[1] |
SMITH SE, READ DJ. Mycorrhizal Symbiosis[M]. Third Edition. Cambridge, UK: Academic Press, 2010.
|
|
[2] |
POWELL JR, RILLIG MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059-1075. DOI:10.1111/nph.15119 |
|
[3] |
GADAL N, SHRESTHA J, POUDEL MN, POKHAREL B. A review on production status and growing environments of rice in Nepal and in the world[J]. Archives of Agriculture and Environmental Science, 2019, 4(1): 83-87. DOI:10.26832/24566632.2019.0401013 |
|
[4] |
BAREA JM. Vesicular-arbuscular mycorrhizae as modifiers of soil fertility[A]//STEWART BA. Advances in Soil Science[M]. New York: Springer, 1991: 1-40.
|
|
[5] |
VALLINO M, GREPPI D, NOVERO M, BONFANTE P, LUPOTTO E. Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil[J]. Annals of Applied Biology, 2009, 154(2): 195-204. DOI:10.1111/j.1744-7348.2008.00286.x |
|
[6] |
LI H, YE ZH, CHAN WF, CHEN XW, WU FY, WU SC, WONG MH. Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions?[J]. Environmental Pollution, 2011, 159(10): 2537-2545. DOI:10.1016/j.envpol.2011.06.017 |
|
[7] |
WANG YT, LI T, LI YW, BJÖRN LO, ROSENDAHL S, OLSSON PA, LI SS, FU XL. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems[J]. Applied and Environmental Microbiology, 2015, 81(8): 2958-2965. DOI:10.1128/AEM.03769-14 |
|
[8] |
CHEN XW, WU FY, LI H, CHAN WF, WU SC, WONG MH. Mycorrhizal colonization status of lowland rice ( Oryza sativa L.) in the southeastern region of China[J]. Environmental Science and Pollution Research, 2017, 24(6): 5268-5276. DOI:10.1007/s11356-016-8287-4 |
|
[9] |
OLDROYD GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11(4): 252-263. DOI:10.1038/nrmicro2990 |
|
[10] |
YOSHIDA S, KAMEOKA H, TEMPO M, AKIYAMA K, UMEHARA M, YAMAGUCHI S, HAYASHI H, KYOZUKA J, SHIRASU K. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2012, 196(4): 1208-1216. DOI:10.1111/j.1469-8137.2012.04339.x |
|
[11] |
CARDOSO C, ZHANG YX, JAMIL M, HEPWORTH J, CHARNIKHOVA T, DIMKPA SON, MEHARG C, WRIGHT MH, LIU JW, MENG XB, WANG YH, LI JY, MCCOUCH SR, LEYSER O, PRICE AH, HARRO J. BOUWMEESTER BH, RUYTER-SPIRA C. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2379-2384. DOI:10.1073/pnas.1317360111 |
|
[12] |
LIU W, KOHLEN W, LILLO A, DEN CAMP RO, IVANOV S, HARTOG M, LIMPENS E, JAMIL M, SMACZNIAK C, KAUFMANN K, YANG WC, HOOIVELD JEJG, CHARNIKHOVA T, BOUWMEESTER HJ, BISSELING T, GEURTS R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2[J]. The Plant Cell, 2011, 23(10): 3853-3865. DOI:10.1105/tpc.111.089771 |
|
[13] |
ZHANG XW, DONG WT, SUN J, FENG F, DENG YW, HE ZH, OLDROYD GED, WANG ET. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling[J]. The Plant Journal, 2015, 81(2): 258-267. DOI:10.1111/tpj.12723 |
|
[14] |
HUANG RL. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019 (in Chinese). 黄仁良. OsCERK1的自然变异调控水稻与丛枝菌根真菌共生[D]. 武汉: 华中农业大学博士学位论文, 2019.
