDAL L, YANG WQ, PENG CH, TAN B, ZHOU W, XU ZF, NI XY, ZHANG L, WU FZ, SVENNING JC. Responses of nitrogen concentrations and pools to multiple environmental change drivers: a meta-analysis across terrestrial ecosystems[J]. Global Ecology and Biogeography, 2019, 28(5): 690-724. DOI:10.1111/geb.12884
[132]
HE ZL, GENTRY TJ, SCHADT CW, WU LY, LIEBICH J, CHONG SC, HUANG ZJ, WU WM, GU BH, JARDINE P, CRIDDLE C, ZHOU JZ. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes[J]. The ISME Journal, 2007, 1(1): 67-77. DOI:10.1038/ismej.2007.2
[133]
HUANG XL, HUANG SJ, GUO LQ, LIN JF. Advances of metagenomics[J]. Microbiology, 2009, 36(7): 1058-1066. (in Chinese)
黄循柳, 黄仕杰, 郭丽琼, 林俊芳. 宏基因组学研究进展[J]. 微生物学通报, 2009, 36(7): 1058-1066. DOI:10.13344/j.microbiol.china.2009.07.008
[134]
PENG SL, GUO T, LIU GC. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China[J]. Soil Biology and Biochemistry, 2013, 57: 411-417. DOI:10.1016/j.soilbio.2012.10.026
[135]
MEENA M, YADAV G, SONIGRA P, NAGDA A, MEHTA T, SWAPNIL P, HARISH, MARWAL A, KUMAR S. Multifarious responses of forest soil microbial community toward climate change[J]. Microbial Ecology, 2022, 1-26.
土壤微生物群落对全球气候变化响应的研究进展
李怡佳 , 马俊伟 , 李玉倩 , 沈心怡 , 夏星辉