微生物学通报  2023, Vol. 50 Issue (1): 392−412

扩展功能

文章信息

包晓哲, 马玉颖, 邹积祥, 伍龙梅, 杨陶陶, 黄庆, 张彬, 褚海燕
BAO Xiaozhe, MA Yuying, ZOU Jixiang, WU Longmei, YANG Taotao, HUANG Qing, ZHANG Bin, CHU Haiyan
稻田生态系统中丛枝菌根真菌的研究进展
Research progress of arbuscular mycorrhizal fungi in paddy fields
微生物学通报, 2023, 50(1): 392-412
Microbiology China, 2023, 50(1): 392-412
DOI: 10.13344/j.microbiol.china.220235

文章历史

收稿日期: 2022-03-08
接受日期: 2022-08-04
网络首发日期: 2022-09-08
稻田生态系统中丛枝菌根真菌的研究进展
包晓哲1 , 马玉颖2 , 邹积祥1 , 伍龙梅1 , 杨陶陶1 , 黄庆1 , 张彬1 , 褚海燕2     
1. 广东省农业科学院水稻研究所 广东省水稻育种新技术重点实验室 广东省水稻工程实验室, 广东  广州    510640;
2. 中国科学院南京土壤研究所, 江苏  南京    210008
摘要: 水稻是世界上近一半人口的主粮作物,也被认为是研究丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与非豆科植物共生的模式寄主植物。由于研究手段的限制,长期以来对稻田AMF多样性和生态功能的认识不够深入。近10年来,随着高通量测序技术的发展,越来越多的研究表明,AMF在稻田生态系统中普遍存在。新技术的发展极大地推动了稻田生态系统中AMF生态功能及其与水稻互作的研究。本文综述了稻田生态系统丛枝菌根(arbuscular mycorrhizal, AM)共生体的建立、AMF的多样性及其影响因素、AMF的生态功能、AMF在水稻栽培中的潜在应用等,并对未来AMF与水稻研究进行了展望。研究表明,AM共生体的建立依赖AMF和水稻间一系列复杂的信号识别、交换和传导机制;相较于稻田湿地环境,旱作环境水稻根中AMF的定殖率更高,而且受寄主植物、环境因子和栽培管理措施等因素影响;AMF在调控水稻生长、营养吸收、抵御环境胁迫、降低稻田甲烷(CH4)和氧化亚氮(N2O)排放等方面发挥着重要功能;AMF与其他微生物联合作用可以更好地帮助水稻吸收养分和抵御环境胁迫。基于稻田生态系统AMF研究进展和未来发展趋势的分析,本文讨论了该研究领域目前存在的问题和不足,指出后续研究应深入探讨AMF多样性水平及其生态功能之间的联系,加深对水稻-AMF相互识别的信号机制及共生建立和维持的分子级联反应的认识,并深入挖掘AMF促进水稻养分吸收、增强水稻抗逆性、降低稻田温室气体排放等分子机制。
关键词: 丛枝菌根真菌    水稻    多样性    生态功能    应用    
Research progress of arbuscular mycorrhizal fungi in paddy fields
BAO Xiaozhe1 , MA Yuying2 , ZOU Jixiang1 , WU Longmei1 , YANG Taotao1 , HUANG Qing1 , ZHANG Bin1 , CHU Haiyan2     
1. Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China;
2. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
Abstract: Rice feeds nearly half of the world's population, and it is also considered as the model host plant for studying the symbiosis between arbuscular mycorrhizal fungi (AMF) and non-legumes. The diversity and ecological roles of AMF in paddy fields have not been well understood for a long time due to the limitation of research methods. Studies have demonstrated that AMF are ubiquitous in paddy fields with the development of high-throughput sequencing technology in the last decade. The application of new techniques greatly promoted the research on the ecological roles of AMF and the interactions between AMF and rice in paddy ecosystems. In this review, we summarized the process of the establishment of arbuscular mycorrhizal (AM) symbionts, the diversity and influencing factors of AMF, and the ecological roles of AMF in paddy ecosystems. Furthermore, the potential application of AMF in rice cultivation and future research on the interactions between AMF and rice have been prospected. The establishment of AM symbionts depends on a series of complex signal recognition, exchange, and conduction between AMF and rice. The AMF colonization rate of rice plants is higher in the upland environment than that in the paddy environment, and it is affected by host plants, environmental factors, and cultivation management measures. AMF play a key role in regulating rice growth and nutrient absorption, resisting environmental stress, and reducing methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. AMF can act together with other microorganisms to help rice absorb nutrients and resist environmental stresses. This paper reviews the research progress and development trends of AMF in paddy fields and discusses the inadequacy in this research field. In the future, efforts should be made to explore the relationship between the diversity and ecological roles of AMF, the mutual signal recognition between rice and AMF, and the molecular cascade reactions in the establishment and maintenance of AM symbiosis. Moreover, it is essential to understand the underlying molecular mechanisms of AMF promoting rice nutrient absorption, enhancing rice stress resistance, and reducing greenhouse gas emissions from rice fields.
Keywords: arbuscular mycorrhizal fungi    rice    diversity    ecological role    application    

丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是地球上分布最广泛的一类土壤共生真菌,可以与超过80%的陆生维管植物形成共生关系[1]。在AMF与寄主植物形成的共生体系中,寄主植物为AMF提供生存所需的脂类和糖类物质,而AMF也能够利用根外庞大的菌丝网络帮助寄主植物获取矿质养分,提高寄主植物抵御生物和非生物胁迫的能力,同时丛枝菌根(arbuscular mycorrhizal, AM)共生体在促进生物圈物质循环及维持生态系统稳定性方面也具有重要的作用[2]。由于AMF的功能多样性,菌根生物技术在农林和环境领域的应用受到广泛关注。

水稻(Oryza sativa, Os)是世界上最重要的粮食作物之一,是全球超过一半人口的主食[3],也被认为是研究AMF与非豆科植物共生的模式寄主植物。除旱稻之外,水稻种植在常年淹水的厌氧湿地环境中。厌氧环境使土壤的还原性较强,氧化还原电位(electric potential half cells, Eh)值低甚至为负值,非常不利于AMF这类好氧微生物的生存和功能发挥。长期以来,关于水稻与AMF互作的分子和生化机制的研究基本都是在水稻旱作(或以旱稻为寄主)的条件下进行。自Barea等在1991年发现AMF能够在稻田淹水环境下存在之后,尤其是随着高通量测序技术的发展[4],越来越多的研究表明AMF在稻田生态系统中广泛存在[5-8]。根据Web of Science核心文集的检索结果, 同时出现关键词“arbuscular mycorrhizal”和“rice”的文章数量呈指数型增长(图 1)。由于传统观点认为稻田湿地中AMF定殖率和多样性较低,以往对稻田生态系统中AMF多样性和生态功能的研究和述评中,往往忽略稻田湿地环境中AMF多样性和生态功能部分的研究。全面、系统地介绍稻田生态系统(包括稻田湿地和稻田旱作土壤) AMF与水稻共生建立过程、AMF的多样性及影响因素、AMF的生态功能及AMF在水稻栽培中的潜在应用势在必行。本文旨在综述稻田生态系统中AMF研究的最新进展,探讨当前存在的问题及其可能的解决途径,以期为今后AMF与水稻的互作研究提供参考。

图 1 历年来发表的AMF与水稻相关文章数量趋势图 Figure 1 Tendency of the published articles in AMF and rice over years. 数据来源于Web of Science核心文集(时间:1975−2021年) Data were collected from Web of Science core collection (time: 1975−2021).
1 AMF与水稻共生过程

