微生物学通报  2023, Vol. 50 Issue (12): 5588−5603

扩展功能

文章信息

李磊, 胡海燕, 田菲菲
LI Lei, HU Haiyan, TIAN Feifei
二苯醚类除草剂的微生物降解研究进展
Research progress in microbial degradation of diphenyl ether herbicides
微生物学通报, 2023, 50(12): 5588-5603
Microbiology China, 2023, 50(12): 5588-5603
DOI: 10.13344/j.microbiol.china.230198

文章历史

收稿日期: 2023-03-13
接受日期: 2023-08-18
网络首发日期: 2023-10-07
二苯醚类除草剂的微生物降解研究进展
李磊1,2 , 胡海燕1 , 田菲菲3     
1. 中国农业科学院农业资源与农业区划研究所 北方干旱半干旱耕地高效利用全国重点实验室, 北京    100081;
2. 中国农业科学院研究生院, 北京    100081;
3. 石家庄市园林绿化管护中心, 河北  石家庄    050061
摘要: 二苯醚类除草剂是一类广谱、高效、高选择性的除草剂,广泛应用于大豆、花生等农田一年生和多年生阔叶杂草的防除。由于该类除草剂不易降解,多年连续使用会导致其在土壤环境中的大量积累。本文概述了二苯醚类除草剂的基本结构及其对生物的影响,总结了降解二苯醚类除草剂的微生物种类、降解途径和降解过程中关键酶及其基因,分析了影响微生物降解二苯醚类除草剂的因素,对二苯醚类除草剂微生物降解未来的研究方向进行了展望,为深入研究二苯醚类除草剂的生物降解提供参考。
关键词: 二苯醚类除草剂    微生物降解    降解途径    降解菌系    残留积累    
Research progress in microbial degradation of diphenyl ether herbicides
LI Lei1,2 , HU Haiyan1 , TIAN Feifei3     
1. State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
3. Landscaping Management Center of Shijiazhuang City, Shijiazhuang 050061, Hebei, China
Abstract: Diphenyl ether herbicides, a group of broad-spectrum herbicides with high efficiency and high selectivity, have been widely used for controlling annual and perennial broad-leaved weeds in soybean and peanut fields. The continuous use of these herbicides for years may lead to significant accumulation in the soil environments. In this paper, we briefed the basic structures of diphenyl ether herbicides and their impacts on organisms, summarized the microbial species capable of degrading diphenyl ether herbicides, degradation pathways, and the key enzymes and genes involved in the degradation of diphenyl ether herbicides, and analyzed the factors affecting the microbial degradation. Finally, the future research trends in microbial degradation of diphenyl ether herbicides were presented. This paper aims to provide references for further research on the biodegradation of diphenyl ether herbicides.
Keywords: diphenyl ether herbicides    microbial degradation    degradation pathway    degrading microbial system    residual accumulation    

化学除草是目前农田杂草防除的最主要手段,在提高农业生产效率、改善农民生活质量和降低劳动强度等方面都起着非常重要的作用。全球使用的除草剂主要种类有原卟啉原氧化酶(protoporphyrinogen oxidase, PPO)-二苯醚类除草剂、氨基酸类除草剂和乙酰乳酸合酶(acetolactate synthase, ALS)-磺酰脲类除草剂等[1]。二苯醚类除草剂作为一类广谱、高效的除草剂,具有稳定、低毒、高效和高选择性等优点,在农业领域中得到了广泛的研究与应用[2],现已成为欧洲销售量第二大的除草剂,仅次于铜化合物[3]。我国开始引进、生产和使用二苯醚类除草剂可以追溯到20世纪70年代,早期主要应用在水稻田中,后开始在大豆田中使用氟磺胺草醚、乳氟禾草灵等,并在水稻、大豆田间杂草的防除中取得了良好成效[4]

早在1901年,人们就对二苯醚的主要成分有所了解[5],但是二苯醚类除草剂的真正开发使用是从1963年美国Rohn & Haas公司发现第1个基于PPO为靶标的除草醚开始[6],从此二苯醚类除草剂的合成及其生物活性受到了极大关注,许多品种相继出现。在20世纪80−90年代,含氟二苯醚类除草剂相继问世[7],提高了该类除草剂的稳定性及选择性,扩大了杀草谱,使二苯醚类除草剂在农业生产中日益受到青睐。目前,全球已经开发的二苯醚类除草剂共有11个品种,如氟磺胺草醚、乳氟禾草灵、乙氧氟草醚、三氟羧草醚、甲羧除草醚、乙羧氟草醚和苯草醚等[8]。由于除草醚和草枯醚结构类似,都具有较强毒性,现已被包括我国在内的多个国家禁用,我国登记使用的共有9个品种[9]

化学除草剂的发明和使用在给人们带来经济和社会效益的同时,也给人类和环境带来许多负面影响[10-11]。例如,杂草抗药性增强、作物病害增加和环境污染加重等。二苯醚类除草剂同样也是一把“双刃剑”,在除草的同时,还会在土壤环境中残留积累,对后茬作物产生危害,对土壤环境造成污染。由于二苯醚类除草剂具有极高的活性和极强的选择性,一些品种如含氟二苯醚类除草剂等在土壤中少量残留即可对后茬敏感作物(如玉米、高粱等)产生药害[12],因此该类除草剂在土壤中的残留对后茬作物的安全性问题引发越来越多的关注,其在土壤中的残留已成为亟待解决的难题。二苯醚类除草剂在土壤中的降解方式主要有光解、水解和微生物降解,其中,微生物降解是二苯醚类除草剂在土壤中的主要降解方式[13]。微生物普遍具有高速繁殖能力和遗传变异能力,这使得其酶促体系能以最短的时间适应外界环境的变化,并且具有降解效率高、代谢途径多和无二次污染等优点[14]。这些特点决定了通过土壤微生物降解二苯醚类除草剂具有广阔的前景。本文概述了二苯醚类除草剂的结构、作用机制、对生物的影响,以及可降解二苯醚类除草剂的微生物种类、降解途径及其影响因素,以期为该类除草剂的环境污染修复提供可借鉴的思路及理论依据。

1 二苯醚类除草剂的结构及作用机制

二苯醚类除草剂作为常用除草剂之一,其基本结构[15]图 1所示,包括两个苯环和一些羟基化、硝化、卤化、烷氧化、酰基化基团和结构[16],具有亲酯性、不易挥发和不易水解等特点。二苯醚类除草剂属于PPO抑制剂[17],能够催化原卟啉原Ⅸ生成原卟啉Ⅸ[18-20],当暴露于光和氧气时,原卟啉Ⅸ可以与氧气反应并产生活性氧,导致细胞膜的过氧化破坏和细胞的快速死亡[21-22]。二苯醚类除草剂正是通过抑制杂草PPO的活性来达到除草的目的。

图 1 二苯醚类除草剂基本结构 Figure 1 Basic structure of diphenyl ether herbicides.
2 二苯醚类除草剂对生物的影响

二苯醚类除草剂对动物和人类有较大的危害,尤其是对水生动物的毒性较明显。研究表明,不同浓度的氟磺胺草醚和苯草醚都会影响斑马鱼胚胎的正常发育,还会降低斑马鱼胚胎免疫细胞的数量,增加一些炎症因子的表达,诱导氧化应激反应和凋亡的上调,破坏与神经发育相关的酶的活性[23-24]。另外,有研究发现乙氧氟草醚可引起尖齿胡鲶、尼罗罗非鱼和泥鳅主要组织出现病变、免疫基因表达障碍,甚至死亡[25-27]。二苯醚类除草剂对土壤中无脊椎动物的影响表现在能够降低蚯蚓肠道细菌多样性,改变肠道菌落的组成[28]。此外,二苯醚类除草剂对人类的危害主要表现在对人类癌细胞有促进作用,能够增加人类的致癌风险[29]

