[1] |
GOU YC, WANG ZK, ZHANG ZP, WEI H, MENG PP, ZENG YH, DENG ZK, ZHOU J. Advance in role mechanisms of plant growth promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(6): 1-10. (in Chinese) 勾宇春, 王宗抗, 张志鹏, 魏浩, 孟品品, 曾艳华, 邓祖科, 周进. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2022, 28(6): 1-10. |
|
[2] |
HADRICH D. Microbiome research is becoming the key to better understanding health and nutrition[J]. Frontiers in Genetics, 2018, 9: 212. DOI:10.3389/fgene.2018.00212 |
|
[3] |
AGLER MT, RUHE J, KROLL S, MORHENN C, KIM ST, WEIGEL D, KEMEN EM. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology, 2016, 14(1): e1002352. DOI:10.1371/journal.pbio.1002352 |
|
[4] |
FRENCH E, KAPLAN I, IYER-PASCUZZI A, NAKATSU CH, ENDERS L. Emerging strategies for precision microbiome management in diverse agroecosystems[J]. Nature Plants, 2021, 7(3): 256-267. DOI:10.1038/s41477-020-00830-9 |
|
[5] |
HUO JH, BI SJ, YU XH, MA S, WANG WZ, WANG XY, WANG YJ. Research progress on the mechanism of plant growth promoting rhizobacteria[J]. Modern Agricultural Science and Technology, 2022(9): 90-96. (in Chinese) 霍佳慧, 毕少杰, 于欣卉, 马爽, 王文中, 王欣悦, 王彦杰. 植物根际促生菌作用机制研究进展[J]. 现代农业科技, 2022(9): 90-96. |
|
[6] |
HARBORT CJ, HASHIMOTO M, INOUE H, NIU YL, GUAN R, ROMBOLA AD, KOPRIVA S, VOGES MJEEE, SATTELY ES, GARRIDO-OTER R, SCHULZE-LEFERT P. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis[J]. Cell Host & Microbe, 2020, 28(6): 825-837.e6. |
|
[7] |
FINKEL OM, SALAS-GONZALEZ I, CASTRILLO G, LAW TF, CONWAY JM, JONES CD, DANGL JL. Root development is maintained by specific bacteria-bacteria interactions within a complex microbiome[J]. bioRxiv, 2019. DOI: 10.1101/645655.
|
|
[8] |
HERRERA PAREDES S, GAO T, LAW TF, FINKEL OM, MUCYN T, TEIXEIRA PJPL, GONZALEZ IS, FELTCHER ME, POWERS MJ, SHANK EA, JONES CD, JOJIC V, DANGL JL, CASTRILLO G. Design of synthetic bacterial communities for predictable plant phenotypes[J]. PLoS Biology, 2018, 16(2): e2003962. DOI:10.1371/journal.pbio.2003962 |
|
[9] |
HOGENHOUT SA, Van der HOORN RAL, TERAUCHI R, KAMOUN S. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(2): 115-122. DOI:10.1094/MPMI-22-2-0115 |
|
[10] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Prospecting the plant growth–promoting activities of endophytic bacteria Franconibacter sp. YSD YN 2 isolated from Cyperus esculentus L. var. sativus leaves[J]. Annals of Microbiology, 2022, 72(1): 1-15. DOI:10.1186/s13213-021-01656-2 |
|
[11] |
DURAN P, THIERGART T, GARRIDO-OTER R, AGLER M, KEMEN E, SCHULZE-LEFERT P, Hacquard S. Microbial interKingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4): 973-983. DOI:10.1016/j.cell.2018.10.020 |
|
[12] |
ZHANG RF. Rhizosphere microorganism: the second genome of plants with great potential in the green development of agriculture[J]. Biotechnology Bulletin, 2020, 36(9): 1-2. (in Chinese) 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
|
[13] |
PANG ZQ, CHEN J, WANG TH, GAO CS, LI ZM, GUO LT, XU JP, CHENG Y. Linking plant secondary metabolites and plant microbiomes: a review[J]. Frontiers in Plant Science, 2021, 12: 621276. DOI:10.3389/fpls.2021.621276 |
|
[14] |
OKUTANI F, HAMAMOTO S, AOKI Y, NAKAYASU M, NIHEI N, NISHIMURA T, YAZAKI K, SUGIYAMA A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community[J]. Plant, Cell & Environment, 2020, 43(4): 1036-1046. |
|
[15] |
HUANG WM. Study on the preparation of PGPR multiple bacterial agents and the field-promoting effect on chilli[D]. Guiyang: Master՚s Thesis of Guizhou University, 2020 (in Chinese). 黄文茂. PGPR复合菌剂的制备及对辣椒的田间促生研究[D]. 贵阳: 贵州大学硕士学位论文, 2020.