在过去的10年中,对植物-AMF相互识别的信号及AM共生建立和维持的分子级联反应的认识取得了重大进展,从豆科植物,如蒺藜苜蓿(Medicago truncatula, Mt)和百脉根(Lotus japonica, Lj)中克隆了许多参与AMF侵染前信号识别、根系侵染和丛枝发育的基因,这些基因很多都是共生通路中的关键组成。例如,钙离子(Ca2+)激活因子,包括百脉根共生受体样蛋白激酶基因(Lotus japonica symbiosis receptor-like kinase, LjSYMRK)/蒺藜苜蓿类受体激酶基因(Medicago truncatula does not make infection 2, MtDMI2)、百脉根钙离子通道基因LjCASTOR、百脉根钙离子通道基因LjPOLLUX/蒺藜苜蓿钙离子通道基因(Medicago truncatula does not make infection1, MtDMI1)、百脉根核孔复合蛋白基因(Lotus japonica nucleoporin 85, LjNUP85)/ (Lotus japonica nucleoporin133, LjNUP133)/ (Lotus japonica nucleoporin-localized protein, LjNENA);钙离子信号译码器,包括百脉根钙/钙调素蛋白激酶基因(Lotus japonica calcium- and calmodulin-dependent protein kinase, LjCCaMK)/蒺藜苜蓿钙/钙调素蛋白激酶基因(Medicago truncatula does not make infection 3, MtDMI3);下游共生信号通路的激活因子,包括百脉根细胞核未知功能蛋白基因(Lotus japonica CCaMK phosphorylation substrate, LjCYCLOPS)/蒺藜苜蓿细胞核未知功能蛋白基因(Medicago truncatula interacting protein of DMI3, MtIPD 3)、蒺藜苜蓿共生基因(Medicago truncatula VAPYRIN, MtVPY)、百脉根结瘤信号通道蛋白基因(Lotus japonica nodulation signaling pathway 1, LjNSP1)、蒺藜苜蓿结瘤信号通道蛋白基因(Medicago truncatula nodulation signaling pathway 2, MtNSP2)和百脉根E3泛素连接酶基因LjCerberus[9]。水稻中也发现了一些豆科植物共生相关的同源基因。例如,水稻细胞膜类受体激酶基因(Oryza sativa chitin elicitor receptor kinase 1, OsCERK1)、共生受体样蛋白激酶基因(Oryza sativa symbiosis receptor-like kinase, OsSYMRK)、钾离子通道基因OsCASTOR、钾离子通道基因OsPOLLUX、钙/钙调素蛋白激酶基因(Oryza sativa calcium- and calmodulin-dependent protein kinase, OsCCaMK)/(Oryza sativa does not make infection3, OsDMI3)、转录因子基因(Oryza sativa CCaMK phosphorylation substrate, OsCYCLOPS)/ (Oryza sativa interacting protein of DMI3, OsIPD3)、GIBBERELLIC-ACID INSENSITIVE (GAI), REPRESSOR of GAI (RGA), and SCARECROW (SCR)(GRAS)转录因子基因(Oryza sativa nodulation signaling pathway 1, OsNSP1)和(Oryza sativa nodulation signaling pathway 2, OsNSP2)(表 1)。由于水稻主要种植在不利于AMF存活和根系感染的淹水环境中,因此,水稻与AMF共生的研究相对较少[26]

表 1 AMF与水稻共生建立相关基因 Table 1 Genes associated with the symbiosis establishment of AMF and rice
AMF与水稻共生建立过程
AMF-rice symbiosis establishment process
基因名
Gene
基因ID
Gene ID
功能
Function
参考文献
References
AMF预侵染和相互识别
AMF pre-infection and mutual recognition
SLs生物合成
SLs biosynthesis
D27 Os11g0587000 β-胡萝卜素异构化
β-carotene isomerization
[10]
D10 Os01g0746400 裂解异构化产物,形成卡内酯;并参与AMF菌足形成
Cleavage of β-carotene isomerization products to carnetes; and participation in AMF hyphopodium formation
[10]
D17 Os04g0550600 裂解异构化产物,形成卡内酯;并参与AMF菌足形成
Cleavage of β-carotene isomerization products to carnetes; and participation in AMF hyphopodium formation
[10]
Os900 Os01g0700900 氧化卡内酯
Carlactone oxidation
[11]
OsNSP1 Os03g0408600 GRAS转录因子
GRAS-domain transcription factor
[12]
OsNSP2 Os03g0263300 GRAS转录因子
GRAS-domain transcription factor
[12]
寄主信号感知
Symbiotic signal perception
Myc-factor识别
Myc-factor perception
OsCERK1 Os08g0538300 真菌几丁寡聚糖的潜在受体,促进共生;识别几丁质或肽聚糖并触发植物免疫反应
Potential receptor for fungal chitooligosaccharide signals to promote AM symbiosis; recognition of chitin or peptidoglycan and trigging of plant immunity responses
[13-14]
预侵染信号识别
Pre-infection signals recognition
OsSYMRK Os07g0568100 感知共生信号,通过自身激酶结构域传递到寄主细胞内部
Perceived symbiotic signals and transmitted them to the host cell interior via its intracellular kinase domain
[15]
OsCASTOR Os03g0843600 编码钾离子通道蛋白,激活细胞核中钙离子的振荡
Encoded a potassium channel protein that activated Ca2+ spiking in the nucleus
[16]
OsPOLLUX Os01g0870100 编码钾离子通道蛋白,激活细胞核中钙离子的振荡
Encoded a potassium channel protein that activated Ca2+ spiking in the nucleus
[16]
寄主信号转导
Symbiotic signal transduction
OsCCaMK/
OsDMI3
Os05g0489900 编码Ca2+/CaM依赖的蛋白激酶,激活下游AM共生基因
Encoded Ca2+/CaM-dependent protein kinase that activated downstream AM symbiotic genes
[17]
OsCYCLOPS/
OsIPD3
Os06g0115600 作为CCaMK的底物发生磷酸化并促进AM共生基因转录
The phosphorylation target of CCaMK and promotion of AM symbiosis genes transactivation
[18]
AMF共生体形成
AM symbiosis establishment
OsRAM1 MTR_7g027190 介导AMF菌足形成
Hyphopodium formation
[19-20]
D3 Os06g0154200 介导AMF菌足形成
Hyphopodium formation
[10]
OsNOPE1 Os04g01520 介导AMF菌足形成
Hyphopodium formation
[21]
丛枝形成
Arbuscule formation
OsSTR1 Os09g0401100 参与植物将脂肪酸传递给AMF的过程中
The diffusion of fatty acids from rice to AMF
[22]
OsSTR2 Os07g0191600 参与植物将脂肪酸传递给AMF的过程中
The diffusion of fatty acids from rice to AMF
[22]
OsADK1 PRJNA796622 调控丛枝发育
Arbuscule development
[23]
共生过程中的养分交换
Nutrient exchange during the symbiotic process
直接P吸收途径
Direct P uptake pathway
OsPT2 Os03g0150800 水稻直接P吸收途径P吸收
P uptake via the direct P uptake pathway
[24-25]
OsPT6 Os08g0564000 水稻直接P吸收途径P吸收
P uptake via the direct P uptake pathway
[24-25]
菌根P吸收途径
Mycorrhizal P uptake pathway
OsPT11 Os01g0657100 将磷酸盐从丛枝转运到皮层细胞
P transport from the arbuscules to the cortical cells
[24]
OsPT13 Os04g0186800 P信号感知
P signal perception
[24]
直接N吸收途径
Direct N uptake pathway
OsAMT1;1 Os04g0509600 水稻直接N吸收途径N吸收
N uptake via the direct N uptake pathway
[25]
OsAMT1;3 Os02g0620500 水稻直接N吸收途径N吸收
N uptake via the direct N uptake pathway
[25]
菌根N吸收途径
Mycorrhizal N uptake pathway
OsAMT3;1 Os01g0870300 将NH4+转移到皮层细胞
Transfer of ammonium to the cortical cells
[25]
1.1 AMF预侵染和相互识别