二苯醚类除草剂对作物也具有毒害作用,施用高剂量的二苯醚类除草剂对作物的株高、根长会产生抑制作用,并且能够降低作物的产量。研究发现乙氧氟草醚会使水稻植株出现触杀性药斑、叶片发黄等症状,受害严重的植株最终会枯死,导致水稻减产[30],乙氧氟草醚对向日葵可能具有遗传毒性和致畸作用[31]。也有研究发现氟磺胺草醚会影响水稻、玉米和甜菜的幼苗发育、植株株高和根长等[32-34]。Arana等[35]指出施用高剂量的氟磺胺草醚会导致西葫芦收获期延迟,商品率下降,对西瓜的影响表现为发育不良和烧伤。

还有一些学者研究发现,二苯醚类除草剂的施用能对土壤中微生物的群落结构以及土壤酶活性产生影响。施用2倍推荐剂量的氟磺胺草醚能够抑制土壤中过氧化氢酶、脲酶、磷酸酶、蔗糖酶和大豆根瘤固氮酶的活性,并降低土壤中细菌、真菌和放线菌的生物量,降低土壤固氮细菌、氨氧化古菌和氨氧化细菌的基因丰度[36-37]。本课题组前期研究发现不同浓度的氟磺胺草醚对土壤中细菌群落结构有显著影响,土壤细菌丰度和多样性随着氟磺胺草醚浓度的增加而降低[38],低浓度氟磺胺草醚能够显著抑制大豆根际土壤脲酶活性,高浓度的氟磺胺草醚对大豆根际土壤中蔗糖酶活性的抑制作用在试验后期显著增高[39]

3 土壤中降解二苯醚类除草剂的微生物种类

微生物降解农药的机理主要分为两类:一类是矿化作用,是指微生物直接以农药作为碳源,将其完全降解为无机物的过程;另一类是共代谢作用,是指有些合成的化合物不能被微生物降解,但若有另一种可供给的碳源和能源的辅助基质存在时,它们则可被部分降解[40]。土壤中残留的二苯醚类除草剂能够被土壤中的微生物降解。近年来,研究人员通过富集驯化、分离培养等途径从自然界土壤或污水中筛选出了一些能够降解二苯醚类除草剂的微生物,包括细菌、真菌和放线菌(表 1)。关于细菌的研究报道最多、也最深入,主要分离出的细菌菌属有假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、克雷伯菌属(Klebsiella)、志贺氏菌属(Shigella)、寡养单胞菌属(Stenotrophomonas)和固氮菌属(Azotobacte)等。其中,属于假单胞菌属的菌株最多,芽孢杆菌属次之,以下将按照不同菌属进行分类。对假单胞菌属的研究主要有:杨峰山等[41]分离出的门多萨假单胞菌(Pseudomonas mendocina) FB8对500 mg/L氟磺胺草醚的降解率为86.75%,郭静等[33]分离得到的假单胞杆菌(Pseudomonas sp.) TB-2对10 mg/L氟磺胺草醚的降解率达到96.00%;邱吉国等[42]分离到一株乙羧氟草醚降解细菌YF1,鉴定为假单胞菌属(Pseudomonas),在基础盐液体培养基中对200 mg/L乙羧氟草醚降解率约为80.00%;陈道康[43]分离得到一株能够降解三氟羧草醚的香茅醇假单胞菌(Pseudomonas citronellolis)菌株DK-3,对100 mg/L的三氟羧草醚降解率达97.20%,在原始土壤和灭菌土壤中分别接种DK-3对三氟羧草醚的降解率为77.30%和67.50%。对芽孢杆菌属的研究主要有:Liang等[44]从受污染的土壤中分离出一株赖氨酸芽孢杆菌(Lysinibacillus sp.) ZB-1,该菌株以氟磺胺草醚作为唯一碳源生长,在无机盐培养基中接种7 d后的总降解率为81.32%,对乳氟禾草灵和乙羧氟草醚也具有降解作用,降解率分别为60.40%和86.40%;Cui等[45]从稻田土壤中分离到一株新型芽孢杆菌(Bacillus sp.) FE-1,在液体培养基中培养14 h对浓度为0.50、1和10 mg/L的氟磺胺草醚的降解率均大于82.90%;Zhang等[46]分离得到一株能降解乳氟禾草灵的芽孢杆菌(Bacillus sp.) Za,在液体培养基中4 d对50 mg/L乳氟禾草灵的降解率为94.80%。对克雷伯菌属的研究有:吴秋彩等[47]分离得到一株克雷伯氏菌属(Klebsiella sp.) F-12,在接种量为15%、pH 6.00、温度35 ℃的最佳降解条件下,培养2 d对100 mg/L的氟磺胺草醚降解率达80.00%;刘亮[4]从土壤中分离到2株氟磺胺草醚高效降解菌株BDH-FB2、BDH-FB9,鉴定为克雷伯氏菌(Klebsiella sp.)的不同亚种,该菌株对500 mg/L的氟磺胺草醚的降解率分别为25.12%、88.32%。关于分离出志贺氏菌属、寡养单胞菌属和固氮菌属的研究较少,主要有:刘亮[4]从土壤中分离出2株志贺氏菌(Shigella sp.)的不同亚种的菌株BDH-FB5、BDH-FB6,在液体无机盐培养基中96 h对500 mg/L的氟磺胺草醚降解率分别达到81.25%和86.75%;张清明[48]筛选到一株氟磺胺草醚高效降解菌BX3,鉴定为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila),在温度为30 ℃,pH 6.00−7.00的最适条件下,培养5 d后对100 mg/L的氟磺胺草醚降解率为80.00%;Chakraborty等[49]分离得到一株圆褐固氮菌(Azotobacter chroococcum),该菌株以乙氧氟草醚作为唯一碳源,7 d内对240 mg/L的乙氧氟草醚降解率达到60.00%;Chen等[50]分离得到一株中华根瘤菌属(Sinorhizobium sp.) W16,该菌株在纯培养7 d内对浓度为5 mg/L的氟磺胺草醚降解率为69.00%,且该菌株为首次报道从大豆根瘤中分离得到能够降解氟磺胺草醚的菌株,为氟磺胺草醚的微生物降解提供了一种新途径。

