扩展功能
文章信息
- 周益帆, 白寅霜, 岳童, 李庆伟, 黄艳娜, 蒋玮, 何川, 王金斌
- ZHOU Yifan, BAI Yinshuang, YUE Tong, LI Qingwei, HUANG Yanna, JIANG Wei, HE Chuan, WANG Jinbin
- 植物根际促生菌促生特性研究进展
- Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria
- 微生物学通报, 2023, 50(2): 644-666
- Microbiology China, 2023, 50(2): 644-666
- DOI: 10.13344/j.microbiol.china.220446
-
文章历史
- 收稿日期: 2022-04-29
- 接受日期: 2022-07-25
- 网络首发日期: 2022-08-31
2. 上海海洋大学食品学院, 上海 201306;
3. 长江大学, 湖北 荆州 434300;
4. 兰州理工大学生命科学与工程学院, 甘肃 兰州 730050
2. College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China;
3. Yangtze University, Jingzhou 434300, Hubei, China;
4. School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
随着现代农业的发展,作物的生态种植逐步受到重视。在现代农业实践中,长期施用化肥和农药造成的土壤板结、土壤盐碱化、重金属污染、土壤微生物多样性破坏等诸多问题日益加剧,这给环境安全和食品安全造成了巨大的威胁[1]。植物根际作为植物与土壤进行物质和能量交换的直接界面,是微生物活动最活跃的区域。近年来,根际微生物组的巨大潜力在相关研究中得到了证实。与农作物相依相生的微生物组对农作物生长发育、健康状况、产量和品质至关重要,也是调节农作物与生物和非生物环境相互作用的重要因素[2-3]。根际微生物组作为农作物的第二基因组,是土壤-植物系统中生源要素、微量营养素迁移转化的引擎,土壤中有机质的分解与积累,氮素转化,磷、钾、铁、锌等营养素的释放,供给植物营养以刺激植物的生长,以及抑制病菌和改良土壤等过程无不与微生物的活动密切相关[4-5]。最新的研究表明,农作物的生理健康状况不仅依赖于农作物与微生物组之间的相互作用,同时也依赖于微生物组成员自身之间的信号传递及代谢相互作用[6-7]。农作物的表型及最终的适应性与根际微生物密切相关。根际微生物通过调节对养分的利用率[8]或产生植物生长调节物质[9-10]等直接或间接对农作物产生有益或有害的影响[11-12]。同时,农作物也可以通过分泌各种代谢产物来影响根际微生物,农作物的代谢产物与根际微生物之间的相互作用在一定程度上也会影响农作物的生理状况[13-14]。
一般来说,绝大多数农作物都生长在非常复杂的土壤环境中,在植物的根际区域存在着大量微生物。根据这些微生物对农作物的作用可以将其分为有益菌、有害菌及中性菌三大类[15]。在植物根际区域的微生物中,大约有2%−5%的微生物菌群(又称植物根际促生菌,plant growth-promoting rhizobacteria, PGPR)对植物的生长和健康状况有直接或间接的促进作用[15-17]。近年来,研究人员对PGPR调控植物根系发育[18]、耐盐促生[19]、溶磷促生[20]的分子机制进行了综述。截至目前,该领域获得的方法和结果对PGPR在重要农作物中的研究提供了技术支撑,PGPR研究为发展绿色健康农业提供了有效手段,但对于PGPR-植物互作的机理有待深入研究。
本文系统分析PGPR对宿主植物氮、磷、铁等重要元素营养吸收方面的功能,全面解析根际微生物的促生机制、根际微生物与农作物的互作及其在农业实践中的应用,以期为健康农业的发展提供全新的角度,并对该领域最新发展趋势进行展望。
1 根际微生物促生机制微生物对农作物产生的影响是多样的,一方面,微生物能通过调节养分利用率、分泌生长调节物质直接对农作物产生有益影响;另一方面,微生物可通过招募有益微生物、抑制病原菌、降解污染物等间接对农作物产生有利影响。
1.1 直接促进 1.1.1 调节养分利用率土壤中含有丰富的植物生长所必需的营养物质,但绝大部分以不易被植物直接吸收利用的形式存在。磷、钾、氮对植物的生长发育起着至关重要的作用,但是土壤中以能被植物直接吸收利用形式存在的磷、钾、氮只占很小一部分。大多数根际微生物具有溶磷、解钾、固氮等生理功能,其通过某些途径释放出可溶性钾、磷供作物吸收利用,也可以通过将空气中的N2转化为NH3以满足农作物对氮的需求,从而提高农作物对营养成分的吸收利用,促进农作物的生长发育[21-22]。
1) 溶磷作用
微生物溶磷是一个较为复杂的过程,不同菌株的溶磷机制也不尽相同。如图 1所示,微生物可通过NH4+的同化作用释放质子,降低土壤pH,从而促进磷的溶解;通过呼吸作用产生的CO2降低环境pH,促进磷的溶解;溶磷菌释放H2S与Fe-P发生交换反应,释放出磷酸根离子[15, 23-24]。刘辉等[25]对荧光假单胞菌的溶磷机制进行了探究,认为在对荧光假单胞菌菌株JW-JS1进行发酵培养的过程中,该菌株能分泌5种有机酸如草酸、酒石酸等,其中草酸在溶磷过程中发挥着重要的作用。草酸属共轭酸,能与土壤中的Ca2+、Fe3+、Al3+螯合,释放出与这些阳离子结合的磷酸根,从而提高有效磷的含量[24]。孙玉等[26]从西藏黄花草木樨中分离出2株溶磷菌RBX-7、RBX-10,这2株菌可以将难溶磷转化为有效磷,提高有效磷的利用率,从而促进黄花草木樨的生长发育。da Silva等[27]研究发现,假单胞菌11.LB15和1.LB34对磷酸盐具有增溶作用,其今后在农业领域的应用具有广泛的前景,并且有助于减少化肥的施用。
2) 解钾作用
植物对钾的吸收利用直接影响其生长发育,但土壤中能被植物自身直接利用的钾非常有限。根际微生物可以通过自身的生命活动提高土壤中可利用的钾含量,进而对作物产生有利影响。如图 2所示,解钾菌的解钾机制主要包括酸解作用、产生胞外多糖、解钾菌的吸附作用、晶格结构及多因素协同作用[28-29]等。解钾菌在代谢过程中产生的胞外多糖与矿物形成复合体,复合体通过离子键、氢键和共价键作用对有机酸和无机离子产生吸附作用,导致其微区域发生变化,从而释放出矿物中的K+;胞外多糖也会吸附SiO2,影响矿物溶解和结晶的动态平衡,从而促进K+的释放[28]。解钾菌产生的有机酸可结合质子降低土壤的pH,对矿物表面产生剥离作用,提高K+的溶解度[30]。解钾菌菌丝的生长会通过破坏矿物晶格的层间结构促使K+的释放[30-31]。闫华晓等[32]从不同土壤中筛选出了硅酸盐细菌,对其中的高效菌株DMS3进行发酵并用其发酵液浇灌绿豆,结果发现该菌具有较高的解钾能力,并能促进绿豆的生长,产生该现象的原因是硅酸盐细菌在液体培养过程中产生了某些促进绿豆生长的物质。盛下放等[28]对硅酸盐细菌NBT菌株进行了研究,在摇瓶发酵实验中发现NBT菌株发酵液中含有大量的氨基酸、有机酸、荚膜多糖,而且三者均能通过酸溶和络合作用对钾长石进行分解。胡婕等[29]研究表明,黑曲霉对含钾矿物中的钾具有降解作用,该作用是通过黑曲霉分泌的多糖、蛋白质、有机酸等协同作用实现的。宋聪等[33]从土壤中筛选到一株高效解钾菌32-2,发现利用该菌的发酵液浇灌黄瓜苗后黄瓜的产量增加了8.5%,其品质(可溶性固形物含量、维生素C等)也有了很大的提升。
3) 固氮作用
固氮菌作为一种被广泛报道的根际促生菌,其固氮能力在维持生态环境氮元素平衡中发挥着至关重要的作用,同时也是在植物生长过程中氮元素的重要输入途径。如图 3所示,根际促生菌固氮是通过固氮系统完成的,固氮系统中含有一种特殊的蛋白质——固氮酶,固氮菌利用固氮酶的催化作用,在ATP和电子的参与下,空气中N2的三价键被破坏,将其还原为NH3和H2[15]。固氮系统是由nifDK编码的钼铁蛋白和由nifH编码的铁蛋白两部分组成,这2种蛋白形成固氮复合物后才具有催化N2还原为NH3的功能[15]。谢显秋[34]将4株固氮菌进行单一及组合处理蔗地土壤,研究发现接种菌株可以改善甘蔗根际土壤环境,其中菌株DX120E能影响甘蔗氨基酸代谢通路,促进甘蔗的生长,这为不同菌属内生固氮菌在甘蔗促生中的应用和揭示内生固氮菌对甘蔗的促生机制等方面提供了理论依据。靳海洋等[35]、段赛菲等[36]通过对褐球固氮菌的培养特性和接种效果初步研究发现,该菌株具有较强固氮、促生潜力,具有潜在的开发应用价值,可为研究利用生物固氮提供微生物资源。
1.1.2 分泌生长调节物质某些微生物可以分泌一些植物生长调节物质,如植物激素、酶等,这些激素和酶通过调节植物的生长代谢作用于植物,对其生长发育起到促进作用。
1) IAA和ACC脱氨酶
如图 4所示,微生物利用色氨酸合成吲哚乙酸(indole-3-acetic acid, IAA),一方面,IAA可吸附在植物或根表面,或与植物本身产生的IAA共同作用于植物,直接促进植物的生长发育;另一方面,IAA也可诱导1-氨基环丙烷-1-羧酸(1-amino-1-cyclopropanecarboxylic acid, ACC)合成酶的活性,促进ACC在植物体内含量的增加。某些微生物可产生ACC脱氨酶,在ACC脱氨酶的作用下,从植物种子或根系渗出的ACC可被分解为能给微生物的生长、繁殖提供碳源和氮源的氨和α-丁酮酸,同时减少ACC的积累,从而导致植物体中乙烯含量的减少,促进植物根的伸长。
漫静等[37]对从不同地区羊草根际分离的微生物进行了研究,发现其中39株菌具有分泌IAA的能力;60株菌具有分泌ACC脱氨酶的能力,这些ACC脱氨酶通过抑制植物体内乙烯含量和为植物提供氮源促进植物生长[38]。Bhojiya等[39]研究表明,铜绿假单胞菌HMR1具有产IAA的能力,对植物促生特性有较高潜力。李福艳等[40]研究表明,芽孢杆菌YC9L、YC3172和YC5064具有高效分泌IAA的能力,而且其对玉米、生菜具有良好的促生作用。Han等[41]研究表明,产ACC脱氨酶的吡咯伯克霍尔德氏菌P10可通过产生IAA、铁载体等促进植物生长并增强非生物胁迫耐受性。Sangeeta等[42]研究发现,恶臭假单胞菌CO1和拟蕈状芽孢杆菌CO8可产生ACC脱氨酶,将其联合使用可使菜豆在盐胁迫下的光合叶绿素浓度、相对含水量和膜稳定性指数分别显著提高约100%、85%和40%,从而显著促进菜豆的生长。
2) 赤霉素
赤霉素(gibberellin, GA)是一种天然的植物生长调节剂,参与许多植物生长发育等多个生物学过程。如赤霉素处理可有效缩短山芹的萌芽时间,提高种子的萌发率,促进植物生长,以及提高作物产量和品质等[43]。Liu等[44]研究发现,分离自水稻根际土壤的3株芽孢杆菌(DD-2、DD-3和DD-4)通过20多种机制促进植物生长,其中最突出的是产生有价值的代谢物(如赤霉素),并通过盆栽试验验证了这3株菌均能促进水稻幼苗的生长。Kang等[45]研究发现,接种沙雷氏菌PEJ1011的辣椒在正常和低温条件生长均含有较高的内源GA含量,而且为了调节冷胁迫,PGPR的有益结合上调了辣椒植物内源脱落酸水平,同时降低了内源茉莉酸和水杨酸的含量,即产GA的沙雷氏菌PEJ1011显著改善了辣椒的生长特性,同时减轻了5 ℃低温胁迫下对辣椒的有害影响。