AMF与水稻共生关系的建立始于共生体双方物理接触前的信号传导,包括水稻释放的独角金内酯(strigolactones, SLs)和角质单体及AMF孢子分泌的菌根因子(mycorrhizal factors, myc factors)[27]。水稻中的SLs生物合成始于β-胡萝卜素异构酶D27 (DWARF27, D27)对β-胡萝卜素的异构化,该异构化产物被两种类胡萝卜素裂解双加氧酶(DWARF10, D10)和(DWARF17, D17)裂解,从而形成卡内酯[28]。卡内酯再被水稻的细胞色素P450家族成员(Os01g0700900, Os900)氧化后进一步转化为5-脱氧独脚金醇(2′-epi-5- deoxystrigol);水稻Os900是拟南芥细胞色素P450家族成员(more axillary growth 1, MAX1)的同系物[11]。水稻OsNSP1和OsNSP2是GRAS家族的2个转录因子,在SLs合成过程中不可或缺[12]。当AMF孢子感知到水稻释放的SLs和角质单体后,AMF也会释放一些菌根因子;菌根因子其化学本质是一类短链几丁质寡聚物(chitin oligomers, Cos)和脂质几丁寡聚糖(lipo- chitooligosaccharides, LCOs),在水稻中已鉴定的菌根因子尚未能引起与AMF相关基因的转录[27]

1.2 水稻信号感知

水稻接收到菌根因子信号后,信号从根表皮细胞的质膜传递到细胞核内。水稻OsCERK1是真菌几丁寡聚糖的潜在受体,对AM共生体的建立至关重要[13]。同时它也是豆科植物菌根因子受体(Nod factor receptor 1, NFR1)/(LysM receptor kinase 3, LYK3)最接近的水稻同源物,识别几丁质或肽聚糖并触发植物免疫反应,但OsCERK1如何实现此双重功能尚未可知[13-14]。水稻OsSYMRK基因位于细胞膜上,编码LRR-类受体蛋白激酶(leucine-rich repeat receptor-like kinase, LRR-RLK),其能感知共生信号,通过自身激酶结构域传递到寄主细胞内部,被认为是未知菌根因子受体的共受体[15]。水稻OsCASTOROsPOLLUX基因位于OsSYMRK基因下游,编码位于细胞核膜上的2个钾离子通道蛋白,激活细胞核中钙离子的振荡[16]

1.3 水稻信号转导

钙离子振荡信号必须被识别并转导才能激活共生信号通路下游的基因表达。利用水稻共生功能缺失突变体发现了钙离子振荡的转导器OsCCaMK/ OsDMI3[17]。在水稻OsCCaMK/OsDMI3基因下游,OsCYCLOPS基因编码的蛋白通过其C-末端的卷曲螺旋结构域与OsCCaMK/OsDMI3在细胞核内发生相互作用,并且作为OsCCaMK的底物发生磷酸化[18]。OsCCaMK和OsCYCLOPS形成的复合物与调节蛋白DELLA相互作用,诱导下游调节因子的表达[19]。苜蓿中的2个DELLA蛋白(DELLA1和DELLA2)及豌豆中的2个DELLA蛋白(LA和CRY)在功能上存在冗余,都能独自促进丛枝的发育[29],但在水稻中,单个DELLA蛋白(slender rice 1, OsSLR1)发挥了同样的作用。

1.4 AM共生体形成

在AM共生体形成阶段,AMF菌丝与水稻根系接触后形成菌足。水稻根部细胞在感受到菌根因子信号后,通过重组细胞质骨架形成AMF侵入前器官(prepenetration apparatus, PPA),该结构包括许多AMF附着位点。菌足在成功躲避水稻防御系统后可通过PPA的引导进入根系皮层细胞完成AMF的入侵过程[20]。在菌足和PPA形成过程中,菌根因子仍发挥与AM共生体形成前阶段类似的作用,引发水稻胞内钙离子振荡,从而促进AMF和水稻相关组织形态发生改变[30]Oryza sativa reduced arbuscular mycorrhiza 1 (OsRAM1, 水稻中又名OsGRAS2)是一种GRAS结构域转录因子,在水稻中介导了AMF菌足的形成[29, 31]。在百脉根中,reduced arbuscular mycorrhiza 1 (RAM1)通过与CCaMK和CYCLOPS复合体直接结合被激活[19],但在水稻中,CCaMK和CYCLOPS是否参与了AMF菌足的形成尚未可知[27]。此外,SLs也参与了AMF菌足的形成,研究发现将水稻D10D17基因敲除后,AMF菌足的形成大量减少,DWARF3 (D3)也促进了AMF菌足的发育,但是其机制尚未可知[10]。水稻Oryza sativa no perception 1 (OsNOPE1)基因编码的N-乙酰葡糖胺(N-acetylglucosamine, GlcNAc)对AMF菌足的形成也是必需的[21]

1.5 丛枝形成

丛枝在AM共生过程中扮演着重要的角色,其被寄主植物细胞质膜所衍生出的围丛枝膜(periarbuscular membrane, PAM)完全包裹。2022年水稻中鉴定出一个关键蛋白激酶(Oryza sativa arbuscule development kinase 1, OsADK1),其在调控丛枝发育的过程中发挥着不可或缺的作用[23]。位于PAM膜上的2个half-size ABC转运体,即(stunted arbuscule 1, STR1)和(stunted arbuscule 2, STR2),参与水稻将脂肪酸传递给AMF的过程,进而直接影响丛枝的形成[22]。此外,MYB家族转录因子(Oryza sativa phosphate starvation response 2, OsPHR2)是响应磷(P)水平并调控丛枝菌根共生的关键因子,其直接影响丛枝菌根在水稻根部的定殖,在菌根磷酸盐吸收和水稻产量增加过程中发挥关键作用[32]

1.6 共生过程中的营养交换

水稻中有2条营养吸收途径,一条是直接营养吸收途径,水稻在感知土壤中的氮(N)、P等营养元素浓度后,通过根表皮和根毛直接从土壤中吸收营养;另一条是菌根营养吸收途径,通过AMF根外菌丝获取营养[24-25]。当土壤中的P被AM菌丝体吸收时,P聚集形成polyP,polyP链沿着菌丝移动,在丛枝中重新水解为P,并通过水稻PAM膜上的P转运体(Oryza sativa phosphate transporter11, OsPT11)转运到皮层细胞[24]。水稻PAM膜上另外一个磷酸盐转运子(phosphate transporter13, PT13)对磷酸盐转运无实质作用,其主要功能可能是P信号感知[24]。AMF既可以利用无机态的N如铵盐或硝酸盐,也可以利用有机态的N如氨基酸,然而铵盐可能是N吸收的主要形式,因为其可以直接进入谷氨酰胺合成酶/谷氨酸合成酶循环并转化为精氨酸[25, 33]。在丛枝中,精氨酸又重新转化为铵盐,然后转移到围丛枝空间,并由位于PAM膜上的铵盐转运体(Oryza sativa ammonium transporter 3;1, OsAMT3;1)转移到皮层细胞。接种AMF后,OsAMT3;1基因上调表达,而Oryza sativa ammonium transporter 1;1 (OsAMT1;1)和Oryza sativa ammonium transporter 1;3 (OsAMT1;3)基因下调表达,OsAMT1;1OsAMT1;3基因可能是水稻直接N吸收途径的主效基因[25, 34]

2 稻田生态系统中AMF群落研究进展 2.1 稻田生态系统中AMF多样性研究概况

2.1.1 稻田湿地中AMF的多样性

关于稻田淹水环境下水稻根中是否存在AMF的定殖,不同研究的结论不同。早期由于研究手段的限制,很多研究发现在缺氧的稻田环境中极少或者几乎不存在AMF的定殖,但也同时指出,淹水环境下的稻田土壤中存在足够的AMF繁殖体,当土壤变干之后,这些AMF繁殖体仍然能够侵染水稻[35-36]。随着高通量测序技术的发展,越来越多的研究证实AMF能够在稻田湿地环境中生存,甚至在持续淹水30 d的环境下,水稻根中仍然存在AMF的定殖[5]。此外,Li等调查湖南省9个稻田样地的AMF侵染率时发现其根内AMF侵染率接近5%[6];Wang等对广州市、清远市稻田湿地的调查发现AMF在高化肥施用的稻田湿地环境中普遍存在,并且在孕穗期和成熟期,水稻根内具有较高的AMF多样性水平[7];Chen等调查了东南4省7个不同地区水稻根系中AMF的定殖情况,发现在广东省惠州市AMF的定殖率达到最高值(19.5%),而且球囊霉属(Glomus)为优势属[8]。目前,在稻田湿地环境中报道的AMF真菌属包括:球囊霉属(Glomus)、根孢囊霉属(Rhizophagus)、盾巨囊霉属(Scutellospora)、管柄囊霉属(Funneliformis)、硬囊霉属(Sclerocystis)、无梗囊霉属(Acaulospora)、近明囊霉属(Claroideoglomus)、类球囊霉属(Paraglomus)、和平囊霉属(Pacispora)、巨孢囊霉属(Gigaspora)、雷德克囊霉属(Redeckera)、双型囊霉属(Ambispora)和多孢球囊霉属(Diversispora)[37-41]