表 1 二苯醚类除草剂微生物降解资源统计 Table 1 Statistics of microbial degradation resources of diphenyl ether herbicides
降解菌株
Degrading strains
降解除草剂名称
Name of degradable herbicide
浓度
Concentration (mg/L)
处理时间
Handling time
降解机理
Degradation mechanism
降解率
Degradation rate (%)
来源
References
细菌 Bacteria
  Pseudomonas mendocina Fomesafen 500 96 h Mineralization 86.75 [41]
  Pseudomonas sp. Fomesafen 10 36 h Co-metabolism 71.60 [33]
Fomesafen 10 72 h Co-metabolism 96.00
  Pseudomonas sp. Fluoroglycofen 200 7 d Mineralization 80.00 [42]
  Pseudomonas citronellolis Acifluorfen 100 120 h Mineralization 97.20 [43]
  Lysinibacillus sp. Fomesafen 50 7 d Mineralization 81.32 [44]
Lactofen 50 7 d Mineralization 60.40
Fluoroglycofen 50 7 d Mineralization 86.40
  Bacillus sp. Fomesafen 0.50, 1, 10 14 h Mineralization 82.90 [45]
  Bacillus sp. Lactofen 50 4 d Co-metabolism 94.80 [46]
  Klebsiella sp. Fomesafen 100 2 d Mineralization 80.00 [47]
  Klebsiella sp. Fomesafen 500 96 h Mineralization 25.12, 88.32 [4]
  Shigella sp. Fomesafen 500 96 h Mineralization 81.25, 86.75 [4]
  Stenotrophomonas acidaminiphila Fomesafen 100 5 d Mineralization 80.00 [48]
  Azotobacter chroococcum Oxyfluorfen 240 7 d Mineralization 60.00 [49]
  Sinorhizobium sp. Fomesafen 5 7 d Mineralization 69.00 [50]
真菌 Fungi
  Aspergillus niger Fomesafen 100 5 d Mineralization [51]
  Aspergillus flavus Fomesafen 40 5 d Mineralization 92.13 [52]
  Aspergillus flavus Fomesafen 10 5 d Co-metabolism 92.50 [53]
  Phlebia brevispora Chlornitrofen 10 000, 1 000, 100 7 d Mineralization 80.00 [54]
  Aspergillus jensenii Fomesafen 600 7 d Mineralization 21.03 [55]
  Penicillium dipodomyicola Fomesafen 600 7 d Mineralization 15.74 [55]
  Rhizopus oryzae Fomesafen 600 7 d Mineralization 11.88 [55]
放线菌 Actinomycetes
  Mycobacterium sp. Fluoroglycofen 100 32 h Mineralization 51.90 [56]
Fluoroglycofen 100 96 h Mineralization 91.60
  Mycobacterium phocaicum Fluoroglycofen 100 72 h Mineralization [57]
–:文献中未给出该菌株降解率
–: The degradation rate of the strain was not given in the literature.

一些学者还对真菌降解二苯醚类除草剂做了研究。但由于真菌生长繁殖较慢,利用真菌降解土壤农药残留的研究报道相对细菌而言较少[58-59],目前分离出能够降解二苯醚类除草剂的真菌菌属主要有曲霉属(Aspergillus)、白腐菌属(Phlebia)、青霉属(Penicillium)和根霉属(Rhizopus),属于曲霉属的最多。李阳等[51]筛选到一株能够高效降解氟磺胺草醚的黑曲霉(Aspergillus niger)菌株S7,该菌株在氟磺胺草醚浓度为100 mg/L、碳源为1%、初始pH为6.00、温度为28−36 ℃、接种量为2%−3%的情况下对氟磺胺草醚的降解效果最好。战徊旭等[52]分离得到一株黄曲霉(Aspergillus flavus)菌株,在查氏液体培养基中培养5 d后对40 mg/L氟磺胺草醚的降解率为92.13%。崔文娟等[53]研究表明,在接种量为3%、温度为25 ℃、液体培养基培养5 d后,黄曲霉(Aspergillus flavus)菌株对10 mg/L的氟磺胺草醚的降解率达到92.50%以上。关于白腐菌属、青霉属和根霉属的研究较少,主要有Ichiro等[54]分离出一株白腐菌(Phlebia brevispora)菌株,该菌株能降解草枯醚;潘国强等[55]分离纯化出3株能以氟磺胺草醚为唯一碳源生长的真菌菌株FF1、FF2和FF3,分别鉴定为詹森曲霉(Aspergillus jensenii)、双足青霉(Penicillium dipodomyicola)和稻根霉菌(Rhizopus oryzae),它们在液体培养基中培养7 d对初始浓度为600 mg/L的氟磺胺草醚降解率分别为21.03%、15.74%和11.88%。

关于放线菌降解二苯醚类除草剂的研究更少,现有的报道多为分枝杆菌属(Mycobacterium)。例如,王青玲[56]分离到一株以乙羧氟草醚为唯一碳源生长的高效降解菌株MBWY-1,鉴定为分枝杆菌属(Mycobacterium sp.),在温度30 ℃、pH 6.00−7.00条件下,该菌株32 h对100 mg/L的乙羧氟草醚降解率可达51.90%,96 h降解率达到91.60%;Chen等[57]也分离得到一株以乙羧氟草醚为唯一碳源生长的富西亚分枝杆菌(Mycobacterium phocaicum)菌株MBWY-1,该菌株在72 h内可将100 mg/L的乙羧氟草醚降解至检测限以下水平,最适合降解的pH 7.00、温度30 ℃。

以上学者的研究均为分离出的单一菌株对一种或几种二苯醚类除草剂的降解,而关于自然降解菌系或人工构建复合降解菌系对二苯醚类除草剂降解的研究目前还比较少。

4 微生物降解二苯醚类除草剂的途径

微生物可通过代谢活动使污染物发生脱脂、氧化还原、水解、脱羧和羟基化等反应,进而将污染物转化为其他物质,使其分解甚至被彻底降解[60-61]。关于微生物降解二苯醚类除草剂的途径已有许多报道,硝基还原是目前被众多学者报道的一种重要途径。Hiratsuka等[62]报道了微生物彩绒革盖菌(Coriolus versicolor)降解草枯醚的第一步反应就是通过硝基还原产生2, 4, 6-三氯-4'-氨基联苯醚。Chakraborty等[49]在2002年研究指出硝基还原成氨基是圆褐固氮菌(Azotobacter chroococcum)降解乙氧氟草醚的途径之一。Cui等[45]的研究也认为氟磺胺草醚的降解包括由硝基还原为氨基这个途径。

随着对二苯醚类除草剂微生物降解研究的进一步深入,氨基乙酰化、脱氯作用以及醚键的裂解也被发现是降解途径中重要的一环。Keum等[16]证实了菌株鞘氨醇单胞菌(Sphingomonas wittichii) RW1可以通过硝基还原成氨基、氨基乙酰化和醚键断裂的方式来降解除草醚、乙氧氟草醚和甲氧除草醚。Zhao等[63]的研究也指出乙氧氟草醚的微生物降解途径可能从醚键的裂解或脱氯、硝基的还原和氨基乙酰化开始(图 2)。另外,有研究证明氟磺胺草醚的降解途径可能是脱氯和氮键的裂解、硝基还原为氨基化合物和氨基衍生物进一步乙酰化[64] (图 3)。陈道康[43]研究表明菌株DK-3降解三氟羧草醚的可能代谢途径有3步,首先三氟羧草醚脱掉羧基,生成5-[2-氯-4(三氟甲基)苯氧基]-2-硝基;然后硝基被还原成羟基,生成5-[2-氯-4(三氟甲基)苯氧基]-2-羟基;最后中间醚键断裂生成3-氯-4-羟基三氟甲苯和对苯二酚(图 4)。

图 2 菌株R-21降解乙氧氟草醚的代谢途径 Figure 2 The metabolic pathway of strain R-21 degradating oxyfluorfen.

图 3 菌株BY-1降解氟磺胺草醚的代谢途径 Figure 3 The metabolic pathway of strain BY-1 degrading fomesafen.

图 4 菌株DK-3降解三氟羧草醚的代谢途径 Figure 4 The metabolic pathway of strain DK-3 degrading acifluorfen.