|
|
[16] |
HACQUARD S, GARRIDO-OTER R, GONZÁLEZ A, SPAEPEN S, ACKERMANN G, LEBEIS S, MCHARDY AC, DANGL JL, KNIGHT R, LEY R, SCHULZE-LEFERT P. Microbiota and host nutrition across plant and animal Kingdoms[J]. Cell Host & Microbe, 2015, 17(5): 603-616. |
|
[17] |
BHATTACHARYYA PN, JHA DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350. DOI:10.1007/s11274-011-0979-9 |
|
[18] |
FU YS, LI YC, XU ZH, SHAO JH, LIU YP, XUAN W, ZHANG RF. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnology Bulletin, 2020, 36(9): 42-48. (in Chinese) 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. |
|
[19] |
HU YJ, ZHU XL, DING YQ, DU BH, WANG CQ. Research progress on salt tolerance and growth-promoting mechanism of Bacillus[J]. Biotechnology Bulletin, 2020, 36(9): 64-74. (in Chinese) 胡玉婕, 朱秀玲, 丁延芹, 杜秉海, 汪城墙. 芽孢杆菌的耐盐促生机制研究进展[J]. 生物技术通报, 2020, 36(9): 64-74. |
|
[20] |
ZHANG YC, LIU FZ, WANG HB. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes[J]. Soil and Fertilizer Sciences in China, 2020(2): 1-9. (in Chinese) 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020(2): 1-9. |
|
[21] |
JI R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agricultural Science and Technology, 2013(8): 42-45. (in Chinese) 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013(8): 42-45. DOI:10.3969/j.issn.1001-1463.2013.08.017 |
|
[22] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Isolation, classification, and growth-promoting effects of Pantoea sp. YSD J2 from the aboveground leaves of Cyperus esculentus L. var. sativus[J]. Current Microbiology, 2022, 79(2): 66. DOI:10.1007/s00284-021-02755-8 |
|
[23] |
WANG Z, XU GY, MA PD, LIN YB, YANG XN, CAO CL. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage ( Brassica campestris ssp. chinensis)[J]. Frontiers in Microbiology, 2017, 8: 1270. DOI:10.3389/fmicb.2017.01270 |
|
[24] |
KHAN MS, ZAIDI A, WANI PA. Role of Phosphate Solubilizing Microorganisms in Sustainable Agriculture: A Review[M]. Sustainable Agriculture. Dordrecht: Springer Netherlands, 2009: 551-570.
|
|
[25] |
LIU H, WU XQ, YE JR, CHEN D. Phosphate-dissolving mechanisms of Pseudomonas fluorescens and its colonizing dynamics in the mycorrhizosphere of poplars[J]. Scientia Silvae Sinicae, 2021, 57(3): 90-97. (in Chinese) 刘辉, 吴小芹, 叶建仁, 陈丹. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 2021, 57(3): 90-97. |
|
[26] |
SUN Y, XING YQ, WANG H, GONG WF. Isolation and characterization of PGPR from Melilotus officinalis in Renbu County of Tibet[J]. Journal of Plateau Agriculture, 2020, 4(5): 510-516. (in Chinese) 孙玉, 邢瑜琪, 王红, 巩文峰. 西藏黄花草木樨根际溶磷菌筛选及其促生特性研究[J]. 高原农业, 2020, 4(5): 510-516. |
|
[27] |
da SILVA AV, de OLIVEIRA AJ, TANABE ISB, SILVA JV, Barros TWD, da SILVA MK, FRANçA PHB, LEITE J, PUTZKE J, MONTONE R, de Oliveira VM, ROSA LH, DUARTE AWF. Antarctic lichens as a source of phosphate-solubilizing bacteria[J]. Extremophiles, 2021, 25(2): 181-191. DOI:10.1007/s00792-021-01220-5 |
|
[28] |
SHENG XF, HUANG WY. Mechanism of potassium release from feldspar affected by the strain nbt of silicate bacterium[J]. Acta Pedologica Sinica, 2002, 39(6): 863-871. (in Chinese) 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报, 2002, 39(6): 863-871. DOI:10.3321/j.issn:0564-3929.2002.06.012 |
|
[29] |
HU J, YU JP, LIAN B. Capability and mechanism of potassium releasing from potassium-bearing minerals by Aspergillus niger[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(3): 277-285. (in Chinese) 胡婕, 郁建平, 连宾. 黑曲霉对含钾矿物的解钾作用与机理分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 277-285. DOI:10.3969/j.issn.1007-2802.2011.03.006 |
|
[30] |
LIU N. The separation of microbial fertilizer strains was promoted by the hydrolysis of phosphorus and potassium[D]. Shenyang: Master՚s Thesis of Shenyang Agricultural University, 2020 (in Chinese). 刘娜. 解磷解钾促生微生物肥料用菌株的分离[D]. 沈阳: 沈阳农业大学硕士学位论文, 2020.