2.1.2 稻田旱作环境中AMF的多样性

相较于稻田湿地环境,稻田旱作环境水稻根中AMF的定殖率较高。对孟加拉国东南部旱作水稻样地的调查发现,水稻根中AMF的定殖率在14%−47%之间,球囊霉属和类球囊霉属是优势属,其次是盾巨囊霉属、无梗囊霉属、近明囊霉属、多孢球囊霉属、巨孢囊霉属和原囊霉属(Archaeospora)[42]。对尼日利亚西南部旱作水稻样地的调查同样发现了水稻根内较高的AMF定殖率(33.6%−76.2%),球囊霉属是丰度最高的属,摩西管柄囊霉(Funneliformis mosseae=Glomus mosseae)是丰度最高的种(96.2%),其次是根内根孢囊霉(Rhizophagus irregularis=Glomus intraradices)、幼套近明球囊霉(Claroideoglomus etunicatum)和Glomus clareium[43]。此外还有硬囊霉属、根孢囊霉属、雷德克囊霉属、双型囊霉属等[44]。稻田旱作环境中AMF多样性与稻田湿地环境中相当,可能原因是随着高通量测序技术的发展,越来越多稻田湿地中的AMF种类被检测出来。

2.1.3 稻田生态系统中常见AMF的种类

近30年来,随着新技术的发展与应用,对AMF的分类有了很大的进步。近年来普遍接受的AMF分类系统将AMF单独归为球囊菌门,下设有1纲4目11科25属近315个物种[40-41]。据不完全统计,稻田生态系统中已见报道的AMF属包括根孢囊霉属、管柄囊霉属、球囊霉属、盾巨囊霉属、无梗囊霉属、近明囊霉属、类球囊霉属、多孢球囊霉属、巨孢囊霉属、双型囊霉属、原囊霉属、和平囊霉属、硬囊霉属、雷德克囊霉属、伞房球囊霉属(Corymbiglomus)和齿盾囊霉属(Dentisculata)等16个[7-8, 45-47]。从2013年完成根内根孢囊霉DAOM197198全基因组测序至今,研究共报道了2目8个AMF种类的全基因组信息[48-49]。根内根孢囊霉DAOM197198是最早完成全基因组测序的菌株,因此也被一直作为AMF研究的模式菌株,也是AMF与水稻互作研究中最常用的菌株。除此之外,摩西管柄囊霉、地表球囊霉(Glomus versiforme)、地球囊霉(Glomus geosporum)和幼套球囊霉(Glomus etunicatum)也是AMF与水稻互作研究中较为常用的菌株[50-52]

2.2 稻田生态系统中AMF多样性的影响因素

稻田生态系统中AMF物种多样性及其分布特征受多种因素的影响,是各种生物和非生物因素共同作用的结果。

2.2.1 寄主植物

由于AMF是水稻根内专性共生真菌,水稻品种、生长发育时期、根系形态和分泌物等均可能影响AMF的识别和侵染,进而影响AMF的群落组成和多样性等。不同水稻品种在长势、生理代谢、养分吸收等各个方面存在显著不同,这些不同也可影响AMF的多样性。例如,Parvin等通过比较2个传统水稻品种和3个现代高产品种根系中的AMF多样性发现,传统品种根系的AMF多样性高于现代品种,现代育种导致的水稻农艺性状、生理特性、AMF共生信号途径基因的改变可能是导致AMF多样性降低的主要原因[46]。此外,不同水稻品种根系分泌的具有不同活性的SLs结构类似物,可能影响AMF对水稻根的特异性侵染,进而影响AMF在稻田中的多样性和分布特征[53]。水稻品种对AMF多样性影响的强度及影响机制尚有待研究。水稻不同生长发育时期对养分需求量的不同显著影响水稻根内AMF的多样性。例如,Wang等通过调查华南稻田湿地水稻不同生育期根内AMF的多样性发现,相较于营养生殖期(幼苗期和分蘖期),生殖生长期(孕穗期和成熟期)水稻根内具有较高的AMF多样性水平[7],可能原因是水稻生殖生长期对养分的需求量更高,对AMF的需求更强,因而AMF的多样性更高。水稻是丛生根系系统,主要包括冠根、大侧根、小侧根3种不同的根系类型。2015年有两项研究报道不同水稻根系形态影响AMF的定殖情况[54-55],AMF主要在大侧根中定殖,而冠根和小侧根中几乎不存在AMF的定殖。主要原因是冠根具有高度木质化的屏障,而且具有较多通气组织,AMF很难侵染;小侧根无皮层组织,AMF不能形成丛枝结构;大侧根细胞壁具有弹性的皮层组织,AMF可以在水稻的大侧根中定殖。目前尚无研究重点关注不同根系形态水稻根内AMF的多样性情况。

2.2.2 环境因子和栽培管理措施

稻田生态系统中AMF群落还受到湿地环境因子(如水分、土壤理化因子等)和栽培管理措施(如施肥、水稻轮作等)的影响[26]。区别于陆地生态系统,湿地生态系统(包括稻田湿地生态系统)中淹水环境是影响AMF群落的首要因素。淹水环境可通过影响水稻根表铁膜、根系构型和根系解剖结构影响AMF侵染率,如形成铁膜、降低根系分枝指数(大侧根数目/冠根长度)、改变通气组织面积等[56-57]。水稻根系发达的通气组织可以给AMF提供更多的根系泌氧,增加AMF的侵染,但发达的通气组织也可能挤压皮层细胞的面积,降低AMF的定殖[56],其影响AMF侵染和多样性水平的机制还有待更深入的研究。土壤理化因子也是稻田中影响AMF群落结构和多样性的重要因素。Parvin等对孟加拉国水稻根系进行调查发现,除了土壤盐分和As含量之外,土壤pH、水分、有机质含量和植物有效P含量对AMF群落组成有重要影响[46];Ibne Baki等对孟加拉国旱稻根系进行调查发现,AMF的定殖率受pH影响,而AMF群落组成与土壤速效P含量极显著相关[42];Sarkodee-Addo等分析了加纳6个不同地区雨养水稻根内AMF的群落结构,发现土壤速效P是影响AMF群落结构的主要决定因素[38]。此外,水稻栽培管理措施,如施肥、水稻轮作等也会影响AMF的多样性。高化肥投入可通过降低寄主对AMF的依赖进而降低AMF多样性和寄主根内定殖率。例如,Lumini等发现稻田传统管理方式(单施化肥)相较于有机管理方式(化肥+有机肥)AMF群落多样性更低[36];Watanarojanaporn等同样报道,传统栽培制度(高肥料投入)相较于稻田集约化管理制度(低肥料投入) AMF多样性更低;传统栽培管理制度下,水稻根中只存在球囊霉属真菌,而稻田集约化管理制度下水稻根中存在球囊霉属和无梗囊霉属的AMF[58]。轮作是水稻的一种重要种植模式,不仅有利于防治病虫害、改善土壤肥力,还能达到增产增收的目的。长期单一种植水稻会导致AMF的某些属(如伞房球囊霉属、球囊霉属、根孢囊霉属等)消失,但出现齿盾囊霉属[59]。相较于单一种植水稻,水稻-大豆轮作可以显著增加下一季稻田的AMF孢子密度,而水稻-洋葱轮作的结果与之相反[60]。水稻生产过程中还会受到各种病虫害的影响。Tian等报道感染稻瘟病菌(Magnaporthe oryzae)的水稻根系AMF总侵染率和丛枝侵染率仍然在20%以上[61],与无染病稻田旱地的研究相差不大。Bernaola等发现感染稻水象甲、秋夜蛾、纹枯病的水稻根系AMF侵染率都在6%以上[62],与稻田湿地其他研究相比,AMF侵染率未受到水稻病虫害的影响。由于相关研究较少,无法明确判断病虫害对AMF多样性的影响。

