微生物学通报  2023, Vol. 50 Issue (2): 471−485

扩展功能

文章信息

李清, 郑周宜, 刘雨婷, 赵娅锐, 王晨晖, 邹万君, 李周, 唐唯, 李灿辉
LI Qing, ZHENG Zhouyi, LIU Yuting, ZHAO Yarui, WANG Chenhui, ZOU Wanjun, LI Zhou, TANG Wei, LI Canhui
云南省马铃薯早疫病病原及毒性特点分析
Analysis of pathogens and pathogenicity characteristics of potato early blight in Yunnan Province
微生物学通报, 2023, 50(2): 471-485
Microbiology China, 2023, 50(2): 471-485
DOI: 10.13344/j.microbiol.china.220458

文章历史

收稿日期: 2022-05-05
接受日期: 2022-06-20
网络首发日期: 2022-07-25
云南省马铃薯早疫病病原及毒性特点分析
李清1,2,3 , 郑周宜1,2,3 , 刘雨婷1,2,3 , 赵娅锐1,2,3 , 王晨晖4 , 邹万君4 , 李周5 , 唐唯1,2,3 , 李灿辉1,2,3     
1. 云南师范大学 云南省马铃薯生物学重点实验室, 云南  昆明    6505002;
2. 云南省高校马铃薯生物学重点实验室, 云南  昆明    6505003;
3. 生物能源持续开发利用教育部工程研究中心, 云南  昆明    6505004;
4. 昆明市农业科学研究院, 云南  昆明    6500345;
5. 昭通市农业科学院, 云南  昭通    657000
摘要: 【背景】 早疫病是马铃薯主要病害之一,其病原为链格孢属(Alternaria)真菌,组成具有种复杂性和毒性差异性。【目的】 明确云南省马铃薯早疫病两个致病种毒性特点和功能基因差异。【方法】 以云南省大理州鹤庆县马铃薯主产区采集、分离和纯化的Alternaria solani (TA-0410)和Alternaria alternata (TB-1129)两株菌为材料,进行孢子形态观察、毒性测定、全基因组测序和比较分析研究。【结果】 发现TA-0410为大孢子种,分生孢子褐色或黄色,孢子大小为[37.4−151.9(±28.1)] μm×[4.3−22.9(±4.1)] μm,喙长;TB-1129为小孢子种,分生孢子灰褐色,大小为[18.6−42.6(±9.3)] μm×[6.1−15.3(±2.3)] μm,喙短。毒性测定表明TA-0410为唯一致病种,TB-1129不能直接侵染引起马铃薯早疫病,但A. alternata在有伤接种条件下能产生并扩大病斑。两株菌测序分析发现TA-0410基因组大小为32.26 Mb,contig N50为1 158 607 bp,含177个特有基因,TB-1129基因组大小为33.30 Mb,scaffold N50为2 338 721 bp,含600个特有基因。此外,对唯一致病菌TA-0410进行全基因组分泌蛋白特征RxLx[EDQ]挖掘,共得到12个候选分泌蛋白,同源注释均为假定蛋白。结构域分析发现2个分泌蛋白ASR_2859和ASR_19579中分别包含和致病相关的BID_1和UBA结构域。【结论】 A. solaniA. alternata均能引起马铃薯早疫病,A. alternata仅在有伤条件下侵染;两个菌株侵染和病斑扩展阶段的表型主要由孢子活力及生物毒性相关蛋白控制。
关键词: 马铃薯早疫病    链格孢属    毒性    分泌蛋白    结构域    
Analysis of pathogens and pathogenicity characteristics of potato early blight in Yunnan Province
LI Qing1,2,3 , ZHENG Zhouyi1,2,3 , LIU Yuting1,2,3 , ZHAO Yarui1,2,3 , WANG Chenhui4 , ZOU Wanjun4 , LI Zhou5 , TANG Wei1,2,3 , LI Canhui1,2,3     
1. Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, Yunnan, China;
2. Key Laboratory of Potato Biology in Universities of Yunnan Province, Kunming 650500, Yunnan, China;
3. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, Yunnan, China;
4. Kunming Academy of Agricultural Sciences, Kunming 650034, Yunnan, China;
5. Zhaotong Academy of Agricultural Sciences, Zhaotong 657000, Yunnan, China
Abstract: [Background] Early blight is one of the main potato diseases and the pathogen Alternaria has complex species composition and different pathogenicity. [Objective] To clarify the virulence characteristics and functional gene differences of two pathogenic species of potato early blight in Yunnan Province. [Methods] In this study, Alternaria solani (TA-0410) and Alternaria alternata (TB-1129) were collected, isolated, and purified from the main potato production area in Heqing County, Dali Prefecture, Yunnan Province, with the aim of clarifying the virulence characteristics and functional gene differences between the two species through spore morphological observation, pathogenicity verification, whole genome sequencing, and comparative analysis. [Results] TA-0410 was a large-spored species with brown or yellow conidia, spore size of (37.4–151.9(±28.1)) μm×(4.3–22.9(±4.1)) μm, and long beak. TB-1129 was a small-spored species with grayish-brown conidia, spore size of (18.6–42.6(±9.3)) μm×(6.1–15.3(±2.3)) μm, and short beak. The pathogenicity verification showed that TA-0410 was the only pathogenic species, as TB-1129 failed to induce early blight in the case of direct inoculation. However, in the instance of wounded-leaf inoculation, TB-1129 successfully infected the leaves and the lesions were expanded. The genome of TA-0410 was 32.26 Mb, with contig N50=1 158 607 bp, and 177 unique genes, and the genome of TB-1129 was 33.30 Mb, with scaffold N50=2 338 721 bp, and 600 unique genes. In addition, the secretory proteins of TA-0410 were analyzed and 12 candidate secretory proteins containing the RxLx[EDQ] motif were screened out, all of which were annotated as putative proteins. The secretory proteins ASR_2859 and ASR_19579 contained the pathogenic BID_1 and UBA domain, respectively. [Conclusion] Both A. solani and A. alternata can cause potato early blight, with A. alternata only in the case of wounded-leaf inoculation. The phenotypes of the two in the infection and expansion stages are mainly controlled by spore viability and biotoxicity-associated proteins.
Keywords: potato early blight    Alternaria sp.    virulence    secretory protein    domain    