此外,还有学者指出微生物降解二苯醚类除草剂可由酯键裂解和水解等作用完成。Huang等[65]研究了菌株KS-1对乙羧氟草醚的降解,指出乙羧氟草醚的两个酯键依次裂解形成脱乙基乙羧氟草醚和三氟羧草醚(图 5)。这与孙斌的研究结果[66]具有一致性。张晶[67]研究指出菌株M-8和LY-2通过水解乳氟禾草灵侧链的两个酯键形成相应的脱乙基乳氟禾草灵和三氟羧草醚,脱乙基乳氟禾草灵最终也被菌株降解为三氟羧草醚,而菌株Za不仅可以水解侧链的两个酯键生成相应的脱乙基乳氟禾草灵和三氟羧草醚,还可以进一步将苯环上的硝基还原成氨基形成氨基三氟羧草醚(图 6)。Hu等[68]指出菌株HME-24对乳氟禾草灵的降解是先水解成脱乙基乳氟禾草灵,再水解成三氟羧草醚。

图 5 菌株KS-1降解乙羧氟草醚的代谢途径 Figure 5 The metabolic pathway of strain KS-1 degrading fluoroglycofen.

图 6 菌株Za降解乳氟禾草灵的代谢途径 Figure 6 The metabolic pathway of strain Za degrading lactofen.

综上可知,目前发现的微生物降解二苯醚类除草剂的主要途径是硝基还原、氨基乙酰化、脱氯、醚键断裂,部分种类也可以通过酯酶进行水解,其代谢主要集中在苯环的开环和支链的断裂上。然而含氟二苯醚类除草剂不会通过微生物大量转化,最突出的代谢步骤是通过醚键水解二苯醚结构,可能部分发生脱氟反应,产生有毒的卤代副产物[69]

5 微生物降解二苯醚类除草剂的关键酶及其基因

有部分学者对微生物在二苯醚类除草剂降解过程中起作用的关键酶及其基因的立体异构体选择性进行了初步研究。邱吉国等[42]研究推测在乙羧氟草醚的降解过程中邻苯二酚1, 2-双加氧酶能够使其裂解开环。Chen等[70]研究发现氟磺胺草醚在水稻中的降解共产生8个代谢物和14个结合物,分为两个阶段,细胞色素P450单加氧酶(cytochrome P450 monooxygenase, CYP)、谷胱甘肽S-转移酶(glutathione S-transferase, GSTs)和乙酰转移酶(acetyltransferases, ACEs)等代谢和解毒酶基因可能在代谢过程中起关键作用;在第1阶段,CYP催化氧化还原反应修饰外源物分子使其解毒,在第2阶段,GSTs和ACEs通过谷胱甘肽结合和乙酰化来代谢和解毒氟磺胺草醚,并在2023年研究发现[71]编码ACEs的新功能位点也能够促进水稻中乙氧氟草醚的降解。Liang等[72]指出了乳氟禾草灵的降解是通过所纯化的酶催化乳氟禾草灵烷化侧链的右酯键水解形成1-(羧基)乙基-5-([2-氯-4-(三氯甲基)苯氧基]-2-硝基苯甲酸酯和乙醇。此外,Zhang等[46]从菌株Za克隆了一个能将乳氟禾草灵连续水解为去乙基乳氟禾草灵和三氟羧草醚的酯酶基因LacE,并进一步研究了LacE在乳氟禾草灵降解过程中的立体异构体选择性,结果表明(S)-(+)-lactofen降解速度快于(R)-(‒)lactofen,这与Zhang等[73]在2017年从菌株LY-2克隆的基因Lach的研究结果相反。Hu等[68]从菌株HME-24中克隆到一种新的酯酶基因LanE,它可以通过酯键的连续断裂将乳氟禾草灵转化为三氟羧草醚,使乳氟禾草灵的毒性明显降低。Shang等[74]从菌株YS-1中克隆得到两个能够水解乳氟禾草灵的酯酶基因RhoE和RapE,在立体异构体选择性中,这两种酯酶基因都优先降解(S)-(+)-lactofen。Huang等[65]从菌株KS-1中克隆了一个基因fluE,该基因编码一种新型酯酶,能够催化乙羧氟草醚的羧基酯键裂解。

目前,关于微生物降解二苯醚类除草剂过程中起作用的基因及其编码酶的研究多集中于从菌株中克隆能够水解二苯醚类除草剂的酯酶基因上,对其他能够参与降解的酶的研究较少,有待进一步深入研究。然而有学者指出,从基因组学产生的数据并未提供足够的信息让微生物降解农药在整个生物降解过程中的行为可视化,有必要对微生物菌株的酶活性和代谢功能进行优化[75]。代谢组学、转录组学、基因组学和蛋白质组学是一种先进的分子生物学技术,可用于研究微生物在自然环境中持续暴露于农药时的详细遗传组成、作用方式,甚至可能探索出多种降解机制[76]。但目前关于分子生物学在微生物降解二苯醚类除草剂中的研究还未见报道,未来可将分子生物学技术和分子遗传学技术等不同的生物学技术结合起来共同研究微生物对二苯醚类除草剂的降解。

6 二苯醚类除草剂微生物降解的影响因素 6.1 环境因素

环境因素包括土壤理化性质和气候条件,其中,土壤的pH值和温度对微生物降解的影响较大。pH值主要表现在能够影响微生物的数量、种类、存在形态和降解酶的活性,某些微生物只能在特定的pH值范围内生存,适当的pH值对微生物生长具有促进作用,极端pH值不利于微生物的生长[77]。温度能够影响微生物的生长、活性和降解潜力,主要表现在通过控制微生物酶促反应速率而影响降解速率,温度过高或过低都会对微生物生长产生抑制作用,从而影响微生物对除草剂的降解[78]。此外,土壤含水量是影响生物修复过程的另一个参数。较低的土壤含水量限制了微生物的生长和代谢,而过高则会降低土壤通气性[79]。也有研究发现土壤类型、土壤有机质等都会影响微生物对除草剂的降解[80]。氟磺胺草醚降解速率与土壤温度、土壤含水量和土壤有机质含量均呈正相关关系,与土壤pH值呈负相关关系[81]

6.2 降解菌株自身因素

降解菌株自身因素包括降解菌液的浓度、降解菌液的接种量和降解菌液的培养时间等。Zhao等[82]研究发现将菌株Za制成固体菌剂,按照7%的施用量,在7 d时,固体菌剂对土壤中乳氟禾草灵、甲羧除草醚、乙羧氟草醚和氟磺胺草醚的降解率分别为87.40%、82.40%、78.20%和65.20%。

6.3 外源营养物质

外源营养物质的添加可以提高微生物活性。在自然界中,部分微生物能够以农药为唯一碳源和能源,而有些微生物需要先添加外源营养物质增殖来进行生物强化[83]或者先产生特殊酶后再使农药降解[84]。碳源是影响土壤残留农药降解速率的主要因素,一般而言,少量碳源或氮源的加入有助于提高降解率,但由于微生物对碳源的偏好利用,加入量过高往往导致降解率下降[85]。目前分离得到的大多数二苯醚类除草剂降解菌株能够以二苯醚类除草剂作为唯一碳源生长,也有研究表明添加氮、磷和钾肥料可以提高乙氧氟草醚在土壤中的降解[86]