3 稻田生态系统中AMF的生态功能

水稻是AMF与非豆科植物互作研究中的模式寄主。在以往AMF与旱稻或旱作水稻互作的研究中,AMF可以与水稻建立良好的共生关系,并对水稻一系列生理活动包括养分吸收、抗性等产生重要影响[63-64]。当AMF与种植于湿地环境的水稻互作时,由于受到稻田厌氧环境的影响,AMF在水稻根中的侵染率显著降低,与此同时,菌根P吸收途径也受到抑制;我们前期的研究发现,在淹水环境下,菌根植株的P水平始终高于或接近于非菌根植株,表明在淹水环境下仍然有大量的P通过菌根途径提供给水稻,AMF在稻田淹水环境中仍然发挥着重要的功能[65]。稻田生态系统中AMF的生态功能参见图 2

图 2 稻田生态系统中AMF的生态功能 Figure 2 Ecological functions of arbuscular mycorrhizal fungi (AMF) in paddy fields.
3.1 AMF对水稻生长发育的效应

AMF对水稻生长发育的效应不一致,既有促生效应[66-67],也有抑制效应[65, 68-69]。AMF与水稻互作的结果主要取决于它们之间的养分交换。当AMF给水稻提供的矿质营养高于水稻的碳(C)投入时,菌根效应表现为正效应,当AMF给水稻提供的矿质营养弥补不了水稻较高的C消耗时,菌根效应表现为负效应[1, 70]。AMF与水稻互作的结果也取决于AMF种类和水稻基因型[71]。不同AMF分泌的蛋白多数具有谱系特异性,因此可能影响水稻特异性和水稻的转录重组过程[72];即使接种同一种AMF,不同水稻基因型的菌根效应也有差异[73]。因此,在进行AMF与水稻互作的研究时,选用合适的水稻-AMF组合至关重要。此外,稻田环境因子(如淹水、遮荫等)和栽培管理措施(如施肥、轮作等)也是影响AMF与水稻互作的重要因素。淹水主要通过影响水稻根系构型和解剖结构、水稻与AMF之间的“碳磷交易”,以及土壤氧化还原电位和pH,进而影响菌根效应[54-56, 65, 74-75];我们最近的一项研究表明,遮荫环境通过降低水稻与AMF之间的养分交换,以及诱导水稻的防御反应,进而影响水稻的菌根响应[76]。稻田栽培管理措施(如施肥、轮作等)也是影响AMF与水稻互作的重要因素。施肥主要通过影响水稻的营养情况,进而影响AMF的生态功能[1, 77];轮作主要通过提高土著AMF的活性增加水稻的营养吸收[78]。越来越多的证据表明寄主植物和AMF之间的关系并非单一的正效应或者负效应,而是表现为从共生到寄生的连续体,包括典型的互惠共生、偏利共生及寄生等多种形式。同时,在一定条件下,共生和寄生的关系也可以相互转化[79]

3.2 AMF对水稻养分吸收利用的效应

AMF不能进行光合作用,需要从水稻获取碳水化合物以满足自己的生长需求,与此同时,它也会为水稻提供所需的矿质养分,主要包括P、N等[66-67, 80]。AMF主要通过根外庞大菌丝网络扩大水稻可吸收的土壤营养范围,同时,AMF分泌的有机酸、铁载体和磷酸酶等物质还能矿化土壤有机P和有机N,促进水稻对无机P、N的吸收[81]。例如,接种AMF显著提高了土壤AMF孢子数、土壤酶活和水稻根系分泌物中草酸、马来酸和乳酸的分泌,增加了水稻的养分吸收和产量[81]。此外,AMF还增加了P、N向水稻籽粒中的再分配,进而增加水稻产量,并降低稻田P、N损失[82]。例如,一项大田试验结果表明,低肥力水平下,接种AMF显著增加了水稻的穗/地上部N比和穗/地上部P比[82]。但与很多陆生植物相似,土壤高P和高N水平也会抑制AMF对水稻P、N吸收的效应。可能的原因:一是较高的土壤P、N浓度会抑制水稻根部分泌SLs,进而抑制AMF在水稻根系的定殖[53];二是土壤高P和高N水平改变了水稻的营养状况,降低了对AMF的依赖,从而抑制了AMF的侵染、菌丝的伸长和生长、AMF的代谢活性等,进而抑制了AMF对水稻P和N的吸收[1, 77, 82]

AMF不仅能够增加水稻N、P等大量元素的吸收,还能通过直接或间接的作用影响水稻对微量元素的吸收。已报道的微量元素主要包括铁(Fe)、铜(Cu)、钠(Na)、硼(B)、锌(Zn)、铝(Al)、锰(Mn)、硒(Se)等[83-84]。AMF可以通过间接改变水稻根围其他微生物群落的丰度,或与其他微生物共同作用增加水稻的微量养分吸收[52]。例如,接种AMF增加了土壤中厚壁菌门(Firmicutes)细菌的丰度及Se的可利用性,水稻籽粒中Se的积累增加[52]。AMF对水稻微量元素吸收的直接作用机制未见报道。在其他植物中,对于一些移动性较强的微量元素,如Cu、Zn,AMF主要通过其根外菌丝网络扩大植物根系的吸收范围,帮助植物获取它们;对于一些易被土壤固定、移动性较弱的元素,AMF主要通过分泌一些有机酸、铁载体和磷酸酶等物质矿化它们,从而帮助植物吸收[85]。目前的研究大多局限于AMF对水稻微量元素吸收的效应,AMF帮助水稻吸收微量元素的机制需进一步明确。

3.3 AMF对水稻抵御生物和非生物胁迫的效应

AMF除了能够帮助水稻有效吸收营养物质外,还能够增强水稻对于害虫、杂草和病原菌等生物胁迫的抵抗能力,并提高水稻对干旱、盐碱、重金属等非生物逆境胁迫的抵抗能力。

3.3.1 AMF对水稻抵御生物胁迫的效应

水稻在生长的各个时期和阶段都容易遭受病虫害侵害。水稻常见病害主要包括水稻白叶枯病、恶苗病、纹枯病、稻瘟病4种;虫害主要包括二化螟、三化螟、大螟、稻纵卷叶螟、稻飞虱5种[86]。AMF帮助水稻防御草食昆虫的研究较少且结论不一。例如,接种根内根孢囊霉可以增强水稻植株对象鼻虫(Lissorhoptrus oryzophilus)的抗性[68],接种摩西管柄囊霉可以抑制根结线虫(Meloidogyne graminicola)的繁殖[87]。然而也有研究发现,接种AMF之后水稻植株上的稻水象甲和秋夜蛾幼虫的数量更多[63]。AMF帮助水稻防御虫害的机制有待进一步探讨。AMF与水稻共生可以增强对稻瘟病菌的抗性。例如,Tian等研究发现,接种AMF可以提高栽培稻和野生稻对稻瘟病菌的抗性[61];Campo等对12个水稻品种进行盆栽试验同样发现,接种AMF可以提高水稻对稻瘟病菌的抗性[88]。AMF主要通过激活生长素和水杨酸途径诱导水稻病程相关蛋白的合成,增强水稻对稻瘟病菌的防御能力[61]。总体上,关于AMF与水稻共生体能否及如何防御水稻病虫害尚未阐明,需要进一步研究AMF抵抗病原菌、线虫攻击在分子水平上的应答机制。