马铃薯(Solanum tuberosum L.)因其易栽培、适应能力强等特点在我国各地广泛种植,是我国四大粮食作物之一。马铃薯早疫病(potato early blight, PEB)是发生在马铃薯叶片和块茎上的重要病害,在我国马铃薯主产区普遍发生[1]。该病发病快,初期侵染2−3 d,病害主要发生于植株下部较老叶片,产生黑褐色的不规则或规则小斑点,侵染7−8 d为后期,病斑迅速扩大但有时被叶脉限制,形成棱角型病斑后坏死,植株上部叶片被进一步侵染[2]。块茎被感染后,在表皮形成褐色凸起,其周围有圆形至不规则形的轻微凹陷,凹陷处变软。PEB在多数气象条件下均可发生和流行,通常情况下种植期产量损失不超过20%,但在不进行防治处理的地块,时常导致高达50%的产量损失[3]。叶片掉落的分生孢子可在泥土中或残枝中越冬,形成下一个种植季的初侵染,加重或提前病害的发生[4-5]

前期研究发现,PEB由链格孢属(Alternaria)真菌引起,有A. solani[6]A. alternata[7]A. interrupta[8]A. tenuissima[9]A. infectoria[10]A. arborescens[11]A. grandis[12]等7种。多数研究认为,PEB主要由A. solaniA. alternataA. tenuissima这3种病原菌引起[13-14]。研究认为,A. solani是主要病原菌,A. alternata是次要病原体或机会致病种,不能直接引起病害[15]或引起的是马铃薯褐斑病(potato brown spot, PBS)[16-18]。PEB和PBS的主要区别是PEB在叶片上表现为圆形或不规则的暗褐色或黑色斑点,叶片随斑点中心坏死,后期出现同心轮纹状而PBS无同心轮纹的症状[19]A. tenuissima引起的病害为马铃薯叶枯病(potato leaf blight, PLB),主要发生在叶片和叶蔓,与PEB和PBS症状的主要区别在于初期形成绿褐色坏死斑点,后逐渐发展成近圆形至V字形灰褐色至红褐色坏死斑,病斑外缘常褪绿黄化,最后致病叶坏死枯焦[9]。我国四大耕作区以A. solaniA. alternataA. tenuissima共存为主[14, 20-22]

高通量测序在挖掘真菌功能基因和转录组分析中发挥了重要作用。Zhang等对A. solani HWC-168全基因组进行测序分析,预测了15个产孢基因和643个分泌蛋白,挖掘了119个RxLx[EDQ]模体蛋白和27个特有分泌蛋白,揭示了A. solani分泌蛋白组成的复杂性和多样性,为A. solani致病的分子机制提供了新见解[23]。Dang等对25种链格孢属真菌的基因组进行了测序和功能注释及比较基因组分析,建立了链格孢属基因组数据库[24]。东曼等基于A. solani全基因测序分析,克隆得到A. solani致病基因,即丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)通路中Slt2基因的同源基因,发现该基因在茄链格孢细胞壁的完整性及抵御外界胁迫方面发挥重要作用[25]。Gai等通过分析金属离子胁迫、氧化胁迫和寄主-病原菌相互作用下A. alternata的转录组,发现转录因子碱性亮氨酸拉链(bZIP)转录因子中Gcn4、MeaB、Atf1等是形态发生所必需的,bZIP还不同程度地参与氧化应激(Ada1、Yap1、MetR)和毒力(Hac1、MetR、Yap1)等多种应激的抗性,该研究还证明了转录因子碱性亮氨酸拉链(bZIP TFs)在调节A. alternata的真菌发育、非生物胁迫耐受性和致病性中的关键作用[26]

云南属于西南混作产区,多数种植地为短日照高寒山区,近年主栽马铃薯品种会-2、合作88、丽薯6号等均有早疫病发生。为了明确云南省PEB病原菌的组成及其毒力差异,本研究利用同一地块、同一马铃薯品种丽薯6号采集、分离和纯化得到的A. solani (TA-0410)和A. alternata (TB-1129)为研究对象,通过孢子形态观察、毒性测定、全基因组测序和分泌蛋白挖掘,明确2个种毒性特点和功能基因差异,以进一步探索TA-0410和TB-1129这2株菌与马铃薯的互作机制,为PEB的防治研究提供基础数据。

1 材料与方法 1.1 TA-0410和TB-1129的分离纯化

采集云南省大理白族自治州鹤庆县草海镇马厂村(N26°28′19.96″, E100°04′11.26″)丽薯6号同一地块PEB典型症状叶片,将收集的病叶用无菌水反复冲洗后晾干,用0.3%次氯酸钠消毒1 min,75%的酒精表面消毒1 min后用无菌水重复洗3次,晾干后置于PDA固体培养基26 ℃培养,7 d后用显微镜(40×)观察分生孢子形态特征,并进行分离及纯化,重复3次。