3) 脱落酸
脱落酸(abscisic acid, ABA)是一种植物生长和代谢活性抑制剂,在植物种子的萌发等方面发挥着非常重要的作用,也是缓解非生物和生物胁迫及促进植物生长的重要因素。据报道,某些PGPR能自身合成ABA并促进植物生长发育。例如,Zubair等[46]研究发现,嗜冷芽孢杆菌CJCL2和RJGP41能够正向调节ABA等植物激素的表达,从而显著改善植物在冷胁迫下的生长;Wang等[47]研究发现,解淀粉芽孢杆菌54可通过脱落酸调节途径诱导气孔关闭、上调压力响应基因(如lea、tdi65和ltpg2)的表达水平来提高番茄植物耐旱的能力;Vaishnav等[48]研究发现,通过接种假单胞菌可显著提高大豆植物脱落酸等激素水平,同时降低乙烯水平,从而增强大豆对干旱胁迫的耐受性。这些研究表明,PGPR对维持植物ABA的水平、缓解胁迫条件下植物的正常生长起着重要作用。
1.1.3 产生铁载体对三价铁具有很高的特异性亲和力的低分子量有机螯合剂可以吸附环境中的铁元素,并使元素可用于微生物细胞和/或植物宿主。铁是植物生命活动所必需的微量元素之一,作为参与细胞基本过程的物质,铁对植物的生长发育起着至关重要的作用。铁在自然界中以难被植物吸收利用的形式存在,某些微生物能产生铁载体,铁载体与Fe3+特异性螯合成螯合物而提高有效铁的含量,进而促进植物对铁的吸收利用;同时,在铁载体作用下,微生物与存在于根周围的病原菌竞争铁,使病原菌的生长因得不到足够的铁而受到抑制[49-50]。
孙玉等[26]发现,菌株RBX-7和RBX-10能通过产铁载体促进植物生长;雷平等[51]研究表明,对辣椒施用具有产铁载体能力的辣椒内生细菌PEB40后,辣椒的产量、株高等指标相较于对照组有明显的优势,说明该菌对辣椒有明显的促生效果;Ghazy等[52]研究发现,枯草芽孢杆菌MF497446和韩国假单胞菌MG209738具有较高的产铁载体活性,田间试验发现,经2种菌处理后,玉米的过氧化氢酶(catalase, CAT)、过氧化物酶(peroxidase, POD)和多酚氧化酶(polyphenol oxidase, PPO)活性及总叶绿素和类胡萝卜素含量比对照显著增加,同时观察到玉米茎中减少感染和增加围绕维管束的硬化鞘层厚度的效果最高,即玉米产量的生理生化参数显著增加。
1.2 间接促生 1.2.1 招募有益微生物各种微生物对农作物都有特定的功能,但影响农作物生长和健康的因素总是微生物群落及其相互作用。Berendsen等[53]提出在受病原菌或害虫攻击时,植物根际可通过分泌生物活性分子招募有益微生物,改变土壤微生物群落的结构和组成,从而促进植物生长并增强微生物活性以抑制有害因素对植物的侵害[54]。Xiong等[55]研究发现,在盐胁迫下,盐生植物幼苗可以从根际招募有益细菌,招募的弯曲芽孢杆菌KLBMP 4941通过复杂的植物生理调节机制在盐分胁迫下引发促生效应,帮助宿主抵抗盐胁迫。张志英[56]研究发现,大豆根系分泌的碳水化合物、黄酮类物质、萜类物质等化合物主要通过影响根际细菌的“组建”选择招募微生物,通过影响根际细菌的“稳定”,促进大豆对营养元素的吸收及对有害因素的抵抗。
植物在生长和发育的过程中会根据不同的生存环境分泌低分子化合物(有机酸、氨基酸、酚酸类、酚类化合物等)和高分子化合物(蛋白质、核酸、多糖等),其中某些特定的化合物可以作为信号分子调控根际微生物的活性,是植物-微生物根际串扰的主要调控因子。研究表明,根系分泌物会诱导微生物向渗出物移动,以招募有益微生物从而减少微生物病原体对植物的损害,或促进植物对养分的吸收利用[57]。关于微生物招募的报道有很多,但对微生物招募机制的报道却较少。
Song等[58]研究发现,假单胞菌中的FER受体激酶通过ROP2依赖的NADPH氧化酶活性调节根活性氧的产生来控制假单胞菌的丰度;同时,通过招募有益的假单胞菌来保护FER是植物在面对病原体攻击时招募有益微生物群的一种方式。Feng等[59]在菌株SQR9根系分泌物中鉴定出44种化合物,其中39种作为引诱剂招募SQR9在根际定殖。Liu等[60]在研究PGPR对油菜的生理生态特性的影响时发现,接种球形红假单胞菌显著增加了Proteobacteria sp.和Bacteroidetes sp.的相对丰度,接种解淀粉芽孢杆菌显著增加了Pseudomonadaceae sp.和Rhizobiaceae sp.的相对丰度,通过网络分析证明Pseudomonas sp.和Flavobacterium sp.在球形红假单胞菌和解淀粉芽孢杆菌处理组油菜的最后生长阶段的细菌相互作用中起到关键作用;接种嗜根寡养单胞菌可以招募固氮菌、蓝细菌和放线菌的成员,其丰度与接种量呈正相关,并通过促进氨化促进有机氮向无机氮的转化。
1.2.2 抑制病原菌植物病原菌是植物健康生长的一大障碍,解决这一障碍对植物健康至关重要。研究发现,某些微生物对病原微生物有明显的抑制作用,从而能保障植物健康[61]。微生物主要通过竞争、拮抗、诱导系统抗性、溶菌作用等途径抑制病原菌。竞争是指有益微生物通过与病原菌争夺营养物质(如Fe3+)从而阻止病原菌的生长繁殖,或占据病原菌的生存位点,防止病原菌浸染植物。拮抗是指一些有益微生物通过产生一些能抑制病原菌生长的抗菌物质从而抑制其正常的生长繁殖,这些物质包括抗生素、酶类物质、挥发性物质等[52]。某些微生物可分泌一些诱导物质,这些物质诱导植物产生一些抗病的反应(如产生结构抗性、物理屏障和生理生化变化等),提高植物的抗病能力,从而抑制病原菌。溶菌作用主要指有益菌通过产生具有细胞壁降解活性的抑菌酶(如几丁质酶、蛋白酶等)溶解病原菌细胞,导致病原菌死亡[62]。
如表 1所示,PGPR可以通过多种作用方式有效控制植物病害。目前国内外已有多株PGPR作为生防菌剂获得商品化生产。Khoury等[61]从黎巴嫩的2个地区采集的土壤中分离出273株菌,其中92株有效抑制了扩展青霉,87株有效抑制了灰葡萄孢,有效减轻了病原菌对采前和采后苹果的伤害。王璐瑶[63]研究表明,解淀粉芽胞杆菌B1619能通过产生抑菌酶纤维素酶、蛋白酶和嗜铁素抑制病原菌的生长。Rahman等[67]研究表明,枯草芽孢杆菌对番茄枯萎病有较好的作用,并且能有效提高番茄产量,具有较大的应用潜力。Ghazy等[52]利用双重培养技术测试了6种细菌菌株对玉米小斑病菌的拮抗活性,结果发现枯草芽孢杆菌和韩国假单胞菌通过产生水解酶、抗生素或其他一些次生代谢物等具有抗真菌活性的物质抑制玉米小斑病菌菌丝体生长,使玉米小斑病菌的生长减少了4.36 cm和4.26 cm,与其他测试菌株相比分别减少了51.55%和52.66%。陈爽[62]研究发现,贝莱斯芽孢杆菌WC3-3、芽孢杆菌MM2-24和MY4-25可分泌蛋白酶、纤维素酶及嗜铁素,溶解致病菌的细胞壁,从而对其进行防御;这3株菌也可以引起PPO、POD、CAT活性显著变化;盆栽试验表明用WC3-3、MM2-24和MY4-25处理24 h后接种致病菌离体防效分别为83.33%、58.33%和66.67%,盆栽防效分别为48.28%、34.78%和30.30%。这些研究为PGPR在农业生产中的应用提供了技术支撑。
Beneficial bacteria | Pathogens | Mechanism | Application field | References |
Bacillus amyloliquefaciens | Fusarium oxysporum | Increasing of defense enzyme activity and up-expression of defense gene in plant induced | Control of tomato wilt | [63] |
Botrytis cinerea | Lysis of pathogens and secretion of antagonistic substances | Control of postharvest gray mold on green bean | [64] | |
Fusarium graminearum Schw | Secretion of antagonistic substances | Control of wheat scab | [65] | |
Bacillus subtilis | Rhizoctonia solani | Increasing of defense enzyme activity and secretion of antagonistic substances | Prevention and treatment soil-borne diseases of chili | [66] |
Fusarium oxysporum | Increasing of defense enzyme activity and secretion of antagonistic substances | Control of tomato wilt | [67] | |
Helminthosporium maydis | Secretion of antagonistic substances | Control of Cephalosporium maydis in maize | [52] | |
Sclerotium rolfsii | Increasing of defense enzyme activity and secretion of antagonistic substances | Prevention and treatment of peanut sclerotium blight | [68] | |
Xanthomonas oryzae pv. oryzae | Secretion of antagonistic substances | Control of Xanthomonas oryzae pv. oryzae | [69] | |
Penicillium expansum, Botrytis cinerea | Secretion of antagonistic substances | Control of apple blue mold rot, apple grey mould and tomato grey mould | [61, 70] | |
Apple bitter rot | Secretion of antagonistic substances and up-expression of defense gene in plant induced | Control of apple bitter rot | [71] | |
Bacillus velezensis | Fusarium graminearum Schw | Lysis of pathogens, secretion of antagonistic substances and increasing of defense enzyme activity | Control of soybean root rot | [62] |