3.3.2 AMF对水稻抵御非生物胁迫的效应

AMF还具有提高水稻抵御干旱、盐碱、重金属等非生物胁迫的能力。水稻由于长时间生长在淹水环境中,相较于其他作物对干旱胁迫更敏感[89]。不少研究报道,AMF可以帮助水稻抵御干旱胁迫[50, 90-91]。AMF主要通过改变水稻生理状态增强水稻对干旱的耐受性,主要机制包括:(1) 增加水稻光合效率或水分利用效率[50];(2) 帮助水稻积累渗透保护和抗氧化物质,减少过氧化氢(H2O2)的积累和脂质氧化损伤[50]。例如,有研究表明,干旱胁迫下,菌根共生水稻的叶绿素荧光、气孔导度、ABA和IAA含量较非菌根共生水稻显著升高[90];也有研究发现,菌根共生水稻剑叶蔗糖、总可溶性糖、游离脯氨酸含量、叶片叶绿素荧光和净光合速率较非共生水稻显著升高[50]

水稻是一种对盐胁迫敏感的植物,不少研究发现AMF可以增强水稻抗盐碱的能力[64, 92-93]。AMF主要从营养、生理和生化等方面帮助水稻抵御盐胁迫。AMF可以通过减少Na+的吸收,以及从地上部向地上部的转运增强水稻的耐盐能力,AMF也可以通过提高水稻光合作用效率改善水稻在盐胁迫下的生长[92]。例如,Norouzinia等研究发现,盐胁迫下,AMF增加了水稻叶片总叶绿素含量、植株K+/Na+比,降低了地上部Na+/地下部Na+[93]。此外,AMF还可以帮助水稻积累渗透调节物质,如脯氨酸、甜菜碱、糖类等,并增强抗氧化酶活性或增加抗氧化物质积累,增强水稻抵御盐胁迫的能力[64, 93]。例如,Norouzinia等通过大田实验的分析研究表明,接种AMF通过降低土壤中H2O2含量、增加水稻过氧化氢酶(catalase, CAT)活性和游离脯氨酸含量,降低盐胁迫的负面效应[93]

水稻对土壤重金属和准金属具有很强的富集能力,易导致稻米中重金属和准金属含量超标。关注最多的稻田重金属和准金属污染包括镉(Cd)、Zn、铅(Pb)、Cu、As等,而接种AMF可以减轻Cu、Zn、Pb、Cd和As等对水稻的毒害作用[94]。AMF主要通过直接效应和间接效应来缓解重金属胁迫。直接效应是指AMF通过菌丝结构吸附重金属,将重金属转运至液泡中隔离,或排至细胞外,或分泌某些物质(如球囊霉素、抗氧化胁迫酶等)固定土壤中的重金属,减轻重金属的生理毒害[95-96]。间接效应是指AMF通过影响水稻生长(如改变养分吸收、根系形态等)、根围环境(如改变根围土壤的物理和化学性质等影响重金属形态)等方式间接缓解重金属对水稻的毒性[97-98]。以As为例,AMF通过直接效应缓解水稻As胁迫的机制主要包括:(1) AMF根外菌丝分泌球囊霉素,这种富Fe糖蛋白与As (III)结合形成As (III)-Fe-As (III)复合物,降低土壤As毒性[99];(2) AMF将菌根P吸收途径吸收的As甲基化并分泌到周围环境中,同时减少直接P吸收途径吸收的As (V)[100]。AMF通过间接效应缓解水稻As胁迫的机制主要包括:(1) AMF通过促进水稻生长(提高光合效率、水分利用效率、P吸收等)增加水稻的P: As比,引起稀释效应,从而减轻As对水稻的毒害作用[101];(2) AMF增强水稻的抗氧化酶防御系统,从而提高对As的抗性[102];(3) AMF可以降低水稻籽粒非有机/有机As浓度比[103];(4) AMF下调Lsi1Lsi2两个硅酸盐吸收基因的表达,降低As (III)的吸收[104],上调GiPT基因的表达,降低As (V)的吸收[105]

3.4 AMF对稻田温室气体排放的效应

在水稻-AMF-土壤系统中,AMF是水稻与土壤之间C、N元素转运的主要枢纽;其能够从水稻中获取一部分的C用于自身生长,并通过菌丝把C向根围及根围以外的土壤迁移,增加稻田土壤的C固持;与此同时,AMF也能够通过菌丝的延伸扩展植物根系的吸收范围,吸收无机和有机N源并转移至水稻根中,促进水稻的N吸收[106]。这种共生模式也许会改变C、N元素在土壤-植物-大气中的分配,进而影响稻田甲烷(CH4)和氧化亚氮(N2O)等温室气体的排放[107-108]

在全球范围内,稻田被视为大气CH4的主要来源,其对全球CH4年排放的贡献约为11%[109]。稻田CH4的产生主要由产甲烷菌(Methanogenus)和甲烷氧化菌(Methanotrophs)共同决定[110],AMF对稻田CH4排放的影响很少受到关注。仅有的研究发现,接种AMF可以通过增加水稻的干物质来增加土壤的C: N,从而加剧稻田产CH4的N限制,进而降低稻田CH4的排放量[107]。N2O在大气中的含量很低,属于痕量气体,但其单分子增温潜势却是二氧化碳(CO2)的298倍[111]。N2O是土壤微生物硝化和反硝化过程的产物,其中,硝化过程主要与氨氧化细菌[奇古菌门(Thaumarchaeota)]和氨氧化古菌[(β-变形菌纲中的亚硝化单胞菌属(Nitrosomonas)和亚硝化螺菌属(Nitrosospira)]相关[112],而反硝化过程主要与根瘤菌(Rhizobium)、伯克霍尔德氏菌目(Burkholderiales)和红环菌目(Rhodocyclales)相关[113-114],关于AMF对稻田N2O排放影响的报道也很少。已有研究发现,接种AMF后稻田土壤的N2O排放量显著低于未接种土壤。稻田N2O的排放主要受环境途径(蒸腾、蒸发和降水等)和生物途径(水稻对可溶性N的同化作用)的控制。在稻田淹水阶段,环境途径占主导地位,接种AMF促进了生物途径对减少N2O排放的贡献;在稻田排灌阶段,非接种处理环境途径占主导地位,接种处理通过增加水稻生物量使生物途径占主导地位;因此,接种AMF有降低稻田N2O排放的潜力[108]

4 AMF在水稻栽培中的潜在应用

AMF在农业生产中应用时可以单独使用,也可以与其他微生物制剂联合使用。单一AMF菌剂中繁殖体数量和孢子活性较高,侵染水稻这类非典型寄主植物时具有较强的优势。然而,单一AMF菌剂未考虑不同AMF菌株间生物学特征和功能差异,而且对水稻生长发育的效应不一致,因此在稻田应用时,AMF与其他微生物组成的复合菌剂效果可能会更好[115]。AMF与其他生物防治剂(或农药)联合使用可以产生叠加效应,帮助水稻吸收养分,抵御非生物和生物胁迫等。已报道可以与AMF联合使用的根围微生物包括假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、偶氮螺旋菌属(Azospirillum)、伯克霍尔德菌属(Burkholderia)、草本螺旋菌属(Herbaspirillum)、类芽孢杆菌属(Paenibacillus)和嗜热一氧化碳链霉菌(Streptomyces thermocarboxydus)等[116-117]。这些根围微生物与AMF共同作用促进水稻生长发育的研究相对较多。例如,织片草螺菌(Herbaspirillum seropedicae)和AMF共同作用促进了水稻生长[117];接种生脂固氮螺菌(Azospirillum lipoferum)、巨大芽孢杆菌(Bacillus megaterium)和AMF促进了水稻生长,增加了水稻产量[118];接种巴西固氮螺菌(Azospirillum brasilense)、伯克霍尔德菌(Burkholderia cepacia)和AMF不仅促进了水稻生长,还促进了水稻对P的吸收[119]。根围微生物与AMF共同作用也可以增强水稻抗胁迫能力。例如,接种丝核菌(Rhizoctonia solani)和AMF减少了水稻纹枯病的发病[120];接种巴西固氮螺菌和AMF提高了水稻光合效率和气孔导度,增加了抗坏血酸盐和脯氨酸含量,进而增强了水稻抗旱能力[121];在盐胁迫下,接种恶臭假单胞菌(Pseudomonas putida)、荧光假单胞菌(Pseudomonas fluorescens)和AMF通过增加水稻CAT活性、脯氨酸含量,提高水稻分蘖数、穗数、粒数、生物产量和籽粒产量,降低H2O2含量,进而缓解盐胁迫对水稻植株的影响[93]。虽然已有一些AMF与根围微生物联合使用促进水稻生长和抗逆的案例,但AMF与根围微生物共同作用的研究还处于起始阶段,对于AMF与根围微生物如何相互作用,以及它们共同作用增强水稻养分吸收和抗逆的内在机制尚不清楚,未来应加强在这方面的研究。