|
|
[31] |
SUO YK, LIU LH, ZHANG L, LIU JL, QU S, CHEN TT, HU TX. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemporary Chemical Industry, 2021, 50(4): 924-929. (in Chinese) 索雲凯, 刘丽红, 张雷, 刘金霖, 屈霜, 陈彤彤, 胡天鑫. 解钾菌解钾作用研究进展[J]. 当代化工, 2021, 50(4): 924-929. DOI:10.3969/j.issn.1671-0460.2021.04.039 |
|
[32] |
YAN HX, ZHAO H, ZHU SF, XU XK, WANG DH, LIN M, LIU GL. Study on K-release effect of silicate Bacterium DMS3 on the promotion of K-feldspar and the growth of the mung bean[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17503-17504. (in Chinese) 闫华晓, 赵辉, 朱硕斐, 许秀坤, 王德虎, 林明, 刘桂丽. 硅酸盐细菌DMS3促进钾长石释钾及绿豆生长作用研究[J]. 安徽农业科学, 2009, 37(35): 17503-17504. DOI:10.3969/j.issn.0517-6611.2009.35.066 |
|
[33] |
SONG C, SONG SS, JIA ZH. Isolation, screening and identification of high efficient potassium resolving bacteria and its growth-promoting effects on cucumber in mountains[J]. Jiangsu Agricultural Sciences, 2020, 48(17): 266-270. (in Chinese) 宋聪, 宋水山, 贾振华. 高效解钾菌的分离筛选鉴定及其对山区黄瓜的促生效果[J]. 江苏农业科学, 2020, 48(17): 266-270. |
|
[34] |
XIE XQ. Screening of dominant combinations of nitrogen-fixing bacteria and its growth promoting effect on sugarcane[D]. Nanning: Master՚s Thesis of Guangxi University, 2021 (in Chinese). 谢显秋. 固氮菌优势组合筛选及其对甘蔗的促生长作用研究[D]. 南宁: 广西大学硕士学位论文, 2021.
|
|
[35] |
JIN HY, WANG H, ZHANG YH, HU TL, LIN ZB, LIU BJ, LIN XW, XIE ZB. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil[J]. Acta Microbiologica Sinica, 2021, 61(10): 3249-3263. (in Chinese) 靳海洋, 王慧, 张燕辉, 胡天龙, 林志斌, 刘本娟, 蔺兴武, 谢祖彬. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用[J]. 微生物学报, 2021, 61(10): 3249-3263. |
|
[36] |
DUAN SF, HUANG YN, WANG JB, SHU SY, ZHOU MC, TANG XM. Mutation breeding of Azotobacter chroococcum with high nitrogenase activity by atmospheric and room temperature plasma[J]. Journal of Agricultural Science and Technology, 2021, 23(5): 194-201. (in Chinese) 段赛菲, 黄艳娜, 王金斌, 束仕元, 周茂超, 唐雪明. 常压室温等离子体诱变选育高固氮酶活褐球固氮菌[J]. 中国农业科技导报, 2021, 23(5): 194-201. |
|
[37] |
MAN J, TANG B, DENG B, LI JH, HE YJ, ZHANG JL. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1): 59-71. (in Chinese) 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
|
[38] |
GLICK BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 2014, 169(1): 30-39. |
|
[39] |
BHOJIYA AA, JOSHI H, UPADHYAY SK, SRIVASTAVA AK, PATHAK VV, PANDEY VC, JAIN D. Screening and optimization of zinc removal potential in Pseudomonas aeruginosa-HMR1 and its plant growth-promoting attributes[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 468-477. |
|
[40] |
LI FY, LIU XY, YAN JT, CAI YF. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884. (in Chinese) 李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
|
[41] |
HAN LZ, ZHANG H, XU Y, LI Y, ZHOU J. Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere[J]. Archives of Microbiology, 2021, 203(5): 2279-2290. |
|
[42] |
SANGEETA P, SHIKHA G. Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep Islands of India and their ability to promote plant growth under saline conditions[J]. Journal of Biotechnology, 2020, 324: 183-197. |