6.4 重金属离子

重金属能够改变微生物的表面特性和酶活性[87-88],影响菌株对二苯醚类除草剂的降解效果。研究表明Co2+、Fe3+、Mg2+、Al3+、Zn2+和Mn2+对菌株YS-1降解乳氟禾草灵具有促进作用,Al3+能显著提高菌株的降解率,而Cu2+对降解有显著抑制作用[89]。重金属Zn2+和Cu2+能降低菌株KS-1对乙羧氟草醚的降解速率[66]。高浓度的Co2+、Cu2+和Ag+对菌株MBWY-1降解乙羧氟草醚的影响较大[56]

7 问题与展望

关于微生物降解二苯醚类除草剂的研究,目前存在的问题主要有:(1) 研究多集中于从土壤中富集培养、分离筛选单一菌株,对单一菌株降解二苯醚类除草剂的生长条件、降解特性及途径进行研究,而利用复合菌系降解二苯醚类除草剂的研究较少。(2) 从环境中富集到能够降解二苯醚类除草剂的菌属较少,细菌多为假单胞菌属和芽孢杆菌属,且关于真菌和放线菌的降解菌株也相对较少,有待于进一步丰富微生物降解菌种类。(3) 关于微生物降解二苯醚类除草剂中关键的酶及其基因控制工程的报道较少,多集中于对降解菌株中酯酶基因的克隆,至于其他能够参与降解的酶的种类及其基因还有待于进一步深入研究。(4) 很多研究都是在实验室特定的环境中进行的,具有局限性,如果将其应用到实际中,就需要考虑大田环境的复杂多样性。关于微生物修复二苯醚类除草剂污染土壤的建议:(1) 未来更应该倾向于构建复合菌系或复合菌群,利用菌株之间的协同作用来降解二苯醚类除草剂,可能比单一菌株具有更好的降解效果。(2) 尝试用不同的培养基进行富集培养,进一步分离筛选出更多的能够降解二苯醚类除草剂的菌种。(3) 加大对原药降解过程起关键作用酶及其基因的研究,增加对代谢过程中中间产物的研究,使其能够在土壤环境中彻底降解。(4) 增加降解菌接种到土壤环境中对土壤原著微生物的影响,以及菌株之间是否会产生拮抗作用从而影响降解菌的效果等方面的研究。(5) 未来可将降解菌制成固体菌剂[82],增加降解菌与有机肥结合的研究,既能提高土壤肥力,又能解决土壤中除草剂的残留。