5 展望

随着研究方法与新技术的改进,已有明确的证据显示稻田生态系统中广泛存在AMF与水稻的共生[6-7, 42, 76],这为研究稻田生态系统中AMF的生态功能及其与水稻的互作提供了重要的前提条件。基于以往AMF与水稻互作的研究进展,我们认为未来在AMF与水稻互作的研究中还有以下几个方向需要重点关注。

(1) 应加强稻田生态系统中AMF物种多样性的研究,并深入探讨AMF的群落组成或多样性水平及其在稻田生态系统中所发挥的生态功能之间的联系。尽管已有研究关注稻田生态系统中AMF的存在情况,但对于不同地域稻田生态系统中AMF整体群落的状态还所知较少。并且,关于水稻与AMF互作的分子和生化机制的研究基本都是在水稻旱作(或以旱稻为寄主)的条件下进行,稻田湿地环境中AMF生态功能的研究尚不深入。

(2) 对水稻-AMF相互识别的信号及AMF共生建立和维持的分子级联反应的认识还有待加强。虽已有一些参与到AMF与水稻共生过程中的基因被克隆,功能也得到验证,但AMF与水稻共生建立的整个过程尚未研究清楚,仍有大量参与其中的基因未被发掘,已克隆的某些基因的调控机制也有待继续探讨。