|
[43] |
MAO JY, ZHANG X, NING FSX, ZHAO HT, MAO TY, CHENG Y, JIANG XM. Effects of different gibberellin treatments on yield and quality of Heracleum moellendorffii hance in winter greenhouse[J]. China Vegetables, 2021(11): 69-74. (in Chinese) 毛俊莹, 张雪, 宁方世新, 赵恒田, 毛同艳, 程瑶, 蒋欣梅. 不同赤霉素处理对冬季温室老山芹产量及品质的影响[J]. 中国蔬菜, 2021(11): 69-74. |
|
[44] |
LIU ZP, ZHANG XL, LI LB, XU N, HU Y, WANG C, SHI Y, LI DS. Isolation and characterization of three plant growth-promoting rhizobacteria for growth enhancement of rice seedling[J]. Journal of Plant Growth Regulation, 2021, 41: 1382-1393. |
|
[45] |
KANG SM, KHAN AL, WAQAS M, YOU YH, HAMAYUN M, JOO GJ, SHAHZAD R, CHOI KS, LEE IJ. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L[J]. European Journal of Soil Biology, 2015, 68: 85-93. |
|
[46] |
ZUBAIR M, HANIF A, FARZAND A, SHEIKH TMM, KHAN AR, SULEMAN M, AYAZ M, GAO XW. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat[J]. Microorganisms, 2019, 7(9): E337. |
|
[47] |
WANG DC, JIANG CH, ZHANG LN, CHEN L, ZHANG XY, GUO JH. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants[J]. International Journal of Molecular Sciences, 2019, 20(24): 6271. |
|
[48] |
VAISHNAV A, CHOUDHARY DK. Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU[J]. Journal of Plant Growth Regulation, 2019, 38(1): 333-342. |
|
[49] |
CHANG DM. Mechanisms of Bacillus spp. rhizosphere inoculation promoting growth of Pepper (Capsicum annuum L.)[D]. Beijing: Master's Thesis of Chinese Academy of Agricultural Sciences, 2010 (in Chinese). 常冬梅. 芽孢杆菌(Bacillus spp.)根际接种促进辣椒(Capsicum annuum L.)生长的作用机理[D]. 北京: 中国农业科学院硕士学位论文, 2010.
|
|
[50] |
CAO HL, HAO SH, CHU MX, QIU S, LUO MX, WANG MD. Screening and identification of a high-yielding siderophore strain and verification of allelopathic effect[J]. Journal of Henan Agricultural University, 2021, 55(4): 727-735. (in Chinese) 曹宏丽, 郝尚华, 楚梦晓, 邱爽, 罗梦香, 王明道. 1株高产铁载体菌株的筛选鉴定以及化感作用的验证[J]. 河南农业大学学报, 2021, 55(4): 727-735. |
|
[51] |
LEI P, HUANG J, HUANG BB, BI SY, GUO ZH, LIU QS, TANG Y. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from capscium[J]. Acta Laser Biology Sinica, 2020, 29(4): 379-384. (in Chinese) 雷平, 黄军, 黄彬彬, 毕世宇, 郭照辉, 刘清术, 唐滢. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用[J]. 激光生物学报, 2020, 29(4): 379-384. |
|
[52] |
GHAZY N, EL-NAHRAWY S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant[J]. Archives of Microbiology, 2020, 203(3): 1195-1209. |
|
[53] |
BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. |
|
[54] |
YIN CT, CASA VARGAS JM, SCHLATTER DC, HAGERTY CH, HULBERT SH, PAULITZ TC. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86. |
|
[55] |
XIONG YW, LI XW, WANG TT, GONG Y, ZHANG CM, XING K, QIN S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110374. |
|
[56] |
ZHANG ZY. Effects of root exudates on rhizosphere bacterial community during soybean growth[D]. Yangling: Master՚s Thesis of Northwest A & F University, 2020 (in Chinese). 张志英. 大豆生长过程中根系分泌物对根际细菌群落的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020.