REFERENCES
[1]
GU LL, WANG XX. The global market, development, trend of herbicide (Ⅰ)[J]. Modern Agrochemicals, 2016, 15(2): 1-12, 38, 51. (in Chinese)
顾林玲, 王欣欣. 全球除草剂市场、发展概况及趋势[J]. 现代农药, 2016, 15(2): 1-12, 38, 51.
[2]
XIE JQ, ZHAO L, LIU K, GUO FJ, CHEN ZW, LIU WP. Enantiomeric characterization of herbicide lactofen: enantioseparation, absolute configuration assignment and enantioselective activity and toxicity[J]. Chemosphere, 2018, 193: 351-357. DOI:10.1016/j.chemosphere.2017.10.168
[3]
MESQUITA AF, GONÇALVES FJM, GONÇALVES AMM. The lethal and sub-lethal effects of fluorinated and copper-based pesticides—a review[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3706. DOI:10.3390/ijerph20043706
[4]
LIU L. Isolation, identification and degradation characteristics of herbicide fomesafen degrading bacteria[D]. Harbin: Master's Thesis of Heilongjiang University, 2010 (in Chinese).
刘亮. 除草剂氟磺胺草醚降解菌的分离鉴定及降解特性研究[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2010.
[5]
JACKSON DD. The photometric determination of sulphates[J]. Journal of the American Chemical Society, 1901, 23(11): 799-806. DOI:10.1021/ja02037a004
[6]
CAI H, GAN XH. Research progress of diaryl ether herbicides based on PPO[J]. Modern Agrochemicals, 2022, 21(1): 9-14, 22. (in Chinese)
蔡辉, 甘秀海. 基于PPO的二芳基醚类除草剂研究进展[J]. 现代农药, 2022, 21(1): 9-14, 22.
[7]
THEODORIDIS G. Chapter 4 fluorine-containing agrochemicals: an overview of recent developments[M]//Fluorine and the Environment-Agrochemicals, Archaeology, Green Chemistry & Water. Amsterdam: Elsevier, 2006: 121-175.
[8]
LIU CL. World Pesticide Encyclopedia-herbicide Volume[M]. Beijing: Chemical Industry Press, 2002 (in Chinese).
刘长令. 世界农药大全-除草剂卷[M]. 北京: 化学工业出版社, 2002.
[9]
DIAO JL, LÜ CG, WANG XQ, DANG ZH, ZHU WT, ZHOU ZQ. Influence of soil properties on the enantioselective dissipation of the herbicide lactofen in soils[J]. Journal of Agricultural and Food Chemistry, 2009, 57(13): 5865-5871. DOI:10.1021/jf9006856
[10]
BOUDH S, SINGH JS. Pesticide contamination: environmental problems and remediation strategies[M]//Emerging and Eco-Friendly Approaches for Waste Management. Singapore: Springer Singapore, 2018: 245-269.
[11]
USTUNER T, AL SAKRAN M, ALMHEMED K. Effect of herbicides on living organisms in the ecosystem and available alternative control methods[J]. International Journal of Scientific and Research Publications (IJSRP), 2020, 10(8): 622-632.
[12]
LI XJ. Main problems and management strategies of weeds in agricultural fields in China in recent years[J]. Plant Protection, 2018, 44(5): 77-84. (in Chinese)
李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84. DOI:10.16688/j.zwbh.2018322
[13]
SINGH B, SINGH K. Microbial degradation of herbicides[J]. Critical Reviews in Microbiology, 2014, 1-17.
[14]
ZHAO HH, XU J, WU YB, DONG FS, LIU XG, ZHENG YQ. Progress in microbial degradation of diphenyl ether herbicides[J]. Plant Protection, 2014, 40(4): 9-13, 25. (in Chinese)
赵欢欢, 徐军, 吴艳兵, 董丰收, 刘新刚, 郑永权. 微生物降解二苯醚类除草剂的研究进展[J]. 植物保护, 2014, 40(4): 9-13, 25.
[15]
FENG ZZ. Isolation, identification, degradation characteristics and application of a fomesafen degrading strain BY-1[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2012 (in Chinese).
冯昭中. 一株氟磺胺草醚降解菌株BY-1的分离鉴定、降解特性及应用研究[D]. 南京: 南京农业大学博士学位论文, 2012.
[16]
KEUM YS, LEE YJ, KIM JH. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1[J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9146-9151. DOI:10.1021/jf801362k
[17]
ZHAO LX, PENG JF, LIU FY, ZOU YL, GAO S, FU Y, YE F. Design, synthesis, and herbicidal activity of diphenyl ether derivatives containing a five-membered heterocycle[J]. Journal of Agricultural and Food Chemistry, 2022, 70(4): 1003-1018. DOI:10.1021/acs.jafc.1c05210
[18]
JACOBS JM, JACOBS NJ. Measurement of protoporphyrinogen oxidase activity[J]. Current Protocols in Toxicology, 1999(1): Unit 8.5.
[19]
TAN Y, SUN L, XI Z, YANG GF, JIANG DQ, YAN XP, YANG X, LI HY. A capillary electrophoresis assay for recombinant Bacillus subtilis protoporphyrinogen oxidase[J]. Analytical Biochemistry, 2008, 383(2): 200-204. DOI:10.1016/j.ab.2008.09.023
[20]
HAO GF, ZUO Y, YANG SG, YANG GF. Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery[J]. Chimia, 2011, 65(12): 961-969. DOI:10.2533/chimia.2011.961
[21]
WANG DW, ZHANG RB, YU SY, LIANG L, ISMAIL I, LI YH, XU H, WEN X, XI Z. Discovery of novel N-isoxazolinylphenyltriazinones as promising protoporphyrinogen Ⅸ oxidase inhibitors[J]. Journal of Agricultural and Food Chemistry, 2019, 67(45): 12382-12392. DOI:10.1021/acs.jafc.9b04844
[22]
HUA XW, ZHOU S, CHEN MG, ZHANG DK, LIU M, LIU JB, WU CC, LIU Y, LI YH, LI ZM. Design, synthesis and herbicidal activity of novel sulfonylureas containing tetrahydrophthalimide substructure[J]. Chemical Research in Chinese Universities, 2016, 32(3): 396-401. DOI:10.1007/s40242-016-5480-4
[23]
XU ZP, NI HW, HUANG Y, MENG YL, CAO ZG, LIAO XJ, ZHANG SH, GUO XC, LU HQ. Effect of fomesafen on the embryonic development of zebrafish[J]. Chemosphere, 2020, 259: 127380. DOI:10.1016/j.chemosphere.2020.127380
[24]
LEE JY, PARK H, LIM W, SONG G. Aclonifen causes developmental abnormalities in zebrafish embryos through mitochondrial dysfunction and oxidative stress[J]. Science of the Total Environment, 2021, 771: 145445. DOI:10.1016/j.scitotenv.2021.145445
[25]
GHADA IAER, SHAIMAA AAA, ALSHIMAA AK, YASMINA MAE. Assessment of hematological, hepato-renal, antioxidant, and hormonal responses of Clarias gariepinus exposed to sub-lethal concentrations of oxyfluorfen[J]. Aquatic Toxicology, 2019, 217: 105329. DOI:10.1016/j.aquatox.2019.105329
[26]
IBRAHIM RE, GHAMRY HI, ALTHOBAITI SA, ALMALKI DA, SHAKWEER MS, HASSAN MA, KHAMIS T, ABDEL-GHANY HM, AHMED SAA. Moringa oleifera and Azadirachta indica leaves enriched diets mitigate chronic oxyfluorfen toxicity induced immunosuppression through disruption of pro/anti-inflammatory gene pathways, alteration of antioxidant gene expression, and histopathological alteration in Oreochromis niloticus[J]. Fishes, 2022, 8(1): 15. DOI:10.3390/fishes8010015
[27]
XIA XH, HUO WR, LI MY, DONG H, XIA XP, DU QY, CHANG ZJ. Study on the toxicity of oxyfluorfen to Misgurnus anguillicaudatus[J]. Hubei Agricultural Sciences, 2017, 56(8): 1522-1525. (in Chinese)
夏晓华, 霍蔚然, 李墨溢, 董慧, 夏晓培, 杜启艳, 常重杰. 乙氧氟草醚对泥鳅的毒性研究[J]. 湖北农业科学, 2017, 56(8): 1522-1525. DOI:10.14088/j.cnki.issn0439-8114.2017.08.029
[28]
CHANG XP, SUN Y, ZHAO LX, LI XJ, YANG SD, WENG LP, LI YT. Exposure to fomesafen alters the gut microbiota and the physiology of the earthworm Pheretima guillelmi[J]. Chemosphere, 2021, 284: 131290. DOI:10.1016/j.chemosphere.2021.131290
[29]
JABŁOŃSKA-TRYPUĆ A, WYDRO U, SERRA-MAJEM L, WOŁEJKO E, BUTAREWICZ A. The analysis of bifenox and dichlobenil toxicity in selected microorganisms and human cancer cells[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4137. DOI:10.3390/ijerph16214137