|
|
[15] |
MARKMANN K, GICZEY G, PARNISKE M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria[J]. PLoS Biology, 2008, 6(3): e68. DOI:10.1371/journal.pbio.0060068 |
|
[16] |
CHEN CY, FAN C, GAO MQ, ZHU HY. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants[J]. Plant Physiology, 2009, 149(1): 306-317. DOI:10.1104/pp.108.131540 |
|
[17] |
MILLER JB, PRATAP A, MIYAHARA A, ZHOU L, BORNEMANN S, MORRIS RJ, OLDROYD GED. Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling[J]. Plant Cell, 2014, 25(12): 5053-5066. DOI:10.1105/tpc.113.116921 |
|
[18] |
YANO K, YOSHIDA S, MÜLLER J, SINGH S, BANBA MR, VICKERS K, MARKMANN K, WHITE C, SCHULLER B, SATO S, ASAMIZU E, TABATA S, MUROOKA Y, PERRY J, WANG TL, KAWAGUCHI M, IMAIZUMI-ANRAKU H, HAYASHI M, PARNISKE M. CYCLOPS, a mediator of symbiotic intracellular accommodation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20540-20545. DOI:10.1073/pnas.0806858105 |
|
[19] |
PIMPRIKAR P, CARBONNEL S, PARIES M, KATZER K, KLINGL V, BOHMER MJ, KARL L, FLOSS DS, HARRISON MJ, PARNISKE M, CAROLINE GUTJAHR. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching[J]. Current Biology, 2016, 26(8): 1-12. |
|
[20] |
GENRE A, CHABAUD M, FACCIO A, BARKER DG, BONFANTE P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota[J]. Plant Cell, 2008, 20(5): 1407-1420. DOI:10.1105/tpc.108.059014 |
|
[21] |
NADAL M, SAWERS R, NASEEM S, BASSIN B, KULICKE C, SHARMAN A, AN G, AN K, AHERN KR, ROMAG A, BRUTNELL TP, GUTJAHR C, GELDNER N, ROUX C, MARTINOIA E, KONOPKA JB, PASZKOWSKI U. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize[J]. Nature Plants, 2017, 3: 17073. DOI:10.1038/nplants.2017.73 |
|
[22] |
GUTJAHR C, RADOVANOVIC D, GEOFFROY J, ZHANG Q, SIEGLER H, CHIAPELLO M, CASIERI L, AN K, AN G, GUIDERDONI E, KUMAR CS, SUNDARESAN V, HARRISON MJ, PASZKOWSKI U. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice[J]. The Plant Journal, 2012, 69(5): 906-920. DOI:10.1111/j.1365-313X.2011.04842.x |
|
[23] |
GUO R, WU YN, LIU CC, LIU YN, TIAN L, CHENG JF, PAN ZY, WANG D, WANG B. OsADK1, a novel kinase regulating arbuscular mycorrhizal symbiosis in rice[J]. New Phytologist, 2022, 234(1): 256-268. DOI:10.1111/nph.17979 |
|
[24] |
JEONG K, MATTES N, CATAUSAN S, CHIN JH, PASZKOWSKI U, HEUER S. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice[J]. Journal of Integrative Plant Biology, 2015, 57(11): 969-979. DOI:10.1111/jipb.12435 |
|
[25] |
PÉREZ-TIENDA J, CORRÊA A, AZCÓN-AGUILAR C, FERROL N. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots[J]. Plant Physiology and Biochemistry, 2014, 75: 1-8. DOI:10.1016/j.plaphy.2013.11.029 |
|
[26] |
MBODJ D, EFFA-EFFA B, KANE A, MANNEH B, GANTET P, LAPLAZE L, DIEDHIOU AG, GRONDIN A. Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses[J]. Rhizosphere, 2018, 8: 12-26. DOI:10.1016/j.rhisph.2018.08.003 |
|
[27] |
BONFANTE P, GENRE A. Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?[J]. Trends in Plant Science, 2015, 20(3): 150-154. DOI:10.1016/j.tplants.2014.12.002 |
|
[28] |
SETO Y, SADO A, ASAMI K, HANADA A, UMEHARA M, AKIYAMA K, YAMAGUCHI S. Carlactone is an endogenous biosynthetic precursor for strigolactones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1640-1645. DOI:10.1073/pnas.1314805111 |
|
[29] |
YU N, LUO DX, ZHANG XW, LIU JZ, WANG WX, JIN Y, DONG WT, LIU JY, LIU H, YANG WB, ZENG LJ, LI Q, HE ZH, OLDROYD GED, WANG ET. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants[J]. Cell Research, 2014, 24(1): 130-133. DOI:10.1038/cr.2013.167 |
|
[30] |
RUYTER-SPIRA C, AL-BABILI S, van DER KROL S, BOUWMEESTER H. The biology of strigolactones[J]. Trends in Plant Science, 2013, 18(2): 72-83. DOI:10.1016/j.tplants.2012.10.003 |
|
[31] |