Bacillus mycoides | Fusarium oxysporum | Secretion of antagonistic substances | Control of tomato wilt | [72] |
Bacillus sp. | S. sclerotiorum, R. solani | Up-expression of defense gene in plant induced | Control of sclerotinia of lettuce | [73] |
Penicillium digitatum | Increasing of defense enzyme activity | Control of postharvest green mould in grapefruit | [74] | |
Pseudomonas fluorescens | Aphanomyces euteiches Dreehsler | Secretion of antagonistic substances | Control of pea root rot caused by Aphanomyces euteiches | [75] |
Lysobacter sp. | Colletotrichum fructicola | Up-expression of defense gene in plant induced and secretion of antagonistic substances | Control of pear anthracnose | [76] |
Arthrobacte sp. | S. sclerotiorum, R. solani | Up-expression of defense gene in plant induced | Control of sclerotinia of lettuce | [73] |
Rhizopus nigrican, Trichoderma pseudokoningii | Fusarium oxysporum | Increasing of defense enzyme activity and secretion of antagonistic substances | Control of cucumber fusarium wilt and botrytis cinerea | [77-78] |
Trichoderma sp. |
Pseudomonas solanacearum | Competing with pathogenic bacteria for nutrients and space, changing environmental conditions and secretion of antagonistic substances | Control of fusarium wilt of tomato | [79] |
Rhizoctonia solani | Secretion of antagonistic substances | Control of rice sheath blight | [80] | |
Colletotrichum musae | Secretion of antagonistic substances | Colletotrichum musae in banana | [81] |
植物通常生长在非常复杂的土壤环境中,但也可能存在一些对植物生长不利的无机及有机污染物。通过一定的手段降解土壤中的污染物从而减轻污染物对植物的伤害已成为解决植物健康的重要措施。郝益民[82]研究发现,紫茉莉和黑麦草根际微生物能通过表达降解基因nahAc降解土壤中多环芳烃污染物;韦学敏[83]研究发现,微生物菌剂的施用可显著增加具有重金属生物修复潜力的微生物及具有有机污染物降解能力微生物的丰度,从而减少了重金属Pb、Cd等在丹参药材中的积累,提高了丹参品质;江龙飞[84]研究发现,香薷根际微生物中存在一些有机物降解菌,对复合污染土壤有一定的修复潜力;Ambust等[85]研究发现,假单胞菌SA3可产生生物表面活性剂,生物表面活性剂通过形成提高降解速率的乳液来增强细菌对石油的疏水性,也可通过降解有机化合物来提高植物对污染物的免疫力,还可以有效地缓解植物生长发育后的压力从而发挥修复能力;玉米发芽实验表明,SA3处理可以有效地处理石油污染土壤,提高玉米植株的化学成分和生长参数。
1.2.4 缓解非生物胁迫植物在整个生命周期中面临着干旱、盐分、寒冷和高温等各种各样的环境压力,这也是植物面临的主要非生物胁迫。这种非生物胁迫通过多种方式影响植物的形态、生理和生化等多种属性,可能会对作物产量造成巨大的损失。有研究证明PGPR通过影响生化(抗氧化系统)和生理(光合属性)系统来保护作物免受非生物胁迫[86]。大多数微生物通过生物膜与生物和非生物表面相关联。先前的研究表明,PGPR生物膜的形成在保护植物免受非生物和生物胁迫方面起着至关重要的作用[47]。PGPR经常存在于根际并在植物根部形成生物膜状结构以对抗压力。Ansari等[86]研究表明,接种产氮假单胞菌FAP5的小麦植株在干旱胁迫下生长,其生长属性、光合色素效率、抗氧化酶活性和其他生理属性均有显著改善;在干旱胁迫条件下,FAP5的生物膜发育显著增强,并且通过活菌计数和扫描电子显微镜证实该菌株可在根部定殖,进而有效缓解小麦植株的干旱胁迫。Ansari等[87]研究发现,在盐胁迫条件下,接种短小芽孢杆菌FAB10的小麦,其生长参数及其他与光合作用、蒸腾作用和植物组织中脯氨酸含量有关的生化特性,均比未接种的小麦有显著改善,表明接种FAB10有助于缓解小麦植株的NaCl胁迫。上述研究表明,PGPR是一种有效缓解非生物胁迫的途径,将PGPR引入农业生产中,合理施用PGPR对于解决当下非生物胁迫带给农业的威胁提供了新思路。
2 微生物与农作物互作如图 5所示,微生物与农作物之间的互作较为复杂。一方面,根通过分泌一些代谢物培养出各种各样的微生物,形成了根茎层的微生物群落;另一方面,这些微生物群落也会通过自身的代谢活动作用于植物本身,引起植物自身生理状况和应激能力的变化[14, 88-89]。
2.1 植物根系分泌物对根际微生物的影响植物分泌的代谢物可调节植物根茎区域的微生物群落,一方面,根系分泌物会诱导微生物向渗出物移动,以招募有益微生物促进植物生长和缓解生态压力;或刺激已有的细菌对其他微生物及线虫等假体腔动物的生物防治和竞争优势,以减少微生物病原体对植物的损害,并增强植物对养分的吸收利用;另一方面,植物根系分泌物中的异黄酮等会对根系有益菌的聚集产生抑制作用,从而对植物产生不利的影响[57, 90-92]。
2.1.1 有利影响根系分泌物能刺激细胞外酶,如蛋白酶、水解酶等的产生,这些酶是植物和微生物组有用的工具,可以降解复杂的有机物质并用于植物和微生物的营养吸收[93]。已知根系分泌物通过质子(H+)释放引起的酸化或形成有机/氨基酸-金属/矿物复合物、根际酶的电子转移(例如氧化还原反应),间接刺激根际微生物活动(生长、繁殖)来增强金属和营养物质的流动性,从而提高植物修复效率[94]。Xiong等[55]研究表明,植物根系分泌的有机酸(如硬脂酸、棕榈酸、棕榈烯酸和油酸等)能通过促进细菌的生长、趋化性和定殖招募有益微生物,招募的弯曲芽孢杆菌KLBMP 4941可促进叶绿素的积累,增强光合作用,增加渗透调节剂含量,增强类黄酮和抗氧化酶,调节Na+/K+稳态,帮助宿主改善盐胁迫损伤。Feng等[59]从经过充分研究的PGPR菌株SQR9的98种根系分泌物的测试成分中鉴定出39种化学引诱剂和5种化学驱虫剂,包括氨基酸、有机酸和糖,基因互补、趋化性测定和等温滴定量热分析表明,McpA主要负责感知有机酸和氨基酸,而McpC主要负责氨基酸,这2种化学感受器在SQR9的根际趋化性中起重要作用。Liu等[95]研究发现,黄瓜根系分泌物中的d-半乳糖对贝莱斯芽孢杆菌SQR9有较强的引诱作用,增强了SQR9的根定殖,还能显著增强SQR9的生物膜形成,说明d-半乳糖是植物与SQR9相互作用的重要信号。
2.1.2 不利影响植物根系分泌物具有两面性,某些根系分泌物会对植物本身及其生长环境中的微生物产生不良影响,也可促进病原菌的生长发育。谢奎忠[96]研究发现,连作马铃薯根系分泌物中的苹果酸和棕榈酸对马铃薯生长表现出自毒作用,并且能显著增强尖孢镰孢菌的发育并加重马铃薯枯萎病发生;盆栽试验表明,在浓度0.05−0.50 mmol/L范围内,马铃薯枯萎病的发病级别和病情指数随浓度的增加显著提高;吕慧芳[97]研究发现,对羟基苯甲酸、阿魏酸和肉桂酸能提高西瓜尖孢镰刀菌的产孢量、促进孢子萌发和菌丝生长,而且表现出剂量效应;Okutani等[14]研究发现,大豆根系分泌的异黄酮会对大豆根系区域微生物的聚集产生抑制作用;张风革[98]研究发现,黄瓜根系分泌的酚酸类化合物(如没食子酸、对羟基苯甲酸、香草酸等)可促进病原菌尖孢镰刀菌孢子的萌发,从而使黄瓜感染病原菌;杨瑞秀[99]研究发现,甜瓜根系分泌的阿魏酸、苯甲酸和肉桂酸对尖孢镰孢菌致病力有促进作用,同时使细菌种群多样性明显下降,从而对甜瓜的生长产生不利影响。
2.2 根际微生物对农作物的影响植物的根系为土壤中部分微生物的传播提供了有利的生态环境,同时,这些微生物利用与根系定殖相关的基因,通过操控养分获取、信号传导、其他微生物的生长等方式影响植物根系。细菌可通过分泌果胶酶和纤维素酶降解植物细胞壁,促进细菌在植物细胞间隙的迁徙,从而在植物细胞间隙定殖[100]。微生物在根际的定殖受多种因素的影响,如营养条件、环境条件等,对于根际定殖的微生物,植物根系分泌物是主要的营养来源[49]。人们认为微生物成功定殖是PGPR对植物造成影响的基础,而趋化性是PGPR在植物根际定殖的先决条件,形成生物膜是PGPR有效定殖在植物根部的关键步骤。根定殖是由PGPR高效利用碳源和形成生物膜的能力促成的,细菌在植物根部建立生物膜后会分泌代谢物,增加有益菌(如假单胞菌)的丰度。通过形成紧密相关的生物膜,它们共享细胞外基质和必需代谢物,从而增加它们在根际的适应性,成功定殖的微生物通过根系对植物产生各种各样的影响。
3 微生物在农业实践中的应用随着科技的发展和社会的进步,以及人民生活水平的不断提高,对粮食的需求也大幅增加。因此,人们开始施用一些化学肥料、农药来提高农作物的产量和质量,以满足对农作物的产量和质量的高需求。一方面,化学肥料具有快速提高农作物产量的特点;另一方面,长期施用化学肥料会破坏土壤微生物的多样性并影响微生物总量、改变或削弱微生物群落的生物功能、破坏农作物与微生物或者微生物与微生物之间的有益关系[4]。因此,人们为了改善长期施用化学肥料、农药而产生的负面影响,同时提高农作物产量和质量,开发了微生物菌剂和微生物肥料。将微生物菌剂应用于农业实践是该领域学者研究的热点,实践证明,微生物菌剂在农业中的应用不仅有利于农作物产量和品质改善,同时也能改善土壤环境,解决长期施用化肥而产生的弊端。