1.2 毒性测定

将分离纯化的TA-0410和TB-1129接种于PDA固体培养基上,26 ℃培养7 d,加入1 mL无菌水,使用涂布棒轻轻刮取分生孢子,将孢子悬浮液置于已灭菌的离心管内,吸取1 μL测定分生孢子浓度,重复3次取平均值,加无菌水稀释,最终得到终浓度为1×104个/mL的分生孢子悬浮液。将分生孢子悬浮液放在4 ℃冰箱1 h (促进分生孢子萌发)待用。以马铃薯品种合作88 (Cooperation-88, C88)和Desiree盆栽苗出苗后45 d健康叶片为接种对象,将接种后叶片背面朝上放置于湿度为85%的滤纸上。毒性测定实验分为6组:第1组,对称2个点各接种10 μL无菌水;第2组,对称2个点各接种10 μL TA-0410孢子悬浮液;第3组,对称2个点各接种10 μL TB-1129孢子悬浮液;第4组,对称2个点各接种5 μL TA-0410孢子悬浮液12 h后,在同一接种点接种5 μL TB-1129孢子悬浮液;第5组,对称2个点接种5 μL TB-1129孢子悬浮液12 h后,在同一接种点接种5 μL TA-0410孢子悬浮液;第6组,将各等体积的TA-0410和TB-1129孢子悬浮液混合均匀,在对称2个点各接种10 μL的混合孢子悬浮液;每个处理组接种10个叶片,整个实验重复3次。接种后置于光照培养箱,26 ℃、1 500 lx (白天16 h,黑夜8 h)和湿度85%环境下培养。接种24 h (第4、5组第2次接种完成12 h后)后将叶片正面朝上并观察发病症状,拍照记录后用Photoshop 2020计算病斑面积,每隔24 h记录一次,连续观察8 d。以病程发展曲线下面积(area under the disease progression curve, AUDPC)计算菌株毒力[27-28]。此外,对TB-1129进行有伤接种实验,以合作88叶片为接种对象。实验分为2组:第1组为对照组,第1片叶子背面对称两点各接种10 μL无菌水,第2片叶子背面对称两点各接种10 μL浓度为1×104个/mL的孢子悬浮液,第3片叶子背面对称两点各接种10 μL浓度为5×104个/mL的孢子悬浮液。第2组为有伤接种,即在叶片背面用接种针轻轻划破制造伤口,第1片叶子背面对称2个点各接种10 μL无菌水,第2片叶子背面对称2个点各接种10 μL浓度为1×104个/mL的孢子悬浮液,第3片叶子背面对称2个点各接种10 μL浓度为5×104个/mL孢子悬浮液,其余处理条件同无伤接种。

式中:Xi+1代表第i+1次叶片感病面积占叶片全部面积百分比;Xi代表第i次叶片感病面积占叶片全部面积百分比;ti+1−ti代表第i+1次与第i次两次记录间的时间间隔。

1.3 全基因组测序和组装

TA-0410和TB-1129分别接种在PDA固体培养基上,于26 ℃培养7 d,用E.Z.N.A.® Fungal DNA Kit提取基因组DNA,上海伟进生物科技有限公司。NanoDrop 1000核酸浓度检测仪检测DNA的纯度(OD260/OD280),上海沃元科技有限公司。样品检测合格后送北京诺禾致源建库及Illumina NovaSeq 6000 PE150测序,测序深度30X。对测序产生的raw reads进行质检,过滤低质量、带有测序接头、含N碱基后得到的clean reads。用CLC Genomics Workbench 20.0.3 (Qiagen CLC Genomics Workbench, Denmark)软件的de novo assembly工具对clean reads测序数据进行从头组装,组装参数为(word size, 17; bubble size, 50),通过QC for sequencing检测基因组的GC含量分布。组装完成后与NCBI数据库中链格孢属的大孢子种和小孢子种组装数据对比。基于同源注释的方法,利用GeneMark Gene Finding (CLC Genomics Workbench 20.0.3)进行开放阅读框(open reading frame, ORF)预测并对其进行同源注释。

1.4 分泌蛋白的注释和预测

利用SignalP V4.0 (http://www.cbs.dtu.dk/services/SignalP/)[29]预测TA-0410 N末端信号肽,使用TMHMM-2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/)[30]排除具有跨膜结构域的蛋白质。用同样的方法预测TB-1129的分泌蛋白。

1.5 RxLx[EDQ]预测蛋白质、注释和功能富集

利用Motif search (CLC Genomics Workbench 20.0.3)功能预测TA-0410分泌蛋白中存在的保守靶向基序RxLx[EDQ][31-32]。预测的RxLx[EDQ]基序中的氨基酸通过WebLogo[33]软件进行比对,对含有RxLx[EDQ]基序的分泌蛋白进行BLASTp比对,利用SMART (http://smart.embl.de/)[[34]]对未知蛋白进行结构域分析并进行结构域功能富集。

1.6 差异基因分析和功能富集

TA-0410和TB-1129使用BLAST指定参数值比对同源基因:≥60%相似性的蛋白质序列,比对长度≥30%和E-value < 1×10−5进行比对,结果进行GO功能富集。

2 结果与分析 2.1 TA-0410和TB-1129分生孢子形态

TA-0410和TB-1129分别接种在PDA固体培养基上于26 ℃培养7 d后观察分生孢子形态。TA-0410培养7 d后菌丝颜色为黄褐色(图 1A),分生孢子呈倒棒状或手雷形,浅黄色至褐色,分生孢子常为单生,大小为[37.4−151.9(±28.1)] μm×[4.3−22.9(±4.1)] μm,具有纵(垂直于喙)、横(平行于喙)及斜隔膜,隔膜处有缢缩,隔膜多为浅色半透明,横隔膜3−11个,纵、斜隔膜0−4个,小室(隔膜分割形成) 4−12个,尾部有浅褐色长喙,喙长[2.9−38.8(±7.6)] μm,大多等于或长于孢身(图 1B),经形态鉴定符合大孢子种Alternaria solani的形态特征[18]。TB-1129培养7 d后菌丝颜色为灰褐色(图 1C),分生孢子呈筒状或手雷形,灰褐色,分生孢子常为单生,大小为[18.6−42.6(±9.3)] μm×[6.1−15.3(±2.3)] μm,具有纵、横隔膜,隔膜处有缢缩,隔膜多为灰褐色,横隔膜1−6个,纵、斜隔膜0−2个,小室2−7个,尾部有浅褐色短喙,喙长[3.4−16.2(±4.3)] μm,大多短于孢身(图 1D),经形态鉴定符合小孢子种Alternaria alternata的形态特征[18]