GOBBATO E, MARSH JF, VERNIÉ T, WANG ET, MAILLET F, KIM J, MILLER JB, SUN J, BANO SA, RATET P, MYSORE KS, DÉNARIÉ J, SCHULTZE M, OLDROYD GED. A GRAS-type transcription factor with a specific function in mycorrhizal signaling[J]. Current Biology, 2012, 22(23): 2236-2241. DOI:10.1016/j.cub.2012.09.044 |
|
[32] |
DAS D, PARIES M, HOBECKER K, GIGL M, DAWID C, LAM HM, ZHANG JH, CHEN MX, GUTJAHR C. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis[J]. Nature Communications, 2022, 13: 477. DOI:10.1038/s41467-022-27976-8 |
|
[33] |
COURTY PE, SMITH P, KOEGEL S, REDECKER D, WIPF D. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions[J]. Critical Reviews in Plant Sciences, 2015, 34(1/2/3): 4-16. |
|
[34] |
KOEGEL S, MIEULET D, BADAY S, CHATAGNIER O, LEHMANN MF, WIEMKEN A, BOLLER T, WIPF D, BERNÈCHE S, GUIDERDONI E, COURTY PE. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses[J]. Mycorrhiza, 2017, 27(7): 695-708. DOI:10.1007/s00572-017-0786-8 |
|
[35] |
ILAG LL, ROSALES AM, ELAZEGUI FA, MEW TW. Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system[J]. Plant and Soil, 1987, 103(1): 67-73. DOI:10.1007/BF02370669 |
|
[36] |
LUMINI E, VALLINO M, ALGUACIL MM, ROMANI M, BIANCIOTTO V. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities[J]. Ecological Applications, 2011, 21(5): 1696-1707. DOI:10.1890/10-1542.1 |
|
[37] |
PANNEERSELVAM P, KUMAR U, SENAPATI A, PARAMESWARAN C, ANANDAN A, KUMAR A, JAHAN A, PADHY SR, NAYAK AK. Influence of elevated CO 2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil[J]. Applied Soil Ecology, 2020, 145: 103344. DOI:10.1016/j.apsoil.2019.08.006 |
|
[38] |
SARKODEE-ADDO E, YASUDA M, LEE CG, KANASUGI M, FUJII Y, OMARI RA, ABEBRESE SO, BAM R, ASUMING-BREMPONG S, DASTOGEER KMG, OKAZAKI S. Arbuscular mycorrhizal fungi associated with rice ( Oryza sativa L.) in Ghana: effect of regional locations and soil factors on diversity and community assembly[J]. Agronomy, 2020, 10(4): 559. DOI:10.3390/agronomy10040559 |
|
[39] |
SURENDIRAKUMAR K, PANDEY RR, MUTHUKUMAR T. Arbuscular mycorrhizal fungi in roots and rhizosphere of black rice in terrace fields of north-east India[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2021, 91(2): 277-287. DOI:10.1007/s40011-020-01221-y |
|
[40] |
BRUNS TD, CORRADI N, REDECKER D, TAYLOR JW, ÖPIK M. Glomeromycotina: what is a species and why should we care?[J]. New Phytologist, 2018, 220(4): 963-967. DOI:10.1111/nph.14913 |
|
[41] |
SANDERS IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species[J]. New Phytologist, 2018, 220(4): 968-970. DOI:10.1111/nph.15049 |
|
[42] |
IBNE BAKI MZ, SUZUKI K, TAKAHASHI K, CHOWDHURY SA, ASILOGLU R, HARADA N. Molecular genetic characterization of arbuscular mycorrhizal fungi associated with upland rice in Bangladesh[J]. Rhizosphere, 2021, 18: 100357. DOI:10.1016/j.rhisph.2021.100357 |
|
[43] |
OLUBODEA A, BABALOLAA O, DAREA M, ADEYEMIB NO, ADERIBIGBEB S, OKONJIC C, SAKARIYAWOB O. Diversity of indigenous arbuscular mycorrhizal fungi in rhizosphere of upland rice ( Oryza sativa L.) varieties in southwest Nigeria[J]. Acta Fytotechnica et Zootechnica, 2020, 23(2): 42-48. DOI:10.15414/afz.2020.23.02.42-48 |
|
[44] |
ALGUACIL MDM, TORRES MP, MONTESINOS- NAVARRO A, ROLDÁN A. Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid Mediterranean soils[J]. Applied and Environmental Microbiology, 2016, 82(11): 3348-3356. DOI:10.1128/AEM.03982-15 |
|
[45] |
KLINNAWEE L, NOIRUNGSEE N, NOPPHAKAT K, RUNSAENG P, CHANTARACHOT T. Flooding overshadows phosphorus availability in controlling the intensity of arbuscular mycorrhizal colonization in Sangyod Muang Phatthalung lowland indica rice[J]. Science Asia, 2021, 47(2): 202. DOI:10.2306/scienceasia1513-1874.2021.025 |
|
[46] |