[30]
ZHAO HB, ZHAO CS, YU YK. Effects of different application amount and application time on yield and height of rice[J]. Crops, 2017(2): 163-167. (in Chinese)
赵怀斌, 赵长山, 郁延坤. 不同除草剂施用量和施用时间对水稻产量及株高的影响[J]. 作物杂志, 2017(2): 163-167. DOI:10.16035/j.issn.1001-7283.2017.02.029
[31]
JALALI S, INCEER H. Genotoxic effects of the herbicide oxyfluorfen on the root meristem cells of Helianthus annuus (sunflower)[J]. CYTOLOGIA, 2022, 87(3): 281-284. DOI:10.1508/cytologia.87.281
[32]
CARVALHO-MOORE P, RANGANI G, LANGARO AC, SRIVASTAVA V, PORRI A, BOWE SJ, LERCHL J, ROMA-BURGOS N. Field-evolved ΔG210-ppo2 from palmer amaranth confers pre-emergence tolerance to PPO-inhibitors in rice and Arabidopsis[J]. Genes, 2022, 13(6): 1044. DOI:10.3390/genes13061044
[33]
GUO J, SONG XL, BAI J, TAO B. Biological characteristics of fomesafen-degrading strain TB-2 and effects of bioremediation on growth and development of corn[J]. China Industrial Economics, 2020, 26(5): 1059-1065. (in Chinese)
郭静, 宋秀丽, 白杰, 陶波. 氟磺胺草醚降解菌株TB-2的生物学特性及生物修复对玉米生长发育的影响[J]. 应用与环境生物学报, 2020, 26(5): 1059-1065. DOI:10.19675/j.cnki.1006-687x.2019.09025
[34]
LI XF, RIAZ M, SONG BQ, LIU HJ. Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113628. DOI:10.1016/j.ecoenv.2022.113628
[35]
ARANA J, MEYERS SL, JOHNSON WG, GUAN WJ. Dose-response of plasticulture summer squash and triploid watermelon to fomesafen applied pre-transplanting[J]. Weed Technology, 2022, 36(6): 821-830. DOI:10.1017/wet.2022.86
[36]
YANG FS, WANG YB, HUANG YN, WEI YN, YUAN MR, FU HY, ZENG WM, LIU CG. Microbial community's dynamic response to fomesafen usage in chernozems of northeast China[J]. Diversity, 2021, 13(8): 340. DOI:10.3390/d13080340
[37]
ZHOU C, CHEN W, GAO Y, SHI M, LI JY, LIU LZ, CHEN JL. Effects of fomesafen and its degrading bacteria on soybean growth and biological nitrogen fⅨation[J]. Journal of Agro-Environment Science, 2021, 40(12): 2660-2668. (in Chinese)
周聪, 陈未, 高岩, 施曼, 李江叶, 刘丽珠, 陈金林. 氟磺胺草醚及其降解菌对大豆生长及生物固氮的影响[J]. 农业环境科学学报, 2021, 40(12): 2660-2668. DOI:10.11654/jaes.20211208
[38]
HU HY, ZHOU H, ZHOU SX, LI ZJ, WEI CJ, YU Y, HAY AG. Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere[J]. Environmental Pollution, 2019, 253: 302-311. DOI:10.1016/j.envpol.2019.07.018
[39]
ZHOU SX, WEI CJ, HU HY, GAO BJ, LI ZJ. Effects of fomesafen on soil microorganisms, soil enzyme activities and its degradation in soybean rhizosphere[J]. Plant Nutrition and Fertilizer Science, 2018, 24(1): 203-211. (in Chinese)
周世雄, 魏朝俊, 胡海燕, 高宝嘉, 李兆君. 氟磺胺草醚对大豆根际土壤微生物和酶活性的影响及其在根际的降解[J]. 植物营养与肥料学报, 2018, 24(1): 203-211.
[40]
WANG XJ, WANG XY, LI XY, WANG QX. Research on microbial antibacterial and degradation of organophosphorus pesticides[J]. Agricultural Development & Equipments, 2020(6): 58-59. (in Chinese)
王晓洁, 王晓雅, 李晓宇, 王琦鑫. 微生物抗菌、降解有机磷农药研究[J]. 农业开发与装备, 2020(6): 58-59.
[41]
YANG FS, LIU L, LIU CG, LI YL, YU HY, SONG FQ, GENG G. Isolation, identification and soil remediation of fomesafen degrading strain FB8[J]. Acta Microbiologica Sinica, 2011, 51(9): 1232-1239. (in Chinese)
杨峰山, 刘亮, 刘春光, 李云龙, 于慧颖, 宋福强, 耿贵. 除草剂氟磺胺草醚降解菌FB8的分离鉴定与土壤修复[J]. 微生物学报, 2011, 51(9): 1232-1239. DOI:10.13343/j.cnki.wsxb.2011.09.009
[42]
QIU JG, ZHENG JW, ZHANG J, LI SP, HE J. Isolation, identification and characteristics of a fluoroglycofen-ethyl-degrading bacterium YF1[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(5): 686-691. (in Chinese)
邱吉国, 郑金伟, 张隽, 李顺鹏, 何健. 乙羧氟草醚降解菌Pseudomonas sp. YF1的分离、鉴定与降解特性[J]. 应用与环境生物学报, 2009, 15(5): 686-691.
[43]
CHEN DK. Isolation, degradation characteristics and immobilization of a triflurocarboxyfop-ethyl degrading strain[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2016 (in Chinese).
陈道康. 一株三氟羧草醚降解菌的分离、降解特性及固定化研究[D]. 南京: 南京农业大学硕士学位论文, 2016.
[44]
LIANG B, LU P, LI HH, LI R, LI SP, HUANG X. Biodegradation of fomesafen by strain Lysinibacillus sp. ZB-1 isolated from soil[J]. Chemosphere, 2009, 77(11): 1614-1619. DOI:10.1016/j.chemosphere.2009.09.033
[45]
CUI N, WANG SG, KHORRAM MS, FANG H, YU YL. Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway[J]. Science of the Total Environment, 2018, 616/617: 1612-1619. DOI:10.1016/j.scitotenv.2017.10.151
[46]
ZHANG J, LU LY, CHEN F, CHEN LL, YIN JG, HUANG X. Detoxification of diphenyl ether herbicide lactofen by Bacillus sp. Za and enantioselective characteristics of an esterase gene lacE[J]. Journal of Hazardous Materials, 2018, 341: 336-345. DOI:10.1016/j.jhazmat.2017.07.064
[47]
WU QC, LIU Y, WANG XP. Isolation, identification and degradation characteristics analysis of fomesafen degradation bacteria[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 216-222. (in Chinese)
吴秋彩, 刘艳, 王晓萍. 氟磺胺草醚降解菌F-12的分离鉴定及降解特性研究[J]. 中国农学通报, 2012, 28(12): 216-222.
[48]
ZHANG QM. Isolation, identification and degradation characteristics of fomesafen degradation bacterium BX3[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(3): 199-203. (in Chinese)
张清明. 氟磺胺草醚降解菌BX3的分离、鉴定与降解特性研究[J]. 华北农学报, 2013, 28(3): 199-203.
[49]
CHAKRABORTY SK, BHATTACHARYYA A, CHOWDHURY A. Degradation of oxyfluorfen by Azotobacter chroococcum (beijerink)[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(2): 203-209. DOI:10.1007/s00128-002-0048-z
[50]
CHEN W, GAO Y, SHI GL, LI JY, FAN GP, YANG CY, WANG B, TONG F, LI YT. Enhanced degradation of fomesafen by a rhizobial strain Sinorhizobium sp. W16 in symbiotic association with soybean[J]. Applied Soil Ecology, 2023, 187: 104847. DOI:10.1016/j.apsoil.2023.104847
[51]
LI Y, SUN QY, ZONG J, HAN TT. Characteristics of fungus degeneration fomesafen[J]. Agrochemicals, 2009, 48(12): 878-880, 882. (in Chinese)
李阳, 孙庆元, 宗娟, 韩婷婷. 一株降解氟磺胺草醚的黑曲霉菌特性[J]. 农药, 2009, 48(12): 878-880, 882.
[52]
ZHAN HX, REN HL, JIANG LX, TENG CH, QIU LJ, TAO B. Separation, identification and growth characters of herbicide fomesafen degrading-fungi[J]. Crops, 2011(2): 40-44. (in Chinese)
战徊旭, 任洪雷, 蒋凌雪, 滕春红, 邱丽娟, 陶波. 氟磺胺草醚降解菌的分离鉴定及生长特性研究[J]. 作物杂志, 2011(2): 40-44.
[53]
CUI WJ, ZOU YL, TAO B, SUN N, ZHAO D, ZHU MH, ZHANG RR. Research of optimum degradation conditions of fomesafen by Aspergillus flavus[J]. Science and Technology of Food Industry, 2014, 35(1): 178-180, 185. (in Chinese)
崔文娟, 邹月利, 陶波, 孙宁, 赵迪, 朱美华, 张如如. 真菌黄曲霉对氟磺胺草醚的最佳降解条件研究[J]. 食品工业科技, 2014, 35(1): 178-180, 185.
[54]
ICHIRO K, RYUICHIRO K. Simultaneous degradation of commercially produced CNP herbicide and of contaminated dioxin by treatment using the white-rot fungus Phlebia brevispora[J]. Chemosphere, 2006, 65(7): 1221-1227.
[55]
PAN GQ, YANG FS, WANG JR, TANG YH, MA YK, FU HY, LIU CG. Three strains of fomesafen degrading fungi: isolation and identification[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 122-128. (in Chinese)
潘国强, 杨峰山, 王家瑞, 汤元豪, 马玉堃, 付海燕, 刘春光. 3株氟磺胺草醚降解真菌的分离与鉴定[J]. 中国农学通报, 2020, 36(27): 122-128.
[56]