图 1 TA-0410和TB-1129培养形态与分生孢子形态 Figure 1 Culture and conidial morphology of TA-0410 and TB-1129. A:TA-0410正面和背面培养形态. B:TA-0410分生孢子形态. C:TB-1129正面和背面培养形态. D:TB-1129分生孢子形态 A: The front and rear culture morphology of TA-0410. B: The conidia morphology of TA-0410. C: The front and rear culture morphology of TB-1129. D: The conidia morphology of TB-1129.
2.2 TA-0410和TB-1129毒性测定

在接种Desiree条件下第2组在48 h后可见明显病斑,随后至144 h病斑面积不断扩大,168 h叶片开始腐烂;第3组在接种后至192 h都未出现病斑;第4组接种24 h后出现病斑,随后病斑不断扩大,144 h叶片开始腐烂;第5组接种120 h后出现病斑,病斑扩大速度明显较第2、3和6组慢,第6组接种48 h出现病斑,168 h后病斑面积扩大较快。第1组对照1–8 d内未见发病(图 2A)。合作88中发病症状和Desiree相似,但各组处理病斑面积明显比接种Desiree小(图 2B)。单独接种10 μL浓度为1×104个/mL TB-1129孢子悬浮液未发病,但在TB-1129侵染成功后可加重早疫病症状,有伤接种进一步发现在高浓度分生孢子条件下TB-1129可侵染并成功扩展(图 2C)。通过计算AUDPC,第4组和第6组处理明显加重PEB (图 2D2E),并且各个处理组间差异均显著(P < 0.05) (表 1表 2)。

图 2 毒性测定症状 Figure 2 Symptoms of virulence assay. A: The symptom of Desiree inoculated leaves. A:Desiree接种叶片症状. B:合作88接种叶片症状. C:合作88叶片有伤接种TB-1129 96 h症状. D:Desiree接种各组处理下病程发展曲线下面积. E:合作88接种各组处理下病程发展曲线下面积. 不同小写字母表示在P < 0.05水平上的显著差异 B: The symptom of Cooperation-88 inoculated leaves. C: Cooperation-88 leaves with wounded inoculum TB-1129 96 h symptoms. D: The area under the disease development curve for each treatment group of Desiree inoculation. E: The area under the disease development curve for each treatment group of Cooperation-88 inoculation. Different lowercase letters indicate significant difference at the P < 0.05 level.

表 1 接种Desiree各个处理组间AUDPC差异性显著分析 Table 1 Significant difference analysis of each treatment group on Desiree
Time
(h)
E-value
The first group The second group The third group The fourth group The fifth group The sixth group
48 0 (−) 0.216 (−) 0 (−) 2.038 (−) 0 (−) 0.801 (−)
72 0 (0) 2.536 (0.008 8) 0 (0) 4.841 (0.005 4) 0 (0) 3.293 (0.043 3)
96 0 (0) 5.639 (0.008 8) 0 (0) 8.937 (0.005 8) 0.264 (0.500 0) 6.060 (0.006 0)
120 0 (0) 10.261 (0.002 1) 0 (0) 13.445 (0.000 8) 0.758 (0.010 4) 7.952 (6.02×10−7)
144 0 (0) 16.509 (2.58×10−6) 0 (0) 17.303 (1.52×10−6) 2.345 (0.007 6) 10.393 (1.02×10−7)
168 0 (0) 19.762 (9.55×10−7) 0 (0) 21.041 (3.68×10−6) 4.868 (0.000 6) 13.624 (3.13×10−7)
−: No value.

表 2 接种合作88中各个处理组间AUDPC差异性显著分析 Table 2 Significant difference analysis of each treatment group on C88
Time
(h)
E-value
The first group The second group The third group The fourth group The fifth group The sixth group
48 0 (−) 0.267 (−) 0 (−) 0.212 (−) 0 (−) 0.164 (−)
72 0 (0) 1.500 (0.060 5) 0 (0) 1.198 (0.204 4) 0.095 (0.500 0) 0.890 (0.008 8)
96 0 (0) 3.294 (0.001 8) 0 (0) 3.191 (0.014 4) 0.505 (0.081 5) 2.227 (0.005 1)
120 0 (0) 5.034 (1.06×10−5) 0 (0) 5.675 (0.001 1) 1.143 (0.000 4) 3.713 (0.000 1)
144 0 (0) 6.915 (3.10×10−6) 0 (0) 8.993 (0.000 1) 2.329 (4.23×10−5) 5.113 (4.50×10−6)
168 0 (0) 8.907 (4.42×10−7) 0 (0) 13.506 (0.000 7) 3.819 (3.80×10−6) 8.703 (0.004 3)
−: No value.
2.3 全基因组测序和组装

TA-0410组装基因组大小为32.26 Mb,GC含量为51.60%,contig N50为1 158 607 bp。TB-1129组装基因组大小为33.30 Mb,GC含量为51.00%,scaffold N50为2 338 721 bp。通过与NCBI数据库中的参考基因组大孢子种A. brassicae及小孢子种A. tenuissima比对,得到基因组相关数据(表 3)。对TA-0410和TB-1129进行ORF预测,TA-0410共有41 302个ORF,TB-1129共有42 916个ORF。TA-0410和TB-1129基因组测序数据已上传至NCBI数据库,登录号分别为JAMBQH000000000和JAHYXJ000000000。