PARVIN S, van GEEL M, YEASMIN T, LIEVENS B, HONNAY O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice ( Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh[J]. Science of the Total Environment, 2019, 686: 546-554. DOI:10.1016/j.scitotenv.2019.05.450 |
|
[47] |
PARVIN S, van GEEL M, ALI MM, YEASMIN T, LIEVENS B, HONNAY O. A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern high yielding and traditional rice varieties[J]. Plant and Soil, 2021, 462(1/2): 109-124. |
|
[48] |
CHEN ECH, MORIN E, BEAUDET D, NOEL J, YILDIRIR G, NDIKUMANA S, CHARRON P, ST-ONGE C, GIORGI J, KRÜGER M, MARTON T, ROPARS J, GRIGORIEV IV, HAINAUT M, HENRISSAT B, ROUX C, MARTIN F, CORRADI N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis[J]. New Phytologist, 2018, 220(4): 1161-1171. DOI:10.1111/nph.14989 |
|
[49] |
CHEN EC, MATHIEU S, HOFFRICHTER A, SEDZIELEWSKA-TORO K, PEART M, PELIN A, NDIKUMANA S, ROPARS J, DREISSIG S, FUCHS J, BRACHMANN A, CORRADI N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi[J]. eLife, 2018, 7: e39813. DOI:10.7554/eLife.39813 |
|
[50] |
TISARUM R, THEERAWITAYA C, SAMPHUMPHUANG T, PHISALAPHONG M, SINGH HP, CHA-UM S. Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar ( Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation[J]. Physiology and Molecular Biology of Plants, 2019, 25(4): 821-835. DOI:10.1007/s12298-019-00658-4 |
|
[51] |
LI H, CHEN XW, WU L, LUO N, HUANG WX, MO CH, LI YW, XIANG L, ZHAO HM, CAI QY, WONG MH. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant and Soil, 2020, 455(1): 121-138. |
|
[52] |
CHEN X, ZHANG ZY, GU MH, LI H, SHOHAG MJI, SHEN FK, WANG XL, WEI YY. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain[J]. Science of the Total Environment, 2020, 748: 141166. DOI:10.1016/j.scitotenv.2020.141166 |
|
[53] |
MITRA D, B E GS, KHOSHRU B, de LOS SANTOS VILLALOBOS S, BELZ C, CHAUDHARY P, SHAHRI FN, DJEBAILI R, ADEYEMI NO, EL-BALLAT EM, EL-ESAWI MA, MORADI S, MONDAL R, SENAPATI A, PANNEERSELVAM P, das MOHAPATRA PK. Impacts of arbuscular mycorrhizal fungi on rice growth, development, and stress management with a particular emphasis on strigolactone effects on root development[J]. Communications in Soil Science and Plant Analysis, 2021, 52(14): 1591-1621. DOI:10.1080/00103624.2021.1892728 |
|
[54] |
FIORILLI V, VALLINO M, BISELLI C, FACCIO A, BAGNARESI P, BONFANTE P. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi[J]. Frontiers in Plant Science, 2015, 6: 636. |
|
[55] |
GUTJAHR C, SAWERS RJH, MARTI G, ANDRÉS-HERNÁNDEZ L, YANG SY, CASIERI L, ANGLIKER H, OAKELEY EJ, WOLFENDER JL, ABREU-GOODGER C, PASZKOWSKI U. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6754-6759. DOI:10.1073/pnas.1504142112 |
|
[56] |
VALLINO M, FIORILLI V, BONFANTE P. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability[J]. Plant, Cell & Environment, 2014, 37(3): 557-572. |
|
[57] |
DING Y, XING Y, REN ML. Effects of phosphorus on iron plaque on root surface of rice seedlings and nutritional absorption[J]. Journal of Anhui Science and Technology University, 2021, 35(5): 47-52. (in Chinese) 丁艳, 邢媛, 任蒙莲. 低磷水稻根表铁膜形成对养分吸收的影响[J]. 安徽科技学院学报, 2021, 35(5): 47-52. |
|
[58] |
WATANAROJANAPORN N, BOONKERD N, TITTABUTR P, LONGTONGLANG A, YOUNG JPW, TEAUMROONG N. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure[J]. Microbes and Environments, 2013, 28(3): 316-324. DOI:10.1264/jsme2.ME13011 |
|
[59] |
ZHANG JX, LUO SS, MA LN, LIN XL, ZHANG JF, ZHANG JJ, LI XJ, WANG HB, TIAN CJ. Fungal community composition in sodic soils subjected to long-term rice cultivation[J]. Archives of Agronomy and Soil Science, 2020, 66(10): 1410-1423. DOI:10.1080/03650340.2019.1672867 |
|
[60] |
PARANAVITHANA TM, MARASINGHE S, PERERA GAD, RATNAYAKE RR. Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonaly dry tropics[J]. Paddy and Water Environment, 2021, 19(1): 217-226. DOI:10.1007/s10333-020-00833-4 |