WANG QL. Isolation, identification, degradation characteristics and application of a high-efficiency degrading bacterium in fluoroglycofen[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2012 (in Chinese).
王青玲. 一株乙羧氟草醚高效降解菌的分离鉴定、降解特性及其应用研究[D]. 南京: 南京农业大学硕士学位论文, 2012.
[57]
CHEN LW, CAI TM, WANG QL. Characterization of fluoroglycofen ethyl degradation by strain Mycobacterium phocaicum MBWY-1[J]. Current Microbiology, 2011, 62(6): 1710-1717.
[58]
CECI A, PINZARI F, RUSSO F, PERSIANI AM, GADD GM. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites[J]. Applied Microbiology and Biotechnology, 2019, 103(1): 53-68.
[59]
AKHTAR N, MANNAN MA. Mycoremediation: expunging environmental pollutants[J]. Biotechnology Reports (Amsterdam, Netherlands), 2020, 26: e00452.
[60]
DHAR K, SUBASHCHANDRABOSE SR, VENKATESWARLU K, KRISHNAN K, MEGHARAJ M. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: a comprehensive review[M]//Reviews of Environmental Contamination and Toxicology. Cham: Springer International Publishing, 2019: 25-108.
[61]
INTASIAN P, PRAKINEE K, PHINTHA A, TRISRIVIRAT D, WEERANOPPANANT N, WONGNATE T, CHAIYEN P. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability[J]. Chemical Reviews, 2021, 121(17): 10367-10451.
[62]
HIRATSUKA N, WARIISHI H, TANAKA H. Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor[J]. Applied Microbiology and Biotechnology, 2001, 57(4): 563-571.
[63]
ZHAO HH, XU J, DONG FS, LIU XG, WU YB, WU XH, ZHENG YQ. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6837-6845.
[64]
FENG ZZ, LI QF, ZHANG J, ZHANG J, HUANG X, LU P, LI SP. Microbial degradation of fomesafen by a newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7104-7110.
[65]
HUANG X, CHEN F, SUN B, ZHANG H, TIAN YL, ZHU CX. Isolation of a fluoroglycofen-degrading KS-1 strain and cloning of a novel esterase gene fluE[J]. FEMS Microbiology Letters, 2017, 364(16): fnx168.
[66]
SUN B. Isolation, identification, degradation characteristics and cloning and expression of esterase gene of fluoroglycofen degrading strain[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2015 (in Chinese).
孙斌. 乙羧氟草醚降解菌株的分离鉴定、降解特性研究及酯酶基因的克隆与表达[D]. 南京: 南京农业大学硕士学位论文, 2015.
[67]
ZHANG J. Isolation, identification of lactofen degrading strains and degradation mechanism studies[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2013 (in Chinese).
张晶. 除草剂乳氟禾草灵降解菌株的分离, 新种鉴定及降解机理研究[D]. 南京: 南京农业大学博士学位论文, 2013.
[68]
HU T, XIANG Y, CHEN QF, SHANG N, XU MY, HUANG X. A novel esterase LanE from Edaphocola flava HME-24 and the enantioselective degradation mechanism of herbicide lactofen[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111141.
[69]
ALEXANDRINO DAM, MUCHA AP, ALMEIDA CMR, CARVALHO MF. Atlas of the microbial degradation of fluorinated pesticides[J]. Critical Reviews in Biotechnology, 2022, 42(7): 991-1009.
[70]
CHEN ZJ, QIAO YX, ZHANG N, LIU JT, YANG H. Insight into metabolism pathways of pesticide fomesafen in rice: reducing cropping and environmental risks[J]. Environmental Pollution, 2021, 283: 117128.
[71]
CHEN ZJ, QIAO YX, ZHANG N, YANG H, LIU JT. Acetyltransferase OsACE2 acts as a regulator to reduce the environmental risk of oxyfluorfen to rice production[J]. Science of the Total Environment, 2023, 867: 161599.
[72]
LIANG B, ZHAO YK, LU P, LI SP, HUANG X. Biotransformation of the diphenyl ether herbicide lactofen and purification of a lactofen esterase from Brevundimonas sp. LY-2[J]. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9711-9715.
[73]
ZHANG J, ZHAO MJ, YU D, YIN JG, ZHANG H, HUANG X. Biochemical characterization of an enantioselective esterase from Brevundimonas sp. LY-2[J]. Microbial Cell Factories, 2017, 16(1): 1-9.
[74]
SHANG N, CHEN LL, CHENG MG, TIAN YN, HUANG X. Biodegradation of diphenyl ether herbicide lactofen by Bacillus sp. YS-1 and characterization of two initial degrading esterases[J]. Science of the Total Environment, 2022, 806: 151357.
[75]
DANGI AK, SHARMA B, HILL RT, SHUKLA P. Bioremediation through microbes: systems biology and metabolic engineering approach[J]. Critical Reviews in Biotechnology, 2019, 39(1): 79-98.
[76]
GANGOLA S, BHATT P, KUMAR AJ, BHANDARI G, JOSHI S, PUNETHA A, BHATT K, RENE ER. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment[J]. Chemosphere, 2022, 296: 133916.
[77]
TYAGI M, da FONSECA MMR, de CARVALHO CCCR. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes[J]. Biodegradation, 2011, 22(2): 231-241.
[78]
LI Y, CHEN YG, WU J. Enhancement of methane production in anaerobic digestion process: a review[J]. Applied Energy, 2019, 240: 120-137.
[79]
MANIKANDAN SK, PALLAVI P, SHETTY K, BHATTACHARJEE D, GIANNAKOUDAKIS DA, KATSOYIANNIS IA, NAIR V. Effective usage of biochar and microorganisms for the removal of heavy metal ions and pesticides[J]. Molecules, 2023, 28(2): 719.
[80]
ZHANG HY, YUAN XZ, XIONG T, WANG H, JIANG LB. Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods[J]. Chemical Engineering Journal, 2020, 398: 125657.
[81]
LIU YC, WANG XQ, TAO B. Studies on effect of soil characteristics on degradation of fomesafen[J]. Journal of Northeast Agricultural Sciences, 2016, 41(1): 81-85, 112. (in Chinese)
刘迎春, 王小琴, 陶波. 不同土壤条件对氟磺胺草醚降解作用的研究[J]. 东北农业科学, 2016, 41(1): 81-85, 112.
[82]
ZHAO GQ, TIAN YN, YU HY, LI JT, MAO DM, FAISAL RM, HUANG X. Development of solid agents of the diphenyl ether herbicide degrading bacterium Bacillus sp. Za based on a mⅨed organic fertilizer carrier[J]. Frontiers in Microbiology, 2022, 13: 1075930.
[83]
GAO DW, ZHAO H, WANG LT, LI Y, TANG T, BAI YH, LIANG H. Current and emerging trends in bioaugmentation of organic contaminated soils: a review[J]. Journal of Environmental Management, 2022, 320: 115799.
[84]
LIU Y. Identification and degradation characteristics of chlorimuron-methyl, acetochlor and fomesafen-degrading bacteria[D]. Harbin: Master's Thesis of Harbin Normal University, 2011 (in Chinese).
刘艳. 氯嘧磺隆、乙草胺和氟磺胺草醚降解菌的鉴定及其降解特性[D]. 哈尔滨: 哈尔滨师范大学硕士学位论文, 2011.
[85]
YANG XH, LI J, GE C, SHEN DL. Novel advances on pesticides degradation by microorganisms[J]. Microbiology China, 2003, 30(6): 93-96. (in Chinese)
杨小红, 李俊, 葛诚, 沈德龙. 微生物降解农药的研究新进展[J]. 微生物学通报, 2003, 30(6): 93-96.
[86]
MOHAMED AT, EL HUSSEIN AA, EL SIDDIG MA, OSMAN AG. Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides[J]. Biotechnology (Faisalabad), 2011, 10(3): 274-279.
[87]
POOJA S, SUNIL K. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances[J]. Bioresource Technology, 2021, 339: 125589.
[88]
POOJA S. Role and significance of biofilm-forming microbes in phytoremediation-a review[J]. Environmental Technology & Innovation, 2022, 25: 102182.
[89]
CHEN LL. Isolation, identification and degradation mechanism of a halofop-ethyl degrading strain Bacillus sp. YS-1[D]. Nanjing: Master's Thesis of Nanjing Agricultural University, 2019 (in Chinese).
陈玲玲. 乳氟禾草灵降解菌株Bacillus sp. YS-1的分离、鉴定及其降解机制的研究[D]. 南京: 南京农业大学硕士学位论文, 2019.
二苯醚类除草剂的微生物降解研究进展
李磊 , 胡海燕 , 田菲菲