表 3 链格孢属基因组组装统计 Table 3 Alternaria sp. genome assembly statistics
分类
Classification
大孢子种
Large-spored species
小孢子种
Small-spored species
A. solani
(TA-0410)
A. solani
(HWC-168)
A. brassicae
(J3)
A. alternata
(TB-1129)
A. alternata
(SRC1lrK2f)
A. tenuissima
(ANJ)
Contigs N50 (bp) 1 158, 607 564 368 2 988 132 1 097 884 730 253
Scaffolds N50 (bp) 2 613 338 2 989 132 2 338 721 4 961 717 1 434 180
Scaffolds/contig total numbers 58 58 17 92 79 194
Assembled genome size (bp) 32 265 055 32 828 056 34 141 089 33 309 411 33 670 787 33 681 665
GC (%) 51.60 51.30 50.70 51.00 51.10 51.10
−: No data.
2.4 分泌蛋白的注释和预测

利用SignalP V4.1和TMHMM-2.0分别预测ORF N末端信号肽和跨膜结构域,结果发现,TA-0410中共存在754个分泌蛋白,TB-1129中存在802个分泌蛋白。

2.5 RxLx[EDQ]预测蛋白质、注释和功能富集

由于TA-0410为2个马铃薯品种的主要致病种,因此进一步分析TA-0410中的754个分泌蛋白结构域,发现51个具有RxLx[EDQ] motif结构域。由于真菌和卵菌中已克隆的与植物互作的效应子通常在300个氨基酸以内,进一步筛选N端信号肽下游300个氨基酸以内具有RxLx[EDQ] motif结构域的分泌蛋白,最终得到12个具有RxLx[EDQ]保守结构域的效应候选蛋白(图 3)。对12个效应候选蛋白进行同源注释(BLASTp, NCBI),结果显示12个均为假定蛋白(表 4图 3),结构域和富集分析发现分泌蛋白ASR_19579含有ubiquitin associated domain (SM000165)结构域,分泌蛋白ASR_2859含有bacterial lg-like domain group 1 (SM000634)结构域,与致病性明显相关,其余11个分泌蛋白结构域分别富集在不同的重要功能中(图 4)。

图 3 12个候选分泌蛋白含RxLx[EDQ] motif的氨基酸序列比对 Figure 3 Amino acid sequence with RxLx[EDQ] motif alignment among 12 candidate secreted proteins.

表 4 携带RxLx[EDQ] motif的预测候选效应子列表 Table 4 Lists of predicted candidate effects carrying RxLx[EDQ] motif
Name Size (aa) Start of sequence (first 48 aa) Annotation
ASL_16147 127 MTTSLFGSTLMVSFLVVAAPHSIPCPVDPRTLADSADPTGESRRRRRR Hypothetical protein
ASL_13932 131 MLSSFYFLSLNALIAFVSAGADYSERSLLRPLPQNTLSASFNFRSNES Hypothetical protein
ASL_9889 152 MVSFRNLFTAAMALSVPVAAVLTPAQIVDNIRILTQKSQALQAPAQSI Hypothetical protein
ASL_2983 162 MKFSFPLLTLLSGNISVNAFPALNPTHLKSLTPEKLDAAIRSVNELKQ Hypothetical protein
ASL_2859 163 MRTSNLFVAVCAFSNLTVHASLEEKFVGFEAGDQTLDIAGATLIADA Hypothetical protein
ASL_225 227 MKFHTLPFFASTVLATMANTTTTKIEPFSLSAPPGTDIWRKAPSHNAF Hypothetical protein
ASL_19579 239 MFELTGQLSYTLPSMLAILVAKWTADAISTEGVYDLAQTLLSHPFLD Hypothetical protein
ASL_10376 259 MMRFLLSVAVIVLATAHSVTATLGVLDIDNLSQPDLEHVLAPGEEQE Hypothetical protein
ASL_9802 273 MLTIFVSTILVSLEIGIIATAIPGITNDFRKLDDVGWYGSATFILAAAAS Hypothetical protein
ASL_19160 277 MQLSSLLSLYIQALFSVWETITLMSSKIDRSTPTPSLDIFLTMDAKSSR Hypothetical protein
ASL_5934 293 MLRVSTVSLAVYSAIQVWSETGLGRTDEAVAYLENMANMEQTGTLV Hypothetical protein
ASL_14705 300 MRSYARTGSSATLAIATQLLVVVSAAEDRPQGDFRRCLDVSPECPVF Hypothetical protein

图 4 12个候选分泌蛋白功能富集分析 Figure 4 Functional enrichment of 12 secreted proteins.
2.6 TA-0410和TB-1129全基因组水平差异分析

以TA-0410基因组为目标序列,通过指定参数值比对TB-1129基因组(> 60%同一性的序列,比对长度 > 30%且E-value < 1×10−5),TA-0410和TB-1129功能基因存在差异,TA-0410有177个独有基因,TB-1129有600个特有基因,对差异基因注释后富集情况如图 5所示。对差异基因进行进一步分析发现TA-0410包含2个天鹅绒家族(the velvet family)调节蛋白,在协调次级代谢和分化过程中起关键作用,尤其是无性或有性孢子和子实体的形成,该家族蛋白包括VeA、VelB、VosA和VelC,VeA和VelB缺失导致对宿主植物的毒力显著降低,VosA与孢子活力相关[35-36]。因此,该蛋白可能为TA-0410成功侵染的关键。此外,A. solaniA. alternata均含有S聚酮合酶(polyketide synthase, PKS)结构域蛋白、细胞色素P450 (cytochrome P450)、AB水解酶-1 (AB hydrolase-1)结构域蛋白和脂肪酶(lipase)结构域等参与真菌生物毒性合成过程的重要蛋白[37-38],可进一步解释A. solaniA. alternata都能产生毒素使病斑进一步扩展。