|
|
[57] |
MHATRE PH, KARTHIK C, KADIRVELU K, DIVYA KL, VENKATASALAM EP, SRINIVASAN S, RAMKUMAR G, SARANYA C, SHANMUGANATHAN R. Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 119-128. |
|
[58] |
SONG Y, WILSON AJ, ZHANG XC, THOMS D, SOHRABI R, SONG SY, GEISSMANN Q, LIU Y, WALGREN L, HE SY, HANEY CH. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species[J]. Nature Plants, 2021, 7(5): 644-654. |
|
[59] |
FENG HC, ZHANG N, DU WB, ZHANG HH, LIU YP, FU RX, SHAO JH, ZHANG GS, SHEN QR, ZHANG RF. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions: MPMI, 2018, 31(10): 995-1005. |
|
[60] |
LIU Y, GAO J, BAI ZH, WU SH, LI XL, WANG N, DU XF, FAN HN, ZHUANG GQ, BOHU T, ZHUANG XL. Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria[J]. Microorganisms, 2021, 9(1): 161. |
|
[61] |
KHOURY E, FAYAD AA, SARKIS DK, FAHS H, GUNSALUS KC, AWAD MK. The microbiome of the Lebanese wild apple, Malus trilobata, is a rich source of potential biocontrol agents for fungal post-harvest pathogens of apples[J]. Current Microbiology, 2021, 78(4): 1388-1398. |
|
[62] |
CHEN S. Screening, identification and mechanism of soybean root rot biocontrol bacteria[D]. Harbin: Master՚s Thesis of Harbin Normal University, 2021 (in Chinese). 陈爽. 大豆根腐病生防菌的筛选鉴定及机制研究[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2021.
|
|
[63] |
WANG LY. Study on the biological characteristics, induced resistance, application technologies of bio-control bacterial B1619[D]. Nanjing: Master՚s Thesis of Nanjing Agricultural University, 2017 (in Chinese). 王璐瑶. 生防解淀粉芽胞杆菌B1619生物学特性、诱导抗病性和田间应用技术研究[D]. 南京: 南京农业大学硕士学位论文, 2017.
|
|
[64] |
LI YG, CAI YN, LIANG YB, JI PS, XU LK. Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea[J]. Postharvest Biology and Technology, 2020, 161(C). |
|
[65] |
XU SJ, WANG YX, HU JQ, CHEN XR, QIU YF, SHI JR, WANG G, XU JH. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone[J]. Food Control, 2021, 130: 108259. |
|
[66] |
YANG M. Isolation and screening of rhizosphere growth-promoting bacteria in pepper and disease resistance[D]. Shenyang: Master՚s Thesis of Shenyang Normal University, 2020 (in Chinese). 杨茉. 辣椒根际促生菌的分离筛选及抗病促生特性研究[D]. 沈阳: 沈阳师范大学硕士学位论文, 2020.
|
|
[67] |
RAHMAN M, ISLAM T, JETT L, KOTCON J. Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia[J]. Crop Protection, 2021, 145: 105630. |
|
[68] |
YANG QQ. Effects and mechanisms of Bacillus subtilis Y14 on peanut growth promotion and disease control[D]. Tai՚an: Master՚s Thesis of Shandong Agricultural University, 2016 (in Chinese). 杨倩倩. 枯草芽孢杆菌(Bacillus subtilis) Y14对花生的促生防病效果及其机理研究[D]. 泰安: 山东农业大学硕士学位论文, 2016.
|
|
[69] |
XIE SS. Mechanisms and identification of growth-promoting and antibacterial substances produced by Bacillus subtilis[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2015 (in Chinese). 谢珊珊. 芽孢杆菌促生抑菌物质鉴定及机理研究[D]. 南京: 南京农业大学博士学位论文, 2015.