目前,微生物菌剂在农业、污染物降解、堆肥等领域都得到了普遍的应用。应用于农业的PGRP通过多种途径从多方面改善农作物及其生长环境。Chen等[101]研究表明,对小麦施用菌剂后小麦产量和土壤中可用氮含量均显著增加,表明微生物菌剂的施用可以促进作物生长和改善土壤环境;Sarabia等[102]研究了根际酵母对植物生长的促进特性及其对玉米农田生态系统土壤特性和作物周期的响应,结果发现根际酵母能改善玉米植株的枝条和根系生长,还能保持植株健康并增加土壤肥力;Zhai等[103]研究发现,有机肥料和微生物菌剂的联合使用能有效增加烟草的株高、叶片数、根粗等农艺性状,对土壤性质及微生物数量也起到明显的改善作用;吕金岭等[104]以酸化黄褐土农田土壤为研究对象,开展桶栽玉米试验,对其进行不施肥、施用化肥、施用微生物菌剂(高、中、低)处理,结果发现微生物菌剂处理组玉米的光合生理指标显著提高,而且在收获玉米后土壤pH、有机质含量及交换性钠、钾、镁等均显著提升,表明微生物菌剂有利于玉米的生长,也改善了黄褐土农田土壤的酸化问题;Shen等[105]研究发现,经微生物菌剂处理的玉米根系多胺、有机酸、醛类等含量显著增加,多胺在植物发育和生长过程中调节了多种生物过程,包括根生长、细胞分裂和基因表达,增强了植物对酸和干旱胁迫的抗性,调节根系,促进茎部发育;有机酸参与调节植物生长发育的多个过程;苯乙醛由于其挥发性,易转化为苯乙醇和苯乙酸,从而增加了调节植物生长的生物活性;Ghazy等[52]研究发现,用枯草芽孢杆菌处理玉米植株能显著提高其抗氧化酶活性(CAT、POD和PPO)以及总叶绿素和类胡萝卜素含量。
Shah等[106]研究发现,用芽孢杆菌处理番茄能提高番茄种子的发芽率、幼苗活力指数和株高、根长、鲜重等生长参数;蒯佳琳等[107]通过对莴笋施用微生物菌剂发现,相较于施用化学肥料,莴笋的VC含量、可溶性蛋白质含量及其产量均有显著提高,表明微生物菌剂具有较好地提高农作物产量和品质的效果;Shen等[105]研究发现,柠檬酸杆菌M16和安全芽孢杆菌M44的组合在3种微生物处理中对玉米幼苗的促生效果最好;Xiong等[55]研究发现,接种KLBMP 4941可促进盐生植物(柠檬)叶绿素的积累,从而增强光合作用,增加渗透调节剂含量,增强黄酮类和抗氧化酶活性,并调节Na+/K+稳态,帮助宿主改善盐分胁迫损害;Cocetta等[108]对鲜切罗曼生菜的研究发现,在种植鲜切罗曼生菜期间,对其施用微生物菌剂有助于维持保质期叶片的营养和口感等,表明接种微生物菌剂有效抑制了某些病原菌的生长繁殖。根际促生菌在农业中应用较广泛,其中应用最多的是芽孢杆菌,目前PGPR在农业中的应用情况如表 2所示,这些研究有利于深入了解根际促生菌,为使用PGPR作为化学肥料和农药的替代品提供了参考。
Latin name | Application field | References |
Bacillus sp. | Tomato, sugarcane | [34, 106] |
Bacillus amyloliquefaciens | Tomato, oilseed rape, lettuce | [60, 63, 108] |
Bacillus velezensis | Soybean, cucumber, chili | [15, 62, 95] |
Bacillus licheniformis | Chili | [49] |
Paenibacillus polymyxa | Chili | [49] |
Bacillus paramycoides | Bean | [42] |
Pseudomonas putida | Bean, arabidopsis, chili | [15, 42, 50] |
Sinorhizobium meliloti | Cucumber | [32] |
Bacillus massiliogorillae | Corn, lettuce | [40] |
Bacillus badius | Corn, lettuce | [40] |
Burkholderia pyrrocinia | Tea | [41] |
Pseudomonas sp. | Tea, wheat, chickpea | [51, 109-110] |
Bacillus subtilis | Corn, tomato | [52, 64] |
Pseudomonas koreensis | Corn | [52] |
Bacillus flexus | Lemon, chili | [15, 55] |
Stenotrophomonas rhizophila | Oilseed rape | [60] |
Rhodobacter sphaeroides | Oilseed rape | [60] |
Bacillus safensis | Pigeon pea, corn, arabidopsis | [100, 105] |
Cryptococcus flavus | Corn | [102] |
Solicoccozyma aeria | Corn | [102] |
Citrobacter sp. | Corn, Paeonia lactiflora Pall | [105, 111] |
Paenibacillus pasadenensis | Lettuce | [108] |
Pseudomonas syringae | Lettuce | [108] |
Burkholderia cepacian | Chili | [15] |
Pantoea sp. | Wheat, chickpea | [110, 112] |
Ochrobactrum sp. | Wheat | [112] |
Herbaspirilum sp. | Paeonia lactiflora Pall | [111] |
Klebsiella sp. | Paeonia lactiflora Pall, sugarcane | [34, 111] |
Azotobacter chroococcum | Barley grains | [113] |
Azospirillum brasilense | Barley grains, corn, tomato | [113-115] |
Pseudomonas fluorescens | Tomato, poplars | [25, 115] |
Serratia marcescens | Wheat | [109] |
Streptomyces chartreusi | Sugarcane | [34] |
Trichoderma harzianum | Tomato, carrot, cucumber | [116-118] |
PGPR的定殖是影响其田间效果的重要因素,也是研究者们关注的焦点之一。PGPR通过趋化性和运动性感知植物根系分泌物并向根际迁移,再通过形成生物被膜进行定殖[1]。研究者们通过荧光标记法跟踪目标菌株,再利用共聚焦激光扫描显微镜观察根定殖[89],或直接通过活菌计数法判断PGPR在植物根际的定殖情况[47]。近年来,关于PGPR在植物根际的定殖机理已取得了部分进展,但由于植物根际的差异性、生长环境的复杂性,PGPR在实际中的应用效果并不理想。植物根系分泌物和PGPR分泌物作为PGPR在植物根部定殖的“信使”,种类繁多、数量微小、变化多样,难以被准确检测到,使得解析PGPR在植物根际的定殖异常复杂,给该领域的研究带来了巨大挑战。因此,利用基因工程、宏基因组、转录组和代谢组等方法深入探索PGPR的定殖机制,积极推进PGPR的应用,将在农业生产中起到举足轻重的作用。
我国是农业大国,对微生物肥料的需求量巨大,但目前我国成功应用于农业实践的肥料规模较小,可用种类较为局限,严重阻碍了农业可持续发展。为了解决过度使用化肥带来的作物产量、质量下降等问题,迫切需要一种对环境友好、无害和可持续的解决办法。PGPR因其兼具促生和生防的功能而受到广泛关注。不同PGPR功效各不相同,研究表明,多种PGPR协同施用强化了应用效果,增加了生物多样性[15]。尽管如此,PGPR目前在农业生产中还存在一些问题。许多PGPR在高接种率的可控条件下产生了良好的效益,但PGPR的田间应用效果随气候、土壤类型和其他环境因素而变化,将实验阶段效果良好的PGPR应用于田间时使用效果和稳定性较差,这可能是由于田间土壤环境相对复杂[119],不利于实验菌种充分发挥作用。因此,需要进一步的研究来了解环境因素(如土壤类型、养分水平和环境胁迫等)对PGPR的影响,探索PGPR在复杂环境中的生长规律,强化PGPR在复杂环境中的适应性。此外,了解PGPR在复杂的田间环境下赋予寄主的效益和本地微生物群落如何与引入的PGPR相互作用,以期为有效利用PGPR以充分发挥作用提供重要见解。今后,需要科研工作者在PGRP探索中利用更多新技术,并挖掘更多PGPR相关信息,以推进PGPR的潜在应用。随着科学技术水平的不断提高,以及农业可持续发展的倡议下,充分利用PGPR的有益特性,开发安全、持续、环保的新型生物菌剂势在必行。
[1] |
GOU YC, WANG ZK, ZHANG ZP, WEI H, MENG PP, ZENG YH, DENG ZK, ZHOU J. Advance in role mechanisms of plant growth promoting rhizobacteria[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(6): 1-10. (in Chinese) 勾宇春, 王宗抗, 张志鹏, 魏浩, 孟品品, 曾艳华, 邓祖科, 周进. 植物根际促生菌作用机制研究进展[J]. 应用与环境生物学报, 2022, 28(6): 1-10. |
[2] |
HADRICH D. Microbiome research is becoming the key to better understanding health and nutrition[J]. Frontiers in Genetics, 2018, 9: 212. DOI:10.3389/fgene.2018.00212 |
[3] |
AGLER MT, RUHE J, KROLL S, MORHENN C, KIM ST, WEIGEL D, KEMEN EM. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology, 2016, 14(1): e1002352. DOI:10.1371/journal.pbio.1002352 |
[4] |
FRENCH E, KAPLAN I, IYER-PASCUZZI A, NAKATSU CH, ENDERS L. Emerging strategies for precision microbiome management in diverse agroecosystems[J]. Nature Plants, 2021, 7(3): 256-267. DOI:10.1038/s41477-020-00830-9 |
[5] |