图 5 TA-0410 (A)和TB-1129 (B)差异基因功能富集 Figure 5 Functional enrichment of TA-0410 (A) and TB-1129 (B) unique genes.
3 讨论

多数研究发现引起PEB的病原菌组成复杂,本研究的毒性测定发现A. solani为主要致病种,A. alternata为条件致病种,可在A. solani成功侵染后显著加重病害的发生,因此仅A. solani具有侵染能力。与仅接种A. solani相比,先接种A. solani再接种A. alternata在2个寄主上病斑均显著大于仅接种A. solani,说明A. alternata参与了病程。多数研究表明,A. alternata广泛存在于空气、土壤、水和各类环境中,可作为腐生菌或寄生菌,其植物寄主主要为果树、蔬菜及多种经济作物,具有多种致病型(pathotype)[39-41],本研究所采集菌株TB-1129对2个品种马铃薯均不具有侵染性,可能与侵染能力、致病型分化相关,也可能该菌在马铃薯叶片上仅营腐生生活。为了进一步明确其致病表型特点,本研究进行了有伤接种,证实了A. alternata能侵染并扩大病斑,为典型的条件致病菌。本研究中2个链格孢真菌均分离自同一地块的同一品种,说明近年云南省主栽马铃薯品种上早疫病病原菌群体结构呈多样性特点,接种结果也预示着田间有病害流行加重的风险。接种还发现A. solani在2个寄主上毒力有明显差异,可能由于Desiree是公认的田间表现易感品种,合作88为中抗或高抗品种,也可能与TA-0410菌株衍化型特点有关。

本研究基于二代测序技术,把A. solaniA. alternata分别组装到contig和scaffold水平,由于目前数据库中已公布的A. solani基因组的2个菌株(HWC-168、ASM283723v1)和(WUR、ASM295215v1)均未公布注释信息候选分泌蛋白,所以同源注释均为假定蛋白,而且均不存在于A. alternata TB-1129菌株中,其中分泌蛋白ASR_2859具有典型的bacterial I-like domain group 1 (BIG-1)结构域,该结构域广泛存在于病原细菌中,通常作用是介导侵染哺乳动物宿主细胞表面表达蛋白,其Ig结构域把细菌外膜蛋白与C末端凝集素结构域连接,在宿主细胞膜上与受体相互作用,激活免疫应答机制[42],然而,在真菌中尚无该结构域和功能的报道,其在侵染马铃薯时的作用及引发的寄主免疫机制值得深入探讨。分泌蛋白ASR_19579具有E3连接酶U-BOX结构域,激活泛素化/26S蛋白酶体途径,从而激发抗逆性[43],泛素化在真核生物中普遍存在,多数研究集中于高等植物和哺乳动物,在真菌中的研究较少,仅在模式菌酵母中研究得较深入[44-47],因此推测,A. solani在侵染马铃薯时能通过26S泛素化水解途径更好地抵御寄主免疫机制,具体功能还有待进一步验证。

4 结论

本研究从同一地块、同一寄主上分离纯化和鉴定到2株链格孢属真菌,分别为A. solaniA. alternata,经毒性测定发现A. solani为唯一侵染种,A. alternata为条件致病种,两个菌同时存在条件下能显著加快和加重病程。基于二代测序数据进行组装、注释、差异基因和RxLx[EDQ]结构域分析,最终得到12个A. solani特有的候选分泌蛋白,其中分泌蛋白ASR_2859含BIG-1和ASR_19579含E3连接酶U-BOX结构域与病原菌抗逆性明显相关。此外,A. solani包含与毒力和孢子活力相关的The velvet family蛋白可能是A. solani具有侵染马铃薯能力的主要因素之一。上述结果可为深入分析A. solaniA. altenata侵染特点和马铃薯-链格孢属真菌互作分子机制提供研究基础。