|
|
[70] |
BOLIVAR-ANILLO HJ, GONZALEZ-RODRIGUEZ VE, CANTORAL JM, GARCIA-SANCHEZ D, COLLADO IG, GARRIDO C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea[J]. Biology, 2021, 10(6): 492. |
|
[71] |
KIM YS, LEE Y, CHEON W, PARK J, KWON HT, BALARAJU K, KIM J, YOON YJ, JEON Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides[J]. Scientific Reports, 2021, 11(6): 492. |
|
[72] |
WU JJ, HUANG JW, DENG WL. Phenylacetic acid and methylphenyl acetate from the biocontrol bacterium Bacillus mycoides BM02 suppress spore germination in Fusarium oxysporum f. sp. lycopersici[J]. Frontiers in Microbiology, 2020, 11: 569263. |
|
[73] |
AGGELI F, ZIOGAS I, GKIZI D, FRAGKOGEORGI GA, TJAMOS SE. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce[J]. BioControl, 2020, 65(6): 763-773. |
|
[74] |
DENG J, KONG SS, WANG F, LIU Y, JIAO JY, LU YY, ZHANG F, WU JR, WANG LC, LI XZ. Identification of a new Bacillus sonorensis strain KLBC GS-3 as a biocontrol agent for postharvest green mould in grapefruit[J]. Biological Control, 2020, 151: 104393. |
|
[75] |
GODEBO AT, GERMIDA JJ, WALLEY FL. Isolation, identification, and assessment of soil bacteria as biocontrol agents of pea root rot caused by Aphanomyces euteiches[J]. Canadian Journal of Soil Science, 2020, 100(3): 206-216. |
|
[76] |
ZHAO YY, JIANG TP, XU HY, XU GG, QIAN GL, LIU FQ. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiological Research, 2021, 242: 126624. |
|
[77] |
CONG YZ. Mixed culture fermentation of biocontrol microorganism on the control of plant soil-borne diseases, the effects of soil properties, microbial flora and postharvest fruits[D]. Jinan: Doctoral Dissertation of Shandong University, 2020 (in Chinese). 丛韫喆. 生防菌混合发酵液对植物土传病害防治、土壤性质微生物区系和采后果实品质的影响[D]. 济南: 山东大学博士学位论文, 2020.
|
|
[78] |
YAN L, KHAN RAA. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1): 5. |
|
[79] |
KURI A, MOIRANGHTEM I, GARG P. Control of Fusarium wilt of tomato by using biocontrol agent (Trichoderma spp.)[J]. Plant Cell Biotechnology and Molecular Biology, 2021, 559-570. |
|
[80] |
NAEIMI S, KHOSRAVI V, VARGA A, VAGVOLGYI C, KREDICS L. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease[J]. Agronomy, 2020, 10(9): 1258. |
|
[81] |
COSTA AC da, MIRANDA RF de, COSTA FA, Ulhoa CJ. Potential of Trichoderma piluliferum as a biocontrol agent of Colletotrichum musae in banana fruits[J]. Biocatalysis and Agricultural Biotechnology, 2021, 34: 102028. |
|
[82] |
HAO YM. Study on phytoremediation characteristics and rhizosphere degradation genes in petroleum-contaminated soil[D]. Shenyang: Master՚s Thesis of Shenyang Agricultural University, 2019 (in Chinese). 郝益民. 石油污染土壤中植物修复特性及根际微生物降解基因研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019.
|
|
[83] |
WEI XM. Impacts of biofertilizers and metal nanofertilizers on the rhizosphere microorganisms and herbal quality of Salvia miltiorrhiza[D]. Beijing: Master՚s Thesis of Peking Union Medical College, 2020 (in Chinese). 韦学敏. 生物肥料和金属纳米肥料对丹参根际微生物及药材品质的影响[D]. 北京: 北京协和医学院硕士学位论文, 2020.
|
|
[84] |
JIANG LF. The characteristic of microbial community in Elsholtzia splendens rhizosphere and the potential application in the remediation of Co-conataminated (copper, phenanthrene, polychlorinated biphenyls) soils[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2016 (in Chinese). 江龙飞. 海州香薷根际微生物群落结构特征及其在复合污染(铜、菲、多氯联苯)土壤修复中的潜在应用研究[D]. 南京: 南京农业大学博士学位论文, 2016.