HUO JH, BI SJ, YU XH, MA S, WANG WZ, WANG XY, WANG YJ. Research progress on the mechanism of plant growth promoting rhizobacteria[J]. Modern Agricultural Science and Technology, 2022(9): 90-96. (in Chinese) 霍佳慧, 毕少杰, 于欣卉, 马爽, 王文中, 王欣悦, 王彦杰. 植物根际促生菌作用机制研究进展[J]. 现代农业科技, 2022(9): 90-96. |
[6] |
HARBORT CJ, HASHIMOTO M, INOUE H, NIU YL, GUAN R, ROMBOLA AD, KOPRIVA S, VOGES MJEEE, SATTELY ES, GARRIDO-OTER R, SCHULZE-LEFERT P. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis[J]. Cell Host & Microbe, 2020, 28(6): 825-837.e6. |
[7] |
FINKEL OM, SALAS-GONZALEZ I, CASTRILLO G, LAW TF, CONWAY JM, JONES CD, DANGL JL. Root development is maintained by specific bacteria-bacteria interactions within a complex microbiome[J]. bioRxiv, 2019. DOI: 10.1101/645655.
|
[8] |
HERRERA PAREDES S, GAO T, LAW TF, FINKEL OM, MUCYN T, TEIXEIRA PJPL, GONZALEZ IS, FELTCHER ME, POWERS MJ, SHANK EA, JONES CD, JOJIC V, DANGL JL, CASTRILLO G. Design of synthetic bacterial communities for predictable plant phenotypes[J]. PLoS Biology, 2018, 16(2): e2003962. DOI:10.1371/journal.pbio.2003962 |
[9] |
HOGENHOUT SA, Van der HOORN RAL, TERAUCHI R, KAMOUN S. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(2): 115-122. DOI:10.1094/MPMI-22-2-0115 |
[10] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Prospecting the plant growth–promoting activities of endophytic bacteria Franconibacter sp. YSD YN2 isolated from Cyperus esculentus L. var. sativus leaves[J]. Annals of Microbiology, 2022, 72(1): 1-15. DOI:10.1186/s13213-021-01656-2 |
[11] |
DURAN P, THIERGART T, GARRIDO-OTER R, AGLER M, KEMEN E, SCHULZE-LEFERT P, Hacquard S. Microbial interKingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4): 973-983. DOI:10.1016/j.cell.2018.10.020 |
[12] |
ZHANG RF. Rhizosphere microorganism: the second genome of plants with great potential in the green development of agriculture[J]. Biotechnology Bulletin, 2020, 36(9): 1-2. (in Chinese) 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
[13] |
PANG ZQ, CHEN J, WANG TH, GAO CS, LI ZM, GUO LT, XU JP, CHENG Y. Linking plant secondary metabolites and plant microbiomes: a review[J]. Frontiers in Plant Science, 2021, 12: 621276. DOI:10.3389/fpls.2021.621276 |
[14] |
OKUTANI F, HAMAMOTO S, AOKI Y, NAKAYASU M, NIHEI N, NISHIMURA T, YAZAKI K, SUGIYAMA A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community[J]. Plant, Cell & Environment, 2020, 43(4): 1036-1046. |
[15] |
HUANG WM. Study on the preparation of PGPR multiple bacterial agents and the field-promoting effect on chilli[D]. Guiyang: Master՚s Thesis of Guizhou University, 2020 (in Chinese). 黄文茂. PGPR复合菌剂的制备及对辣椒的田间促生研究[D]. 贵阳: 贵州大学硕士学位论文, 2020. |
[16] |
HACQUARD S, GARRIDO-OTER R, GONZÁLEZ A, SPAEPEN S, ACKERMANN G, LEBEIS S, MCHARDY AC, DANGL JL, KNIGHT R, LEY R, SCHULZE-LEFERT P. Microbiota and host nutrition across plant and animal Kingdoms[J]. Cell Host & Microbe, 2015, 17(5): 603-616. |
[17] |
BHATTACHARYYA PN, JHA DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350. DOI:10.1007/s11274-011-0979-9 |
[18] |
FU YS, LI YC, XU ZH, SHAO JH, LIU YP, XUAN W, ZHANG RF. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnology Bulletin, 2020, 36(9): 42-48. (in Chinese) 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. |
[19] |
HU YJ, ZHU XL, DING YQ, DU BH, WANG CQ. Research progress on salt tolerance and growth-promoting mechanism of Bacillus[J]. Biotechnology Bulletin, 2020, 36(9): 64-74. (in Chinese) 胡玉婕, 朱秀玲, 丁延芹, 杜秉海, 汪城墙. 芽孢杆菌的耐盐促生机制研究进展[J]. 生物技术通报, 2020, 36(9): 64-74. |
[20] |
ZHANG YC, LIU FZ, WANG HB. Research progress on plant-growth-promoting mechanisms of phosphate-solubilizing rhizosphere microbes[J]. Soil and Fertilizer Sciences in China, 2020(2): 1-9. (in Chinese) 张艺灿, 刘凤之, 王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020(2): 1-9. |
[21] |
JI R. Research summary on phosphate dissolution of phosphate solubilizing microorganisms[J]. Gansu Agricultural Science and Technology, 2013(8): 42-45. (in Chinese) 吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013(8): 42-45. DOI:10.3969/j.issn.1001-1463.2013.08.017 |
[22] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Isolation, classification, and growth-promoting effects of Pantoea sp. YSD J2 from the aboveground leaves of Cyperus esculentus L. var. sativus[J]. Current Microbiology, 2022, 79(2): 66. DOI:10.1007/s00284-021-02755-8 |
[23] |
WANG Z, XU GY, MA PD, LIN YB, YANG XN, CAO CL. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage (Brassica campestris ssp. chinensis)[J]. Frontiers in Microbiology, 2017, 8: 1270. DOI:10.3389/fmicb.2017.01270 |
[24] |
KHAN MS, ZAIDI A, WANI PA. Role of Phosphate Solubilizing Microorganisms in Sustainable Agriculture: A Review[M]. Sustainable Agriculture. Dordrecht: Springer Netherlands, 2009: 551-570.