|
[61] |
TIAN L, CHANG CL, MA LN, NASIR F, ZHANG JF, LI WQ, TRAN LSP, TIAN CJ. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae[J]. Rice, 2019, 12(1): 35. DOI:10.1186/s12284-019-0287-9 |
|
[62] |
BERNAOLA L, COSME M, SCHNEIDER RW, STOUT M. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms[J]. Frontiers in Plant Science, 2018, 9: 747. DOI:10.3389/fpls.2018.00747 |
|
[63] |
TISARUM R, THEERAWITAYA C, SAMPHUMPHUANG T, POLISPITAK K, THONGPOEM P, SINGH HP, CHA-UM S. Alleviation of salt stress in upland rice ( Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation[J]. Frontiers in Plant Science, 2020, 11: 348. DOI:10.3389/fpls.2020.00348 |
|
[64] |
WISSUWA M, GONZALEZ D, WATTS-WILLIAMS SJ. The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties[J]. Plant and Soil, 2020, 448(1/2): 523-537. |
|
[65] |
BAO XZ, WANG YT, OLSSON PA. Arbuscular mycorrhiza under water—carbon‒phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes[J]. Soil Biology and Biochemistry, 2019, 129: 169-177. DOI:10.1016/j.soilbio.2018.11.020 |
|
[66] |
de ANDRADE SAL, DOMINGUES JR AP, MAZZAFERA P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress[J]. Chemosphere, 2015, 134: 141-149. DOI:10.1016/j.chemosphere.2015.04.023 |
|
[67] |
GEWAILY S. Influence of arbuscular mycorrhizal (AMF) inoculation on the performance of Sakha 107 rice cultivar under different irrigation intervals[J]. Environment, Biodiversity and Soil Security, 2019, 3(2019): 119-130. DOI:10.21608/jenvbs.2019.15637.1068 |
|
[68] |
COSME M, STOUT MJ, WURST S. Effect of arbuscular mycorrhizal fungi ( Glomus intraradices) on the oviposition of rice water weevil ( Lissorhoptrus oryzophilus)[J]. Mycorrhiza, 2011, 21(7): 651-658. DOI:10.1007/s00572-011-0399-6 |
|
[69] |
ZHANG X, WU SL, REN BH, CHEN BD. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains[J]. Mycorrhiza, 2016, 26(4): 299-309. DOI:10.1007/s00572-015-0669-9 |
|
[70] |
LI HY, SMITH FA, DICKSON S, HOLLOWAY RE, SMITH SE. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?[J]. New Phytologist, 2008, 178(4): 852-862. DOI:10.1111/j.1469-8137.2008.02410.x |
|
[71] |
DIEDHIOU AG, MBAYE FK, MBODJ D, FAYE MN, PIGNOLY S, NDOYE I, DJAMAN K, GAYE S, KANE A, LAPLAZE L, MANNEH B, CHAMPION A. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice[J]. PLoS One, 2016, 11(12): e0167014. DOI:10.1371/journal.pone.0167014 |
|
[72] |
KAMEL L, KELLER-PEARSON M, ROUX C, ANÉ JM. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics[J]. New Phytologist, 2017, 213(2): 531-536. DOI:10.1111/nph.14263 |
|
[73] |
SUZUKI S, KOBAE Y, SISAPHAITHONG T, Tomioka R, TAKENAKA C, HATA S. Differential growth responses of rice cultivars to an arbuscular mycorrhizal fungus, Funneliformis mosseae[J]. Journal of Horticulture, 2015, 2(3): 142. |
|
[74] |
BERNAOLA L, CANGE G, WAY MO, GORE J, HARDKE J, STOUT M. Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas[J]. Rice Science, 2018, 25(3): 169-174. DOI:10.1016/j.rsci.2018.02.006 |
|
[75] |
WANG YT, LI YW, BAO XZ, BJÖRN LO, Li SS, OLSSON PA. Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes[J]. Plant and Soil, 2016, 403(1): 361-373. |
|
[76] |
WANG YT, BAO XZ, LI SS. Effects of arbuscular mycorrhizal fungi on rice growth under different flooding and shading regimes[J]. Frontiers in Microbiology, 2021, 12: 756752. DOI:10.3389/fmicb.2021.756752 |
|
[77] |
MA JF, XIN M, XU CC, ZHU WY, MAO CZ, CHEN X, CHENG L. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 728-737. (in Chinese) 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
|
[78] |
WANG QF, ZHOU DP, CHU CB, ZHAO Z, ZHOU J, WU SH. Responses of arbuscular mycorrhizal fungi to rice-upland crop rotations in an 8-year paddy ecosystem[J]. ESSOAr, 2022.