|
|
[85] |
AMBUST S, DAS AJ, KUMAR R. Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments[J]. Current Research in Microbial Sciences, 2021, 2: 100031. |
|
[86] |
ANSARI FA, JABEEN M, AHMAD I. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant[J]. International Journal of Environmental Science and Technology, 2021, 18(12): 3855-3870. |
|
[87] |
ANSARI FA, AHMAD I, PICHTEL J. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10[J]. Applied Soil Ecology, 2019, 143: 45-54. |
|
[88] |
FITZPATRICK CR, SALAS-GONZALEZ I, CONWAY JM, FINKEL OM, GILBERT S, RUSS D, TEIXEIRA PJPL, DANGL JL. The plant microbiome: from ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74: 81-100. |
|
[89] |
SUN XL, XU ZH, XIE JY, HESSELBERG-THOMSEN V, TAN TM, ZHENG DY, STRUBE ML, DRAGOS A, SHEN QR, ZHANG RF, KOVACS AT. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2022, 16(3): 774-787. |
|
[90] |
KWAK MJ, KONG HG, CHOI K, KWON SK, SONG JY, LEE J, LEE PA, CHOI SY, SEO M, LEE HJ, JUNG EJ, PARK H, ROY N, KIM H, LEE MM, RUBIN EM, LEE SW, KIM JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100-1109. |
|
[91] |
CASTRILLO G, TEIXEIRA PJPL, PAREDES SH, LAW TF, DE LORENZO L, FELTCHER ME, FINKEL OM, BREAKFIELD NW, MIECZKOWSKI P, JONES CD, PAZ-ARES J, DANGL JL. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518. |
|
[92] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Comparative analysis on rhizosphere soil and endophytic microbial communities of two cultivars of Cyperus esculentus L. var. Sativus[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 2156-2168. |
|
[93] |
ZHANG XC, DIPPOLD MA, KUZYAKOV Y, RAZAVI BS. Spatial pattern of enzyme activities depends on root exudate composition[J]. Soil Biology and Biochemistry, 2019, 133: 83-93. |
|
[94] |
MA Y, OLIVEIRA RS, FREITAS H, ZHANG C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7: 918. |
|
[95] |
LIU YP, FENG HC, FU RX, ZHANG N, DU WB, SHEN QR, ZHANG RF. Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 785-797. |
|
[96] |
XIE KZ. Mechanism of Fusarium wilt and rhizosphere interaction mediated by root exudates in continuous cropping potato[D]. Lanzhou: Doctoral Dissertation of Gansu Agricultural University, 2021 (in Chinese). 谢奎忠. 连作马铃薯根系分泌物介导的枯萎病发生机制及根际互作[D]. 兰州: 甘肃农业大学博士学位论文, 2021.
|
|
[97] |
LV HF. Changes of root exudates in the wheat-watermelon intercropping system and its mechanism of resistance to watermelon Fusarium wilt[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019 (in Chinese). 吕慧芳. 小麦-西瓜间作体系中根系分泌物的变化及其对西瓜枯萎病抗性的影响机制[D]. 武汉: 华中农业大学博士学位论文, 2019.
|
|
[98] |
ZHANG FG. The effects and mechanisms of putative Trichoderma harzianum mutant T-E5 and its bio-organic fertilizer on growth of cucumber[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2015 (in Chinese). 张风革. 哈茨木霉诱变菌株T-E5及其生物有机肥对黄瓜生长的影响及机理研究[D]. 南京: 南京农业大学博士学位论文, 2015.
|
|
[99] |
YANG RX. The allelopathy of autotoxic compounds in muskmelon continuous cropping obstacle and mitigation mechanism[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2014 (in Chinese). 杨瑞秀. 甜瓜根系自毒物质在连作障碍中的化感作用及缓解机制研究[D]. 沈阳: 沈阳农业大学博士学位论文, 2014.
|
|
[100] |
TANG PJ. Isolation, screening of Bacillus safensis J2 from pigeon pea [Cajanus cajan (L.) millsp] and its plant growth promoting function[D]. Harbin: Master՚s Thesis of Northeast Forestry University, 2021 (in Chinese). 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究[D]. 哈尔滨: 东北林业大学硕士学位论文, 2021.
|
|
[101] |
CHEN YH, LI SS, LIU N, HE H, CAO XY, LV C, ZHANG K, DAI JL. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research, 2021, 28(18): 23036-23047. |
|
[102] |
SARABIA M, CAZARES S, GONZALEZ-RODRIGUEZ A, MORA F, CARREON-ABUD Y, Larsen J. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems[J]. Rhizosphere, 2018, 6: 67-73. |
|
[103] |
ZHAI ZG, HU QL, CHEN JR, LIU CX, GUO S, HUANG SQ, ZENG WA. Effects of combined application of organic fertilizer and microbial agents on tobacco soil and tobacco agronomic traits[J]. IOP Conference Series: Earth and Environmental Science, 2020, 594(1): 012023. |