|
[25] |
LIU H, WU XQ, YE JR, CHEN D. Phosphate-dissolving mechanisms of Pseudomonas fluorescens and its colonizing dynamics in the mycorrhizosphere of poplars[J]. Scientia Silvae Sinicae, 2021, 57(3): 90-97. (in Chinese) 刘辉, 吴小芹, 叶建仁, 陈丹. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 2021, 57(3): 90-97. |
[26] |
SUN Y, XING YQ, WANG H, GONG WF. Isolation and characterization of PGPR from Melilotus officinalis in Renbu County of Tibet[J]. Journal of Plateau Agriculture, 2020, 4(5): 510-516. (in Chinese) 孙玉, 邢瑜琪, 王红, 巩文峰. 西藏黄花草木樨根际溶磷菌筛选及其促生特性研究[J]. 高原农业, 2020, 4(5): 510-516. |
[27] |
da SILVA AV, de OLIVEIRA AJ, TANABE ISB, SILVA JV, Barros TWD, da SILVA MK, FRANçA PHB, LEITE J, PUTZKE J, MONTONE R, de Oliveira VM, ROSA LH, DUARTE AWF. Antarctic lichens as a source of phosphate-solubilizing bacteria[J]. Extremophiles, 2021, 25(2): 181-191. DOI:10.1007/s00792-021-01220-5 |
[28] |
SHENG XF, HUANG WY. Mechanism of potassium release from feldspar affected by the strain nbt of silicate bacterium[J]. Acta Pedologica Sinica, 2002, 39(6): 863-871. (in Chinese) 盛下放, 黄为一. 硅酸盐细菌NBT菌株解钾机理初探[J]. 土壤学报, 2002, 39(6): 863-871. DOI:10.3321/j.issn:0564-3929.2002.06.012 |
[29] |
HU J, YU JP, LIAN B. Capability and mechanism of potassium releasing from potassium-bearing minerals by Aspergillus niger[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(3): 277-285. (in Chinese) 胡婕, 郁建平, 连宾. 黑曲霉对含钾矿物的解钾作用与机理分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 277-285. DOI:10.3969/j.issn.1007-2802.2011.03.006 |
[30] |
LIU N. The separation of microbial fertilizer strains was promoted by the hydrolysis of phosphorus and potassium[D]. Shenyang: Master՚s Thesis of Shenyang Agricultural University, 2020 (in Chinese). 刘娜. 解磷解钾促生微生物肥料用菌株的分离[D]. 沈阳: 沈阳农业大学硕士学位论文, 2020. |
[31] |
SUO YK, LIU LH, ZHANG L, LIU JL, QU S, CHEN TT, HU TX. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemporary Chemical Industry, 2021, 50(4): 924-929. (in Chinese) 索雲凯, 刘丽红, 张雷, 刘金霖, 屈霜, 陈彤彤, 胡天鑫. 解钾菌解钾作用研究进展[J]. 当代化工, 2021, 50(4): 924-929. DOI:10.3969/j.issn.1671-0460.2021.04.039 |
[32] |
YAN HX, ZHAO H, ZHU SF, XU XK, WANG DH, LIN M, LIU GL. Study on K-release effect of silicate Bacterium DMS3 on the promotion of K-feldspar and the growth of the mung bean[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17503-17504. (in Chinese) 闫华晓, 赵辉, 朱硕斐, 许秀坤, 王德虎, 林明, 刘桂丽. 硅酸盐细菌DMS3促进钾长石释钾及绿豆生长作用研究[J]. 安徽农业科学, 2009, 37(35): 17503-17504. DOI:10.3969/j.issn.0517-6611.2009.35.066 |
[33] |
SONG C, SONG SS, JIA ZH. Isolation, screening and identification of high efficient potassium resolving bacteria and its growth-promoting effects on cucumber in mountains[J]. Jiangsu Agricultural Sciences, 2020, 48(17): 266-270. (in Chinese) 宋聪, 宋水山, 贾振华. 高效解钾菌的分离筛选鉴定及其对山区黄瓜的促生效果[J]. 江苏农业科学, 2020, 48(17): 266-270. |
[34] |
XIE XQ. Screening of dominant combinations of nitrogen-fixing bacteria and its growth promoting effect on sugarcane[D]. Nanning: Master՚s Thesis of Guangxi University, 2021 (in Chinese). 谢显秋. 固氮菌优势组合筛选及其对甘蔗的促生长作用研究[D]. 南宁: 广西大学硕士学位论文, 2021. |
[35] |
JIN HY, WANG H, ZHANG YH, HU TL, LIN ZB, LIU BJ, LIN XW, XIE ZB. Genome-based identification and plant growth promotion of a nitrogen-fixing strain isolated from soil[J]. Acta Microbiologica Sinica, 2021, 61(10): 3249-3263. (in Chinese) 靳海洋, 王慧, 张燕辉, 胡天龙, 林志斌, 刘本娟, 蔺兴武, 谢祖彬. 基于基因组的一株土壤固氮菌分离菌株鉴定及其促生作用[J]. 微生物学报, 2021, 61(10): 3249-3263. |
[36] |
DUAN SF, HUANG YN, WANG JB, SHU SY, ZHOU MC, TANG XM. Mutation breeding of Azotobacter chroococcum with high nitrogenase activity by atmospheric and room temperature plasma[J]. Journal of Agricultural Science and Technology, 2021, 23(5): 194-201. (in Chinese) 段赛菲, 黄艳娜, 王金斌, 束仕元, 周茂超, 唐雪明. 常压室温等离子体诱变选育高固氮酶活褐球固氮菌[J]. 中国农业科技导报, 2021, 23(5): 194-201. |
[37] |
MAN J, TANG B, DENG B, LI JH, HE YJ, ZHANG JL. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1): 59-71. (in Chinese) 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[38] |
GLICK BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microbiological Research, 2014, 169(1): 30-39. |
[39] |
BHOJIYA AA, JOSHI H, UPADHYAY SK, SRIVASTAVA AK, PATHAK VV, PANDEY VC, JAIN D. Screening and optimization of zinc removal potential in Pseudomonas aeruginosa-HMR1 and its plant growth-promoting attributes[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 468-477. |
[40] |
LI FY, LIU XY, YAN JT, CAI YF. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects[J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884. (in Chinese) 李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
[41] |
HAN LZ, ZHANG H, XU Y, LI Y, ZHOU J. Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere[J]. Archives of Microbiology, 2021, 203(5): 2279-2290. |
[42] |
SANGEETA P, SHIKHA G. Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep Islands of India and their ability to promote plant growth under saline conditions[J]. Journal of Biotechnology, 2020, 324: 183-197. |
[43] |
MAO JY, ZHANG X, NING FSX, ZHAO HT, MAO TY, CHENG Y, JIANG XM. Effects of different gibberellin treatments on yield and quality of Heracleum moellendorffii hance in winter greenhouse[J]. China Vegetables, 2021(11): 69-74. (in Chinese) 毛俊莹, 张雪, 宁方世新, 赵恒田, 毛同艳, 程瑶, 蒋欣梅. 不同赤霉素处理对冬季温室老山芹产量及品质的影响[J]. 中国蔬菜, 2021(11): 69-74. |
[44] |
LIU ZP, ZHANG XL, LI LB, XU N, HU Y, WANG C, SHI Y, LI DS. Isolation and characterization of three plant growth-promoting rhizobacteria for growth enhancement of rice seedling[J]. Journal of Plant Growth Regulation, 2021, 41: 1382-1393. |
[45] |
KANG SM, KHAN AL, WAQAS M, YOU YH, HAMAYUN M, JOO GJ, SHAHZAD R, CHOI KS, LEE IJ. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L[J]. European Journal of Soil Biology, 2015, 68: 85-93. |
[46] |
ZUBAIR M, HANIF A, FARZAND A, SHEIKH TMM, KHAN AR, SULEMAN M, AYAZ M, GAO XW. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat[J]. Microorganisms, 2019, 7(9): E337. |
[47] |
WANG DC, JIANG CH, ZHANG LN, CHEN L, ZHANG XY, GUO JH. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants[J]. International Journal of Molecular Sciences, 2019, 20(24): 6271. |
[48] |
VAISHNAV A, CHOUDHARY DK. Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU[J]. Journal of Plant Growth Regulation, 2019, 38(1): 333-342. |
[49] |
CHANG DM. Mechanisms of Bacillus spp. rhizosphere inoculation promoting growth of Pepper (Capsicum annuum L.)[D]. Beijing: Master's Thesis of Chinese Academy of Agricultural Sciences, 2010 (in Chinese). 常冬梅. 芽孢杆菌(Bacillus spp.)根际接种促进辣椒(Capsicum annuum L.)生长的作用机理[D]. 北京: 中国农业科学院硕士学位论文, 2010. |
[50] |
CAO HL, HAO SH, CHU MX, QIU S, LUO MX, WANG MD. Screening and identification of a high-yielding siderophore strain and verification of allelopathic effect[J]. Journal of Henan Agricultural University, 2021, 55(4): 727-735. (in Chinese) 曹宏丽, 郝尚华, 楚梦晓, 邱爽, 罗梦香, 王明道. 1株高产铁载体菌株的筛选鉴定以及化感作用的验证[J]. 河南农业大学学报, 2021, 55(4): 727-735. |
[51] |
LEI P, HUANG J, HUANG BB, BI SY, GUO ZH, LIU QS, TANG Y. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from capscium[J]. Acta Laser Biology Sinica, 2020, 29(4): 379-384. (in Chinese) 雷平, 黄军, 黄彬彬, 毕世宇, 郭照辉, 刘清术, 唐滢. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用[J]. 激光生物学报, 2020, 29(4): 379-384. |
[52] |
GHAZY N, EL-NAHRAWY S. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant[J]. Archives of Microbiology, 2020, 203(3): 1195-1209. |
[53] |
BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486. |