REFERENCES
[1]
WANG YF, LIU W, ZHU QL, SUN M, LI YF, ZHU JQ. Research progress on occurrence regularity and control of potato early blight[J]. Heilongjiang Agricultural Sciences, 2021(9): 129-133. (in Chinese)
王怡凡, 刘巍, 朱其立, 孙敏, 李延锋, 朱建强. 马铃薯早疫病的发生规律及防治研究进展[J]. 黑龙江农业科学, 2021(9): 129-133.
[2]
GUDMESTAD NC, ARABIAT S, MILLER JS, PASCHE JS. Prevalence and impact of SDHI fungicide resistance in Alternaria solani[J]. Plant Disease, 2013, 97(7): 952-960. DOI:10.1094/PDIS-12-12-1176-RE
[3]
ABULEY IK, NIELSEN BJ. Evaluation of models to control potato early blight (Alternaria solani) in Denmark[J]. Crop Protection, 2017, 102: 118-128. DOI:10.1016/j.cropro.2017.08.012
[4]
WEBER B, HALTERMAN DA. Analysis of genetic and pathogenic variation of Alternaria solani from a potato production region[J]. European Journal of Plant Pathology, 2012, 134(4): 847-858. DOI:10.1007/s10658-012-0060-z
[5]
RUNNO-PAURSON E, LOIT K, HANSEN M, TEIN B, WILLIAMS IH, MÄND M. Early blight destroys potato foliage in the northern Baltic region[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2015, 65(5): 422-432.
[6]
TSEDALEY B. Review on early blight (Alternaria spp.) of potato disease and its management options[J]. Journal of Biology Agriculture & Healthcare, 2014, 4: 191-198.
[7]
KOKAEVA LY, BELOSOKHOV AF, DOEVA LY, SKOLOTNEVA ES, ELANSKY SN. Distribution of Alternaria species on blighted potato and tomato leaves in Russia[J]. Journal of Plant Diseases and Protection, 2018, 125(2): 205-212.
[8]
ARDESTANI S, NABI B, RASOUL Z, AHMAD A. Alternaria interrupta, a new pathogen causing potato early blight in Iran[J]. Rostaniha, 2009, 10: 72-73.
[9]
ZHENG HH, WU XH. First report of Alternaria blight of potato caused by Alternaria tenuissima in China[J]. Plant Disease, 2013, 97(9): 1246.
[10]
ARDESTANI S, SHARIFNABI B, ZARE R, MOGHADAM A. New Alternaria species associated with potato leaf spot in various potato growing regions of Iran[J]. Iranian Journal of Plant Pathology, 2010, 45: 301-308.
[11]
TYMON LS, PEEVER TL, JOHNSON DA. Identification and enumeration of small-spored Alternaria species associated with potato in the US northwest[J]. Plant Disease, 2016, 100(2): 465-472. DOI:10.1094/PDIS-03-15-0263-RE
[12]
RODRIGUES TTMS, BERBEE ML, SIMMONS EG, CARDOSO CR, REIS A, MAFFIA LA, MIZUBUTI ESG. First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil[J]. New Disease Reports, 2010, 22(1): 28. DOI:10.5197/j.2044-0588.2010.022.028
[13]
LATORSE MP, SCHMITT F, PEYRARD S, VELOSO S, BEFFA R. Molecular analysis of Alternaria populations early blight causal agents in potato plants[C]. Proceedings of the Twelfth Euroblight Workshop, Lelystad, Praktijkonderzoek Plant & Omgeving, PPO, 2010: 179-186.
[14]
FAN ZY, WANG WQ, MENG RJ, HAN XY, ZHANG XF, MA ZQ. Identification of the pathogens of potato early blight and their sensitivity to different fungicides[J]. Acta Phytopathologica Sinica, 2013, 43(1): 69-74. (in Chinese)
范子耀, 王文桥, 孟润杰, 韩秀英, 张小风, 马志强. 马铃薯早疫病病原菌鉴定及其对不同药剂的敏感性[J]. 植物病理学报, 2013, 43(1): 69-74. DOI:10.3969/j.issn.0412-0914.2013.01.009
[15]
WEIR TL, HUFF DR, CHRIST BJ, ROMAINE CP. RAPD-PCR analysis of genetic variation among isolates of Alternaria solani and Alternaria alternata from potato and tomato[J]. Mycologia, 1998, 90(5): 813-821. DOI:10.1080/00275514.1998.12026975
[16]
SOLEIMANI M, KIRK W. Enhance resistance to Alternaria alternata causing potato brown leaf spot disease by using some plant defense inducers[J]. Journal of Plant Protection Research, 2012, 52(1): 83-90.
[17]
FAIRCHILD KL, MILES TD, WHARTON PS. Assessing fungicide resistance in populations of Alternaria in Idaho potato fields[J]. Crop Protection, 2013, 49: 31-39. DOI:10.1016/j.cropro.2013.03.003
[18]
ZHENG HH, ZHAO J, WANG TY, WU XH. Characterization of Alternaria species associated with potato foliar diseases in China[J]. Plant Pathology, 2015, 64(2): 425-433. DOI:10.1111/ppa.12274
[19]
Van Der WAALS JE, KORSTEN L, SLIPPERS B. Genetic diversity among Alternaria solani isolates from potatoes in South Africa[J]. Plant Disease, 2004, 88(9): 959-964. DOI:10.1094/PDIS.2004.88.9.959
[20]
TAI LM, ZUO YH, ZHANG YL, JIN YL, GUO YX, JIN XH, JIN GH. Analysis of genetic diversity of Alternaria solani isolated from potato in Heilongjiang Province[J]. Crops, 2017(3): 151-156. (in Chinese)
台莲梅, 左豫虎, 张亚玲, 金永玲, 郭永霞, 靳学慧, 金光辉. 黑龙江省马铃薯早疫病菌遗传多样性分析[J]. 作物杂志, 2017(3): 151-156. DOI:10.16035/j.issn.1001-7283.2017.03.027
[21]
GU Q, ZHAO DM, ZHANG D, HE JY, YANG ZH, ZHU JH. Population structure analysis of potato early blight based on SSR in northern China[J]. Jiangsu Agricultural Sciences, 2018, 46(19): 88-92. (in Chinese)
谷青, 赵冬梅, 张岱, 何佳昱, 杨志辉, 朱杰华. 北方一作区马铃薯早疫病病菌群体SSR遗传结构分析[J]. 江苏农业科学, 2018, 46(19): 88-92. DOI:10.15889/j.issn.1002-1302.2018.19.023
[22]
MENG JW. Population genetic structure of potato early blight in China[D]. Fuzhou: Doctoral Dissertation of Fujian Agriculture and Forestry University, 2015 (in Chinese).