|
[104] |
LV JL, LI TK, KOU CL. Effects of biomass charcoal and microbial fertilizer on improvement of acidified yellow cinnamon soil and corn growth[J]. Journal of Henan Agricultural Sciences, 2021, 50(6): 61-69. (in Chinese) 吕金岭, 李太魁, 寇长林. 生物质炭和微生物菌肥对酸化黄褐土农田土壤改良及玉米生长的影响[J]. 河南农业科学, 2021, 50(6): 61-69. |
|
[105] |
SHEN MC, LI JG, DONG YH, LIU H, PENG JW, HU Y, SUN Y. Profiling of plant growth-promoting metabolites by phosphate-solubilizing bacteria in maize rhizosphere[J]. Plants: Basel, Switzerland, 2021, 10(6): 1071. |
|
[106] |
SHAH R, AMARESAN N, PATEL P, JINAL HN, KRISHNAMURTHY R. Isolation and characterization of Bacillus spp. endowed with multifarious plant growth-promoting traits and their potential effect on tomato (Lycopersicon esculentum) seedlings[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4579-4587. |
|
[107] |
KUAI JL, MA YX, HOU D, ZHANG YX, YAO T, YU QW. Study on the effects of stabilized fertilizer combined with microbial agent on growth and quality of lettuce[J]. Agricultural Research in the Arid Areas, 2021, 39(2): 24-30. (in Chinese) 蒯佳琳, 马彦霞, 侯栋, 张玉鑫, 姚拓, 于庆文. 稳定性肥料配施微生物菌剂对莴笋生长及品质的影响研究[J]. 干旱地区农业研究, 2021, 39(2): 24-30. |
|
[108] |
COCETTA G, PASSERA A, VACCHINI V, SHAHZAD GIR, CORTELLINO G, PICCHI V, FERRANTE A, CASATI P, PIAZZA L. Use of microbial inoculants during cultivation maintain the physiological, nutritional and technological quality of fresh-cut romaine lettuce[J]. Postharvest Biology and Technology, 2020, 34. |
|
[109] |
KHAN A, SINGH AV. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat[J]. World Journal of Microbiology and Biotechnology, 2021, 37(12): 198. |
|
[110] |
GOPALAKRISHNAN S, SRINIVAS V, SAMINENI S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.)[J]. Biocatalysis and Agricultural Biotechnology, 2017, 11: 116-123. |
|
[111] |
SUN LP. Study on microbial diversity growth promoting bacteria with ACC deaminase activity in rhizosphere of Paeonia lactiflora pall. [D]. Yangzhou: Master՚s Thesis of Yangzhou University, 2021 (in Chinese). 孙兰平. 芍药根际微生物多样性及具ACC脱氨酶活性的促生菌研究[D]. 扬州: 扬州大学硕士学位论文, 2021.
|
|
[112] |
RASUL M, YASMIN S, YAHYA M, BREITKREUZ C, TARKKA M, REITZ T. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways[J]. Microbiological Research, 2021, 246: 126703. |
|
[113] |
ALI AF, SUHAIL FM, SALIM HA, ABED AH. Influence of Azotobacter chroococcum, Azospirillum brasilense, Trichoderma harzianum and Tri-calcium phosphate on hydroponically-grown barley grains[J]. IOP Conference Series: Earth and Environmental Science, 2021, 735(1): 012056. |
|
[114] |
HOUSH AB, POWELL G, SCOTT S, ANSTAETT A, GERHEART A, BENOIT M, WALLER S, POWELL A, GUTHRIE JM, HIGGINS B, WILDER SL, SCHUELLER MJ, FERRIERI RA. Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation[J]. The ISME Journal, 2021, 15(5): 1505-1522. |
|
[115] |
PREZ-RODRIGUEZ MM, PONTIN M, LIPINSKI V, BOTTINI R, PICCOLI P, COHEN AC. Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 1614-1624. |
|
[116] |
ALINC T, CUSUMANO A, PERI E, TORTA L, COLAZZA S. Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity[J]. Journal of Chemical Ecology, 2021, 47(4): 455-462. |
|
[117] |
PATKOWSKA E, MIELNICZUK E, JAMIOLKOWSKA A, SKWARYLO-BEDNARZ B, DOTEWICZ-WOZNIAK MB. The influence of Trichoderma harzianum rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot[J]. Agronomy, 2020, 10(11): 1637. |
|
[118] |
VITTI A, PELLEGRINI E, NALI C, LOVELLI S, SOFO A, VALERIO M, SCOPA A, NUZZACI M. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus[J]. Frontiers in Plant Science, 2016, 7: 1520. |
|
[119] |
LI T, ZHANG ZH, GUO YW, TIAN X, XU XW, QIU LY. Research progress and prospect of microbial fertilizer at domestic and abroad[J]. Jiangsu Agricultural Sciences, 2019, 47(10): 37-41. (in Chinese) 李涛, 张朝辉, 郭雅雯, 田香, 许晓莞, 邱立友. 国内外微生物肥料研究进展及展望[J]. 江苏农业科学, 2019, 47(10): 37-41. |
|