[54] |
YIN CT, CASA VARGAS JM, SCHLATTER DC, HAGERTY CH, HULBERT SH, PAULITZ TC. Rhizosphere community selection reveals bacteria associated with reduced root disease[J]. Microbiome, 2021, 9(1): 86. |
[55] |
XIONG YW, LI XW, WANG TT, GONG Y, ZHANG CM, XING K, QIN S. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110374. |
[56] |
ZHANG ZY. Effects of root exudates on rhizosphere bacterial community during soybean growth[D]. Yangling: Master՚s Thesis of Northwest A & F University, 2020 (in Chinese). 张志英. 大豆生长过程中根系分泌物对根际细菌群落的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020. |
[57] |
MHATRE PH, KARTHIK C, KADIRVELU K, DIVYA KL, VENKATASALAM EP, SRINIVASAN S, RAMKUMAR G, SARANYA C, SHANMUGANATHAN R. Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control[J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 119-128. |
[58] |
SONG Y, WILSON AJ, ZHANG XC, THOMS D, SOHRABI R, SONG SY, GEISSMANN Q, LIU Y, WALGREN L, HE SY, HANEY CH. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species[J]. Nature Plants, 2021, 7(5): 644-654. |
[59] |
FENG HC, ZHANG N, DU WB, ZHANG HH, LIU YP, FU RX, SHAO JH, ZHANG GS, SHEN QR, ZHANG RF. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions: MPMI, 2018, 31(10): 995-1005. |
[60] |
LIU Y, GAO J, BAI ZH, WU SH, LI XL, WANG N, DU XF, FAN HN, ZHUANG GQ, BOHU T, ZHUANG XL. Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria[J]. Microorganisms, 2021, 9(1): 161. |
[61] |
KHOURY E, FAYAD AA, SARKIS DK, FAHS H, GUNSALUS KC, AWAD MK. The microbiome of the Lebanese wild apple, Malus trilobata, is a rich source of potential biocontrol agents for fungal post-harvest pathogens of apples[J]. Current Microbiology, 2021, 78(4): 1388-1398. |
[62] |
CHEN S. Screening, identification and mechanism of soybean root rot biocontrol bacteria[D]. Harbin: Master՚s Thesis of Harbin Normal University, 2021 (in Chinese). 陈爽. 大豆根腐病生防菌的筛选鉴定及机制研究[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2021. |
[63] |
WANG LY. Study on the biological characteristics, induced resistance, application technologies of bio-control bacterial B1619[D]. Nanjing: Master՚s Thesis of Nanjing Agricultural University, 2017 (in Chinese). 王璐瑶. 生防解淀粉芽胞杆菌B1619生物学特性、诱导抗病性和田间应用技术研究[D]. 南京: 南京农业大学硕士学位论文, 2017. |
[64] |
LI YG, CAI YN, LIANG YB, JI PS, XU LK. Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea[J]. Postharvest Biology and Technology, 2020, 161(C). |
[65] |
XU SJ, WANG YX, HU JQ, CHEN XR, QIU YF, SHI JR, WANG G, XU JH. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone[J]. Food Control, 2021, 130: 108259. |
[66] |
YANG M. Isolation and screening of rhizosphere growth-promoting bacteria in pepper and disease resistance[D]. Shenyang: Master՚s Thesis of Shenyang Normal University, 2020 (in Chinese). 杨茉. 辣椒根际促生菌的分离筛选及抗病促生特性研究[D]. 沈阳: 沈阳师范大学硕士学位论文, 2020. |
[67] |
RAHMAN M, ISLAM T, JETT L, KOTCON J. Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia[J]. Crop Protection, 2021, 145: 105630. |
[68] |
YANG QQ. Effects and mechanisms of Bacillus subtilis Y14 on peanut growth promotion and disease control[D]. Tai՚an: Master՚s Thesis of Shandong Agricultural University, 2016 (in Chinese). 杨倩倩. 枯草芽孢杆菌(Bacillus subtilis) Y14对花生的促生防病效果及其机理研究[D]. 泰安: 山东农业大学硕士学位论文, 2016. |
[69] |
XIE SS. Mechanisms and identification of growth-promoting and antibacterial substances produced by Bacillus subtilis[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2015 (in Chinese). 谢珊珊. 芽孢杆菌促生抑菌物质鉴定及机理研究[D]. 南京: 南京农业大学博士学位论文, 2015. |
[70] |
BOLIVAR-ANILLO HJ, GONZALEZ-RODRIGUEZ VE, CANTORAL JM, GARCIA-SANCHEZ D, COLLADO IG, GARRIDO C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea[J]. Biology, 2021, 10(6): 492. |
[71] |
KIM YS, LEE Y, CHEON W, PARK J, KWON HT, BALARAJU K, KIM J, YOON YJ, JEON Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides[J]. Scientific Reports, 2021, 11(6): 492. |
[72] |
WU JJ, HUANG JW, DENG WL. Phenylacetic acid and methylphenyl acetate from the biocontrol bacterium Bacillus mycoides BM02 suppress spore germination in Fusarium oxysporum f. sp. lycopersici[J]. Frontiers in Microbiology, 2020, 11: 569263. |
[73] |
AGGELI F, ZIOGAS I, GKIZI D, FRAGKOGEORGI GA, TJAMOS SE. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce[J]. BioControl, 2020, 65(6): 763-773. |
[74] |
DENG J, KONG SS, WANG F, LIU Y, JIAO JY, LU YY, ZHANG F, WU JR, WANG LC, LI XZ. Identification of a new Bacillus sonorensis strain KLBC GS-3 as a biocontrol agent for postharvest green mould in grapefruit[J]. Biological Control, 2020, 151: 104393. |
[75] |
GODEBO AT, GERMIDA JJ, WALLEY FL. Isolation, identification, and assessment of soil bacteria as biocontrol agents of pea root rot caused by Aphanomyces euteiches[J]. Canadian Journal of Soil Science, 2020, 100(3): 206-216. |
[76] |
ZHAO YY, JIANG TP, XU HY, XU GG, QIAN GL, LIU FQ. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose[J]. Microbiological Research, 2021, 242: 126624. |
[77] |
CONG YZ. Mixed culture fermentation of biocontrol microorganism on the control of plant soil-borne diseases, the effects of soil properties, microbial flora and postharvest fruits[D]. Jinan: Doctoral Dissertation of Shandong University, 2020 (in Chinese). 丛韫喆. 生防菌混合发酵液对植物土传病害防治、土壤性质微生物区系和采后果实品质的影响[D]. 济南: 山东大学博士学位论文, 2020. |
[78] |
YAN L, KHAN RAA. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus, Trichoderma harzianum[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1): 5. |
[79] |
KURI A, MOIRANGHTEM I, GARG P. Control of Fusarium wilt of tomato by using biocontrol agent (Trichoderma spp.)[J]. Plant Cell Biotechnology and Molecular Biology, 2021, 559-570. |
[80] |
NAEIMI S, KHOSRAVI V, VARGA A, VAGVOLGYI C, KREDICS L. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease[J]. Agronomy, 2020, 10(9): 1258. |
[81] |
COSTA AC da, MIRANDA RF de, COSTA FA, Ulhoa CJ. Potential of Trichoderma piluliferum as a biocontrol agent of Colletotrichum musae in banana fruits[J]. Biocatalysis and Agricultural Biotechnology, 2021, 34: 102028. |
[82] |
HAO YM. Study on phytoremediation characteristics and rhizosphere degradation genes in petroleum-contaminated soil[D]. Shenyang: Master՚s Thesis of Shenyang Agricultural University, 2019 (in Chinese). 郝益民. 石油污染土壤中植物修复特性及根际微生物降解基因研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2019. |
[83] |
WEI XM. Impacts of biofertilizers and metal nanofertilizers on the rhizosphere microorganisms and herbal quality of Salvia miltiorrhiza[D]. Beijing: Master՚s Thesis of Peking Union Medical College, 2020 (in Chinese). 韦学敏. 生物肥料和金属纳米肥料对丹参根际微生物及药材品质的影响[D]. 北京: 北京协和医学院硕士学位论文, 2020. |
[84] |
JIANG LF. The characteristic of microbial community in Elsholtzia splendens rhizosphere and the potential application in the remediation of Co-conataminated (copper, phenanthrene, polychlorinated biphenyls) soils[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2016 (in Chinese). 江龙飞. 海州香薷根际微生物群落结构特征及其在复合污染(铜、菲、多氯联苯)土壤修复中的潜在应用研究[D]. 南京: 南京农业大学博士学位论文, 2016. |
[85] |
AMBUST S, DAS AJ, KUMAR R. Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments[J]. Current Research in Microbial Sciences, 2021, 2: 100031. |
[86] |
ANSARI FA, JABEEN M, AHMAD I. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant[J]. International Journal of Environmental Science and Technology, 2021, 18(12): 3855-3870. |
[87] |
ANSARI FA, AHMAD I, PICHTEL J. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10[J]. Applied Soil Ecology, 2019, 143: 45-54. |