|
|
[79] |
JOHNSON NC, WILSON GWT, WILSON JA, MILLER RM, BOWKER MA. Mycorrhizal phenotypes and the law of the minimum[J]. New Phytologist, 2015, 205(4): 1473-1484. DOI:10.1111/nph.13172 |
|
[80] |
ZHANG X, WANG L, MA F, YANG JX, SU M. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice ( Oryza sativa L.)[J]. Journal of the Science of Food and Agriculture, 2017, 97(9): 2919-2925. DOI:10.1002/jsfa.8129 |
|
[81] |
PANNEERSELVAM P, SAHOO S, SENAPATI A, KUMAR U, MITRA D, PARAMESWARAN C, ANANDAN A, KUMAR A, JAHAN A, NAYAK AK. Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions[J]. Journal of Basic Microbiology, 2019, 59(12): 1217-1228. DOI:10.1002/jobm.201900294 |
|
[82] |
ZHANG SJ, WANG L, MA F, BLOOMFIELD KJ, YANG JX, ATKIN OK. Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi?[J]. Journal of Plant Ecology, 2015, 8(4): 436-448. DOI:10.1093/jpe/rtu025 |
|
[83] |
NARWAL E, ANNAPURNA K, CHOUDHARY J, SANGWAN S. Effect of arbuscular mycorrhizal fungal colonization on nutrient uptake in rice aerobic conditions[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(4): 1072-1093. DOI:10.20546/ijcmas.2018.704.118 |
|
[84] |
IQBAL MT, AHMED IAM, ISIK M, SULTANA F, ORTAŞ I. Role of mycorrhizae inoculations on nutrient uptake in rice grown under aerobic and anaerobic water management[J]. Journal of Plant Nutrition, 2021, 44(4): 550-568. DOI:10.1080/01904167.2020.1845375 |
|
[85] |
CHEN X. The mechanism of arbuscular mycorrhizal fungi inoculation on selenium uptake and accumulation in rice[D]. Nanning: Master's Thesis of Guangxi University, 2019 (in Chinese). 陈雪. 丛枝菌根真菌对水稻硒吸收、积累的机理研究[D]. 南宁: 广西大学硕士学位论文, 2019.
|
|
[86] |
BEWKE GB. Review on integrated pest management of important disease and insect pest of rice (Oryzae sativa L.)[J]. World Scientific News, 2018, 100: 184-196. |
|
[87] |
SHRINKHALA M. Study on the bioprotective effect of endomycorrhizae against M. graminicola in rice[D]. Leuven: Doctoral Dissertation of Catholic University of Leuven, 2001.