蒙静雯. 中国马铃薯早疫病病原菌的群体遗传结构[D]. 福州: 福建农林大学博士学位论文, 2015.
[23]
ZHANG D, HE JY, HADDADI P, ZHU JH, YANG ZH, MA LS. Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence[J]. BMC Microbiology, 2018, 18(1): 176. DOI:10.1186/s12866-018-1324-3
[24]
DANG HX, PRYOR B, PEEVER T, LAWRENCE CB. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species[J]. BMC Genomics, 2015, 16(1): 239. DOI:10.1186/s12864-015-1430-7
[25]
DONG M, WANG CY, CHENG JN, FAN SS, ZHAO DM, YANG ZH, ZHU JH. Regulation of the cell wall integrity by AsSlt2 gene in Alternaria solani[J]. Microbiology China, 2022, 49(1): 115-124. (in Chinese)
东曼, 王楚媛, 程嘉宁, 范莎莎, 赵冬梅, 杨志辉, 朱杰华. AsSlt2基因对茄链格孢细胞壁完整性的调控[J]. 微生物学通报, 2022, 49(1): 115-124.
[26]
GAI YP, LI L, LIU B, MA HJ, CHEN YN, ZHENG F, SUN XP, WANG MS, JIAO C, LI HY. Distinct and essential roles of bZIP transcription factors in the stress response and pathogenesis in Alternaria alternata[J]. Microbiological Research, 2022, 256: 126915. DOI:10.1016/j.micres.2021.126915
[27]
CHEN WS, GAO L, LIU TG, LIU B, CHEN WQ. Regulating effects against wheat stripe rust by the genetic diversity of wheat[J]. Plant Protection, 2015, 41(6): 185-190. (in Chinese)
陈伟帅, 高利, 刘太国, 刘博, 陈万权. 小麦抗病遗传多样性对条锈病的调控效应[J]. 植物保护, 2015, 41(6): 185-190. DOI:10.3969/j.issn.0529-1542.2015.06.034
[28]
JEGER MJ, VILJANEN-ROLLINSON SLH. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars[J]. Theoretical and Applied Genetics, 2001, 102(1): 32-40. DOI:10.1007/s001220051615
[29]
PETERSEN TN, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011, 8(10): 785-786. DOI:10.1038/nmeth.1701
[30]
KROGH A, LARSSON B, VON HEIJNE G, SONNHAMMER ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3): 567-580. DOI:10.1006/jmbi.2000.4315
[31]
MARTI M, GOOD RT, RUG M, KNUEPFER E, COWMAN AF. Targeting malaria virulence and remodeling proteins to the host erythrocyte[J]. Science, 2004, 306(5703): 1930-1933. DOI:10.1126/science.1102452
[32]
BHATTACHARJEE S, HILLER NL, LIOLIOS K, WIN J, KANNEGANTI TD, YOUNG C, KAMOUN S, HALDAR K. The malarial host-targeting signal is conserved in the Irish potato famine pathogen[J]. PLoS Pathogens, 2006, 2(5): e50. DOI:10.1371/journal.ppat.0020050
[33]
CROOKS GE, HON G, CHANDONIA JM, BRENNER SE. WebLogo: a sequence logo generator[J]. Genome Research, 2004, 14(6): 1188-1190. DOI:10.1101/gr.849004
[34]
LETUNIC I, DOERKS T, BORK P. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research, 2011, 40(D1): D302-D305.
[35]
BAYRAM Ö, BRAUS GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins[J]. FEMS Microbiology Reviews, 2012, 36(1): 1-24. DOI:10.1111/j.1574-6976.2011.00285.x
[36]
WIEMANN P, BROWN DW, KLEIGREWE K, BOK JW, KELLER NP, HUMPF HU, TUDZYNSKI B. FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence[J]. Molecular Microbiology, 2010, 77(4): 972-994.
[37]
ALKHAYYAT F, YU JH. Upstream regulation of mycotoxin biosynthesis[J]. Advances in Applied Microbiology, 2014, 86: 251-278.
[38]
SWEENEY MJ, DOBSON ADW. Molecular biology of mycotoxin biosynthesis[J]. FEMS Microbiology Letters, 1999, 175(2): 149-163. DOI:10.1111/j.1574-6968.1999.tb13614.x
[39]
TANAHASHI M, NAKANO T, AKAMATSU H, KODAMA M, OTANI H, OSAKI-OKA K. Alternaria alternata apple pathotype (A. mali) causes black spot of European pear[J]. European Journal of Plant Pathology, 2016, 145(4): 787-795. DOI:10.1007/s10658-016-0866-1
[40]
TSUGE T, KOBAYASHI H, NISHIMURA S. Organization of ribosomal RNA genes in Alternaria alternata Japanese pear pathotype, a host-selective AK-toxin-producing fungus[J]. Current Genetics, 1989, 16(4): 267-272. DOI:10.1007/BF00422113
[41]
LEE SS, KAWAKITA K, TSUGE T, DOKE N. Stimulation of phospholipase A2 activity in strawberry cells treated with AF-toxin I produced by Alternaria alternata strawberry pathotype[J]. Physiological and Molecular Plant Pathology, 1992, 41(4): 283-294. DOI:10.1016/0885-5765(92)90027-S
[42]
KELLY G, PRASANNAN S, DANIELL S, FLEMING K, FRANKEL G, DOUGAN G, CONNERTON I, MATTHEWS S. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli[J]. Nature Structural Biology, 1999, 6(4): 313-318. DOI:10.1038/7545
[43]
YANG Q, ZHAO JY, CHEN D, WANG Y. E3 ubiquitin ligases: styles, structures and functions[J]. Molecular Biomedicine, 2021, 2(1): 23.
[44]
HUTCHINS AP, LIU S, DIEZ D, MIRANDA-SAAVEDRA D. The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes[J]. Molecular Biology and Evolution, 2013, 30(5): 1172-1187. DOI:10.1093/molbev/mst022
[45]
VLASSCHAERT C, COOK D, XIA XH, GRAY DA. The evolution and functional diversification of the deubiquitinating enzyme superfamily[J]. Genome Biology and Evolution, 2017, 9(3): 558-573.
[46]
GRAU-BOVÉ X, SEBÉ-PEDRÓS A, RUIZ-TRILLO I. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages[J]. Genome Biology and Evolution, 2013, 5(5): 833-847. DOI:10.1093/gbe/evt052
[47]
MARÍN I. Origin and evolution of fungal HECT ubiquitin ligases[J]. Scientific Reports, 2018, 8: 6419.
云南省马铃薯早疫病病原及毒性特点分析
李清 , 郑周宜 , 刘雨婷 , 赵娅锐 , 王晨晖 , 邹万君 , 李周 , 唐唯 , 李灿辉