[88] |
FITZPATRICK CR, SALAS-GONZALEZ I, CONWAY JM, FINKEL OM, GILBERT S, RUSS D, TEIXEIRA PJPL, DANGL JL. The plant microbiome: from ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74: 81-100. |
[89] |
SUN XL, XU ZH, XIE JY, HESSELBERG-THOMSEN V, TAN TM, ZHENG DY, STRUBE ML, DRAGOS A, SHEN QR, ZHANG RF, KOVACS AT. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2022, 16(3): 774-787. |
[90] |
KWAK MJ, KONG HG, CHOI K, KWON SK, SONG JY, LEE J, LEE PA, CHOI SY, SEO M, LEE HJ, JUNG EJ, PARK H, ROY N, KIM H, LEE MM, RUBIN EM, LEE SW, KIM JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100-1109. |
[91] |
CASTRILLO G, TEIXEIRA PJPL, PAREDES SH, LAW TF, DE LORENZO L, FELTCHER ME, FINKEL OM, BREAKFIELD NW, MIECZKOWSKI P, JONES CD, PAZ-ARES J, DANGL JL. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518. |
[92] |
WANG SS, WANG JB, ZHOU YF, HUANG YN, TANG XM. Comparative analysis on rhizosphere soil and endophytic microbial communities of two cultivars of Cyperus esculentus L. var. Sativus[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 2156-2168. |
[93] |
ZHANG XC, DIPPOLD MA, KUZYAKOV Y, RAZAVI BS. Spatial pattern of enzyme activities depends on root exudate composition[J]. Soil Biology and Biochemistry, 2019, 133: 83-93. |
[94] |
MA Y, OLIVEIRA RS, FREITAS H, ZHANG C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation[J]. Frontiers in Plant Science, 2016, 7: 918. |
[95] |
LIU YP, FENG HC, FU RX, ZHANG N, DU WB, SHEN QR, ZHANG RF. Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 785-797. |
[96] |
XIE KZ. Mechanism of Fusarium wilt and rhizosphere interaction mediated by root exudates in continuous cropping potato[D]. Lanzhou: Doctoral Dissertation of Gansu Agricultural University, 2021 (in Chinese). 谢奎忠. 连作马铃薯根系分泌物介导的枯萎病发生机制及根际互作[D]. 兰州: 甘肃农业大学博士学位论文, 2021. |
[97] |
LV HF. Changes of root exudates in the wheat-watermelon intercropping system and its mechanism of resistance to watermelon Fusarium wilt[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019 (in Chinese). 吕慧芳. 小麦-西瓜间作体系中根系分泌物的变化及其对西瓜枯萎病抗性的影响机制[D]. 武汉: 华中农业大学博士学位论文, 2019. |
[98] |
ZHANG FG. The effects and mechanisms of putative Trichoderma harzianum mutant T-E5 and its bio-organic fertilizer on growth of cucumber[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2015 (in Chinese). 张风革. 哈茨木霉诱变菌株T-E5及其生物有机肥对黄瓜生长的影响及机理研究[D]. 南京: 南京农业大学博士学位论文, 2015. |
[99] |
YANG RX. The allelopathy of autotoxic compounds in muskmelon continuous cropping obstacle and mitigation mechanism[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2014 (in Chinese). 杨瑞秀. 甜瓜根系自毒物质在连作障碍中的化感作用及缓解机制研究[D]. 沈阳: 沈阳农业大学博士学位论文, 2014. |
[100] |
TANG PJ. Isolation, screening of Bacillus safensis J2 from pigeon pea [Cajanus cajan (L.) millsp] and its plant growth promoting function[D]. Harbin: Master՚s Thesis of Northeast Forestry University, 2021 (in Chinese). 唐佩佳. 一株大豆促生菌Bacillus safensis J2的分离、筛选及其促生功能研究[D]. 哈尔滨: 东北林业大学硕士学位论文, 2021. |
[101] |
CHEN YH, LI SS, LIU N, HE H, CAO XY, LV C, ZHANG K, DAI JL. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research, 2021, 28(18): 23036-23047. |
[102] |
SARABIA M, CAZARES S, GONZALEZ-RODRIGUEZ A, MORA F, CARREON-ABUD Y, Larsen J. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems[J]. Rhizosphere, 2018, 6: 67-73. |
[103] |
ZHAI ZG, HU QL, CHEN JR, LIU CX, GUO S, HUANG SQ, ZENG WA. Effects of combined application of organic fertilizer and microbial agents on tobacco soil and tobacco agronomic traits[J]. IOP Conference Series: Earth and Environmental Science, 2020, 594(1): 012023. |
[104] |
LV JL, LI TK, KOU CL. Effects of biomass charcoal and microbial fertilizer on improvement of acidified yellow cinnamon soil and corn growth[J]. Journal of Henan Agricultural Sciences, 2021, 50(6): 61-69. (in Chinese) 吕金岭, 李太魁, 寇长林. 生物质炭和微生物菌肥对酸化黄褐土农田土壤改良及玉米生长的影响[J]. 河南农业科学, 2021, 50(6): 61-69. |
[105] |
SHEN MC, LI JG, DONG YH, LIU H, PENG JW, HU Y, SUN Y. Profiling of plant growth-promoting metabolites by phosphate-solubilizing bacteria in maize rhizosphere[J]. Plants: Basel, Switzerland, 2021, 10(6): 1071. |
[106] |
SHAH R, AMARESAN N, PATEL P, JINAL HN, KRISHNAMURTHY R. Isolation and characterization of Bacillus spp. endowed with multifarious plant growth-promoting traits and their potential effect on tomato (Lycopersicon esculentum) seedlings[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4579-4587. |
[107] |
KUAI JL, MA YX, HOU D, ZHANG YX, YAO T, YU QW. Study on the effects of stabilized fertilizer combined with microbial agent on growth and quality of lettuce[J]. Agricultural Research in the Arid Areas, 2021, 39(2): 24-30. (in Chinese) 蒯佳琳, 马彦霞, 侯栋, 张玉鑫, 姚拓, 于庆文. 稳定性肥料配施微生物菌剂对莴笋生长及品质的影响研究[J]. 干旱地区农业研究, 2021, 39(2): 24-30. |
[108] |
COCETTA G, PASSERA A, VACCHINI V, SHAHZAD GIR, CORTELLINO G, PICCHI V, FERRANTE A, CASATI P, PIAZZA L. Use of microbial inoculants during cultivation maintain the physiological, nutritional and technological quality of fresh-cut romaine lettuce[J]. Postharvest Biology and Technology, 2020, 34. |
[109] |
KHAN A, SINGH AV. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat[J]. World Journal of Microbiology and Biotechnology, 2021, 37(12): 198. |
[110] |
GOPALAKRISHNAN S, SRINIVAS V, SAMINENI S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.)[J]. Biocatalysis and Agricultural Biotechnology, 2017, 11: 116-123. |
[111] |
SUN LP. Study on microbial diversity growth promoting bacteria with ACC deaminase activity in rhizosphere of Paeonia lactiflora pall. [D]. Yangzhou: Master՚s Thesis of Yangzhou University, 2021 (in Chinese). 孙兰平. 芍药根际微生物多样性及具ACC脱氨酶活性的促生菌研究[D]. 扬州: 扬州大学硕士学位论文, 2021. |
[112] |
RASUL M, YASMIN S, YAHYA M, BREITKREUZ C, TARKKA M, REITZ T. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways[J]. Microbiological Research, 2021, 246: 126703. |
[113] |
ALI AF, SUHAIL FM, SALIM HA, ABED AH. Influence of Azotobacter chroococcum, Azospirillum brasilense, Trichoderma harzianum and Tri-calcium phosphate on hydroponically-grown barley grains[J]. IOP Conference Series: Earth and Environmental Science, 2021, 735(1): 012056. |
[114] |
HOUSH AB, POWELL G, SCOTT S, ANSTAETT A, GERHEART A, BENOIT M, WALLER S, POWELL A, GUTHRIE JM, HIGGINS B, WILDER SL, SCHUELLER MJ, FERRIERI RA. Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation[J]. The ISME Journal, 2021, 15(5): 1505-1522. |
[115] |
PREZ-RODRIGUEZ MM, PONTIN M, LIPINSKI V, BOTTINI R, PICCOLI P, COHEN AC. Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 1614-1624. |
[116] |
ALINC T, CUSUMANO A, PERI E, TORTA L, COLAZZA S. Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity[J]. Journal of Chemical Ecology, 2021, 47(4): 455-462. |
[117] |
PATKOWSKA E, MIELNICZUK E, JAMIOLKOWSKA A, SKWARYLO-BEDNARZ B, DOTEWICZ-WOZNIAK MB. The influence of Trichoderma harzianum rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot[J]. Agronomy, 2020, 10(11): 1637. |
[118] |
VITTI A, PELLEGRINI E, NALI C, LOVELLI S, SOFO A, VALERIO M, SCOPA A, NUZZACI M. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus[J]. Frontiers in Plant Science, 2016, 7: 1520. |
[119] |
LI T, ZHANG ZH, GUO YW, TIAN X, XU XW, QIU LY. Research progress and prospect of microbial fertilizer at domestic and abroad[J]. Jiangsu Agricultural Sciences, 2019, 47(10): 37-41. (in Chinese) 李涛, 张朝辉, 郭雅雯, 田香, 许晓莞, 邱立友. 国内外微生物肥料研究进展及展望[J]. 江苏农业科学, 2019, 47(10): 37-41. |