|
|
[88] |
CAMPO S, MARTÍN-CARDOSO H, OLIVÉ M, PLA E, CATALA-FORNER M, MARTÍNEZ-EIXARCH M, SEGUNDO BS. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice[J]. Rice, 2020, 13(1): 42. DOI:10.1186/s12284-020-00402-7 |
|
[89] |
GANIE SA, AHAMMED GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice[J]. Plant Cell Reports, 2021, 40(3): 437-459. DOI:10.1007/s00299-020-02649-2 |
|
[90] |
CHAREESRI A, de DEYN GB, SERGEEVA L, POLTHANEE A, KUYPER TW. Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought[J]. Mycorrhiza, 2020, 30(2/3): 315-328. |
|
[91] |
DAS D, BASAR NU, ULLAH H, SALIN KR, DATTA A. Interactive effect of silicon and mycorrhizal inoculation on growth, yield and water productivity of rice under water-deficit stress[J]. Journal of Plant Nutrition, 2021, 44(18): 2756-2769. DOI:10.1080/01904167.2021.1927087 |
|
[92] |
PARVIN S, van GEEL M, YEASMIN T, VERBRUGGEN E, HONNAY O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice ( Oryza sativa L.) cultivar[J]. Mycorrhiza, 2020, 30(4): 431-444. DOI:10.1007/s00572-020-00957-9 |
|
[93] |
NOROUZINIA F, ANSARI MH, AMINPANAH H, FIROZI S. Alleviation of soil salinity on physiological and agronomic traits of rice cultivars using arbuscular mycorrhizal fungi and Pseudomonas strains under field conditions[J]. Revista de Agricultura Neotropical, 2020, 7(1): 25-42. DOI:10.32404/rean.v7i1.4042 |
|
[94] |
ZHANG XH, ZHU YG, CHEN BD, LIN AJ, SMITH SE, SMITH FA. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12): 2065-2077. DOI:10.1080/01904160500320871 |
|
[95] |
SHAHABIVAND S, MAIVAN HZ, GOLTAPEH EM, SHARIFI M, ALILOO AA. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity[J]. Plant Physiology and Biochemistry, 2012, 60: 53-58. DOI:10.1016/j.plaphy.2012.07.018 |
|
[96] |
CORNEJO P, PÉREZ-TIENDA J, MEIER S, VALDERAS A, BORIE F, AZCÓN-AGUILAR C, FERROL N. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments[J]. Soil Biology and Biochemistry, 2013, 57: 925-928. DOI:10.1016/j.soilbio.2012.10.031 |
|
[97] |
XU J, HU H, ZENG Y, ZENG A, HE YL, TANG SJ, YANG Y, LEI P. Effects of arbuscular mycorrhizal fungi on growth and development of rice seedlings under cadmium stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 30-35, 45. (in Chinese) 许隽, 胡浩, 曾艳, 曾奥, 贺月林, 唐少军, 杨祎, 雷平. 丛枝菌根真菌对镉胁迫水稻秧苗生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 30-35, 45. |
|
[98] |
LUO N, LI X, CHEN AY, ZHANG LJ, ZHAO HM, XIANG L, CAI QY, MO CH, WONG MH, LI H. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages?[J]. Science of the Total Environment, 2017, 599/600: 1564-1572. DOI:10.1016/j.scitotenv.2017.05.047 |
|
[99] |
SHARMA S, SINGH N, KAPOOR R. Arbuscular mycorrhizal fungi in redeeming arsenic toxicity in plants[A]//VARMA A, PRASAD R, TUTEJA N. Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials[M]. Cham: Springer, 2017: 107-133.
|
|
[100] |
MALDONADO-MENDOZA IE, HARRISON MJ. RiArsB and RiMT-11: two novel genes induced by arsenate in arbuscular mycorrhiza[J]. Fungal Biology, 2018, 122(2/3): 121-130. |
|
[101] |
SPAGNOLETTI F, LAVADO RS. The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants[J]. Agronomy, 2015, 5(2): 188-199. DOI:10.3390/agronomy5020188 |
|
[102] |
MITRA D, DJEBAILI R, PELLEGRINI M, MAHAKUR B, SARKER A, CHAUDHARY P, KHOSHRU B, GALLO MD, KITOUNI M, BARIK DP, PANNEERSELVAM P, das MOHAPATRA PK. Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions[J]. Journal of Plant Nutrition, 2021, 44(13): 1993-2028. DOI:10.1080/01904167.2021.1881552 |
|
[103] |
LI H, CHEN XW, WONG MH. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145: 224-230. DOI:10.1016/j.chemosphere.2015.10.067 |
|
[104] |
DOLPHEN R, THIRAVETYAN P. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J]. Chemosphere, 2019, 223: 448-454. DOI:10.1016/j.chemosphere.2019.02.054 |
|
[105] |
GONZÁLEZ-CHÁVEZ MDCA, del PILAR ORTEGA-LARROCEA M, CARRILLO-GONZÁLEZ R, LÓPEZ-MEYER M, XOCONOSTLE-CÁZARES B, GOMEZ SK, HARRISON MJ, FIGUEROA-LÓPEZ AM, MALDONADO-MENDOZA IE. Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12): 1197-1209. DOI:10.1016/j.funbio.2011.08.005 |
|
[106] |
WEN ZH, CHEN YX, LIU ZQ, MENG J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability[J]. European Journal of Soil Biology, 2022, 113: 103448. DOI:10.1016/j.ejsobi.2022.103448 |
|
[107] |
ZHANG X, WANG L, MA F, YANG JX. Effects of arbuscular mycorrhizal fungi on CH 4 emissions from rice paddies[J]. International Journal of Phytoremediation, 2017, 19(1): 39-45. DOI:10.1080/15226514.2016.1216077 |
|
[108] |
ZHANG X, WANG L, MA F, SHAN D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies[J]. Water, Air, & Soil Pollution, 2015, 226(7): 222. |
|
[109] |
IPCC. Climate change 2013-the physical science basis[M]. Cambridge: Cambridge University Press, 2014: 465-570.
|
|
[110] |
DING LJ, CUI HL, NIE SA, LONG XE, DUAN GL, ZHU YG. Microbiomes inhabiting rice roots and rhizosphere[J]. FEMS Microbiology Ecology, 2019, 95(5): fiz040. |
|
[111] |
IPCC. Climate Change 2007-The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007.
|
|
[112] |
LI YY, CHAPMAN SJ, NICOL GW, YAO HY. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 2018, 116: 290-301. DOI:10.1016/j.soilbio.2017.10.023 |
|
[113] |
YOSHIDA M, ISHII S, OTSUKA S, SENOO K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil[J]. Soil Biology and Biochemistry, 2009, 41(10): 2044-2051. DOI:10.1016/j.soilbio.2009.07.012 |
|
[114] |
YOSHIDA M, ISHII S, OTSUKA S, SENOO K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria[J]. Microbes and Environments, 2010, 25(1): 45-48. DOI:10.1264/jsme2.ME09160 |
|
[115] |
HAO ZP, XIE W, CHEN BD. Application of arbuscular mycorrhizal fungi in agriculture: research progress and challenges[J]. Science & Technology Review, 2022, 40(3): 87-98. (in Chinese) 郝志鹏, 谢伟, 陈保冬. 丛枝菌根真菌在农业中的应用: 研究进展与挑战[J]. 科技导报, 2022, 40(3): 87-98. |
|
[116] |
OKONJI CJ, SAKARIYAWO OS, OKELEYE KA, OSUNBIYI AG, AJAYI EO. Effects of arbuscular mycorrhizal fungal inoculation on soil properties and yield of selected rice varieties[J]. Journal of Agricultural Sciences, 2018, 63(2): 153-170. |
|
[117] |
HOSEINZADE H, ARDAKANI MR, SHAHDI A, ASADI RAHMANI H, NOORMOHAMMADI G, MIRANSARI M. Rice ( Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae[J]. Journal of Integrative Agriculture, 2016, 15(6): 1385-1394. DOI:10.1016/S2095-3119(15)61241-2 |
|
[118] |
PREMKUMARI SM, PRABINA BJ. Impact of the mixed consortium of indigenous arbuscular mycorrhizal fungi (AMF) on the growth and yield of rice ( Oryza Sativa L.) under the system of rice intensification (SRI)[J]. International Journal of Environment, Agriculture and Biotechnology, 2017, 2(2): 881-885. DOI:10.22161/ijeab/2.2.41 |
|
[119] |
BEURA K, PRADHAN AK, GHOSH GK, KOHLI A, SINGH M. Root architecture, yield and phosphorus uptake by rice: response to rock phosphate enriched compost and microbial inoculants[J]. International Research Journal of Pure and Applied Chemistry, 2020, 21(19): 33-39. |
|
[120] |
BABY UI, MANIBHUSHANRAO K. Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease[J]. Mycorrhiza, 1996, 6(3): 201-206. DOI:10.1007/s005720050127 |
|
[121] |
RUÍZ-SÁNCHEZ M, ARMADA E, MUÑOZ Y, GARCÍA de SALAMONE IE, AROCA R, RUÍZ-LOZANO JM, AZCÓN R. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions[J]. Journal of Plant Physiology, 2011, 168(10): 1031-1037. DOI:10.1016/j.jplph.2010.12.019 |
|