(3) 已有的关于AMF促进水稻养分吸收、增强水稻抗逆性、降低稻田温室气体排放等的机制研究还停留在生理、生化层面,分子层面的机制仍有待进一步研究。

REFERENCES
[1]
SMITH SE, READ DJ. Mycorrhizal Symbiosis[M]. Third Edition. Cambridge, UK: Academic Press, 2010.
[2]
POWELL JR, RILLIG MC. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059-1075. DOI:10.1111/nph.15119
[3]
GADAL N, SHRESTHA J, POUDEL MN, POKHAREL B. A review on production status and growing environments of rice in Nepal and in the world[J]. Archives of Agriculture and Environmental Science, 2019, 4(1): 83-87. DOI:10.26832/24566632.2019.0401013
[4]
BAREA JM. Vesicular-arbuscular mycorrhizae as modifiers of soil fertility[A]//STEWART BA. Advances in Soil Science[M]. New York: Springer, 1991: 1-40.
[5]
VALLINO M, GREPPI D, NOVERO M, BONFANTE P, LUPOTTO E. Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil[J]. Annals of Applied Biology, 2009, 154(2): 195-204. DOI:10.1111/j.1744-7348.2008.00286.x
[6]
LI H, YE ZH, CHAN WF, CHEN XW, WU FY, WU SC, WONG MH. Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions?[J]. Environmental Pollution, 2011, 159(10): 2537-2545. DOI:10.1016/j.envpol.2011.06.017
[7]
WANG YT, LI T, LI YW, BJÖRN LO, ROSENDAHL S, OLSSON PA, LI SS, FU XL. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems[J]. Applied and Environmental Microbiology, 2015, 81(8): 2958-2965. DOI:10.1128/AEM.03769-14
[8]
CHEN XW, WU FY, LI H, CHAN WF, WU SC, WONG MH. Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China[J]. Environmental Science and Pollution Research, 2017, 24(6): 5268-5276. DOI:10.1007/s11356-016-8287-4
[9]
OLDROYD GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11(4): 252-263. DOI:10.1038/nrmicro2990
[10]
YOSHIDA S, KAMEOKA H, TEMPO M, AKIYAMA K, UMEHARA M, YAMAGUCHI S, HAYASHI H, KYOZUKA J, SHIRASU K. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2012, 196(4): 1208-1216. DOI:10.1111/j.1469-8137.2012.04339.x
[11]
CARDOSO C, ZHANG YX, JAMIL M, HEPWORTH J, CHARNIKHOVA T, DIMKPA SON, MEHARG C, WRIGHT MH, LIU JW, MENG XB, WANG YH, LI JY, MCCOUCH SR, LEYSER O, PRICE AH, HARRO J. BOUWMEESTER BH, RUYTER-SPIRA C. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(6): 2379-2384. DOI:10.1073/pnas.1317360111
[12]
LIU W, KOHLEN W, LILLO A, DEN CAMP RO, IVANOV S, HARTOG M, LIMPENS E, JAMIL M, SMACZNIAK C, KAUFMANN K, YANG WC, HOOIVELD JEJG, CHARNIKHOVA T, BOUWMEESTER HJ, BISSELING T, GEURTS R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2[J]. The Plant Cell, 2011, 23(10): 3853-3865. DOI:10.1105/tpc.111.089771
[13]
ZHANG XW, DONG WT, SUN J, FENG F, DENG YW, HE ZH, OLDROYD GED, WANG ET. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling[J]. The Plant Journal, 2015, 81(2): 258-267. DOI:10.1111/tpj.12723
[14]
HUANG RL. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2019 (in Chinese).
黄仁良. OsCERK1的自然变异调控水稻与丛枝菌根真菌共生[D]. 武汉: 华中农业大学博士学位论文, 2019.
[15]
MARKMANN K, GICZEY G, PARNISKE M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria[J]. PLoS Biology, 2008, 6(3): e68. DOI:10.1371/journal.pbio.0060068
[16]
CHEN CY, FAN C, GAO MQ, ZHU HY. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants[J]. Plant Physiology, 2009, 149(1): 306-317. DOI:10.1104/pp.108.131540
[17]
MILLER JB, PRATAP A, MIYAHARA A, ZHOU L, BORNEMANN S, MORRIS RJ, OLDROYD GED. Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling[J]. Plant Cell, 2014, 25(12): 5053-5066. DOI:10.1105/tpc.113.116921
[18]
YANO K, YOSHIDA S, MÜLLER J, SINGH S, BANBA MR, VICKERS K, MARKMANN K, WHITE C, SCHULLER B, SATO S, ASAMIZU E, TABATA S, MUROOKA Y, PERRY J, WANG TL, KAWAGUCHI M, IMAIZUMI-ANRAKU H, HAYASHI M, PARNISKE M. CYCLOPS, a mediator of symbiotic intracellular accommodation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20540-20545. DOI:10.1073/pnas.0806858105
[19]
PIMPRIKAR P, CARBONNEL S, PARIES M, KATZER K, KLINGL V, BOHMER MJ, KARL L, FLOSS DS, HARRISON MJ, PARNISKE M, CAROLINE GUTJAHR. A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching[J]. Current Biology, 2016, 26(8): 1-12.
[20]
GENRE A, CHABAUD M, FACCIO A, BARKER DG, BONFANTE P. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota[J]. Plant Cell, 2008, 20(5): 1407-1420. DOI:10.1105/tpc.108.059014
[21]
NADAL M, SAWERS R, NASEEM S, BASSIN B, KULICKE C, SHARMAN A, AN G, AN K, AHERN KR, ROMAG A, BRUTNELL TP, GUTJAHR C, GELDNER N, ROUX C, MARTINOIA E, KONOPKA JB, PASZKOWSKI U. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize[J]. Nature Plants, 2017, 3: 17073. DOI:10.1038/nplants.2017.73
[22]
GUTJAHR C, RADOVANOVIC D, GEOFFROY J, ZHANG Q, SIEGLER H, CHIAPELLO M, CASIERI L, AN K, AN G, GUIDERDONI E, KUMAR CS, SUNDARESAN V, HARRISON MJ, PASZKOWSKI U. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice[J]. The Plant Journal, 2012, 69(5): 906-920. DOI:10.1111/j.1365-313X.2011.04842.x
[23]
GUO R, WU YN, LIU CC, LIU YN, TIAN L, CHENG JF, PAN ZY, WANG D, WANG B. OsADK1, a novel kinase regulating arbuscular mycorrhizal symbiosis in rice[J]. New Phytologist, 2022, 234(1): 256-268. DOI:10.1111/nph.17979
[24]
JEONG K, MATTES N, CATAUSAN S, CHIN JH, PASZKOWSKI U, HEUER S. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice[J]. Journal of Integrative Plant Biology, 2015, 57(11): 969-979. DOI:10.1111/jipb.12435
[25]
PÉREZ-TIENDA J, CORRÊA A, AZCÓN-AGUILAR C, FERROL N. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots[J]. Plant Physiology and Biochemistry, 2014, 75: 1-8. DOI:10.1016/j.plaphy.2013.11.029
[26]
MBODJ D, EFFA-EFFA B, KANE A, MANNEH B, GANTET P, LAPLAZE L, DIEDHIOU AG, GRONDIN A. Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses[J]. Rhizosphere, 2018, 8: 12-26. DOI:10.1016/j.rhisph.2018.08.003
[27]
BONFANTE P, GENRE A. Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?[J]. Trends in Plant Science, 2015, 20(3): 150-154. DOI:10.1016/j.tplants.2014.12.002
[28]
SETO Y, SADO A, ASAMI K, HANADA A, UMEHARA M, AKIYAMA K, YAMAGUCHI S. Carlactone is an endogenous biosynthetic precursor for strigolactones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1640-1645. DOI:10.1073/pnas.1314805111
[29]
YU N, LUO DX, ZHANG XW, LIU JZ, WANG WX, JIN Y, DONG WT, LIU JY, LIU H, YANG WB, ZENG LJ, LI Q, HE ZH, OLDROYD GED, WANG ET. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants[J]. Cell Research, 2014, 24(1): 130-133. DOI:10.1038/cr.2013.167
[30]
RUYTER-SPIRA C, AL-BABILI S, van DER KROL S, BOUWMEESTER H. The biology of strigolactones[J]. Trends in Plant Science, 2013, 18(2): 72-83. DOI:10.1016/j.tplants.2012.10.003
[31]
GOBBATO E, MARSH JF, VERNIÉ T, WANG ET, MAILLET F, KIM J, MILLER JB, SUN J, BANO SA, RATET P, MYSORE KS, DÉNARIÉ J, SCHULTZE M, OLDROYD GED. A GRAS-type transcription factor with a specific function in mycorrhizal signaling[J]. Current Biology, 2012, 22(23): 2236-2241. DOI:10.1016/j.cub.2012.09.044
[32]
DAS D, PARIES M, HOBECKER K, GIGL M, DAWID C, LAM HM, ZHANG JH, CHEN MX, GUTJAHR C. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis[J]. Nature Communications, 2022, 13: 477. DOI:10.1038/s41467-022-27976-8
[33]
COURTY PE, SMITH P, KOEGEL S, REDECKER D, WIPF D. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions[J]. Critical Reviews in Plant Sciences, 2015, 34(1/2/3): 4-16.
[34]
KOEGEL S, MIEULET D, BADAY S, CHATAGNIER O, LEHMANN MF, WIEMKEN A, BOLLER T, WIPF D, BERNÈCHE S, GUIDERDONI E, COURTY PE. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses[J]. Mycorrhiza, 2017, 27(7): 695-708. DOI:10.1007/s00572-017-0786-8
[35]
ILAG LL, ROSALES AM, ELAZEGUI FA, MEW TW. Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system[J]. Plant and Soil, 1987, 103(1): 67-73. DOI:10.1007/BF02370669
[36]
LUMINI E, VALLINO M, ALGUACIL MM, ROMANI M, BIANCIOTTO V. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities[J]. Ecological Applications, 2011, 21(5): 1696-1707. DOI:10.1890/10-1542.1
[37]
PANNEERSELVAM P, KUMAR U, SENAPATI A, PARAMESWARAN C, ANANDAN A, KUMAR A, JAHAN A, PADHY SR, NAYAK AK. Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil[J]. Applied Soil Ecology, 2020, 145: 103344. DOI:10.1016/j.apsoil.2019.08.006
[38]
SARKODEE-ADDO E, YASUDA M, LEE CG, KANASUGI M, FUJII Y, OMARI RA, ABEBRESE SO, BAM R, ASUMING-BREMPONG S, DASTOGEER KMG, OKAZAKI S. Arbuscular mycorrhizal fungi associated with rice (Oryza sativa L.) in Ghana: effect of regional locations and soil factors on diversity and community assembly[J]. Agronomy, 2020, 10(4): 559. DOI:10.3390/agronomy10040559
[39]
SURENDIRAKUMAR K, PANDEY RR, MUTHUKUMAR T. Arbuscular mycorrhizal fungi in roots and rhizosphere of black rice in terrace fields of north-east India[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2021, 91(2): 277-287. DOI:10.1007/s40011-020-01221-y
[40]
BRUNS TD, CORRADI N, REDECKER D, TAYLOR JW, ÖPIK M. Glomeromycotina: what is a species and why should we care?[J]. New Phytologist, 2018, 220(4): 963-967. DOI:10.1111/nph.14913
[41]
SANDERS IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species[J]. New Phytologist, 2018, 220(4): 968-970. DOI:10.1111/nph.15049
[42]
IBNE BAKI MZ, SUZUKI K, TAKAHASHI K, CHOWDHURY SA, ASILOGLU R, HARADA N. Molecular genetic characterization of arbuscular mycorrhizal fungi associated with upland rice in Bangladesh[J]. Rhizosphere, 2021, 18: 100357. DOI:10.1016/j.rhisph.2021.100357
[43]
OLUBODEA A, BABALOLAA O, DAREA M, ADEYEMIB NO, ADERIBIGBEB S, OKONJIC C, SAKARIYAWOB O. Diversity of indigenous arbuscular mycorrhizal fungi in rhizosphere of upland rice (Oryza sativa L.) varieties in southwest Nigeria[J]. Acta Fytotechnica et Zootechnica, 2020, 23(2): 42-48. DOI:10.15414/afz.2020.23.02.42-48
[44]
ALGUACIL MDM, TORRES MP, MONTESINOS- NAVARRO A, ROLDÁN A. Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid Mediterranean soils[J]. Applied and Environmental Microbiology, 2016, 82(11): 3348-3356. DOI:10.1128/AEM.03982-15
[45]
KLINNAWEE L, NOIRUNGSEE N, NOPPHAKAT K, RUNSAENG P, CHANTARACHOT T. Flooding overshadows phosphorus availability in controlling the intensity of arbuscular mycorrhizal colonization in Sangyod Muang Phatthalung lowland indica rice[J]. Science Asia, 2021, 47(2): 202. DOI:10.2306/scienceasia1513-1874.2021.025
[46]
PARVIN S, van GEEL M, YEASMIN T, LIEVENS B, HONNAY O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh[J]. Science of the Total Environment, 2019, 686: 546-554. DOI:10.1016/j.scitotenv.2019.05.450
[47]
PARVIN S, van GEEL M, ALI MM, YEASMIN T, LIEVENS B, HONNAY O. A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern high yielding and traditional rice varieties[J]. Plant and Soil, 2021, 462(1/2): 109-124.
[48]
CHEN ECH, MORIN E, BEAUDET D, NOEL J, YILDIRIR G, NDIKUMANA S, CHARRON P, ST-ONGE C, GIORGI J, KRÜGER M, MARTON T, ROPARS J, GRIGORIEV IV, HAINAUT M, HENRISSAT B, ROUX C, MARTIN F, CORRADI N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis[J]. New Phytologist, 2018, 220(4): 1161-1171. DOI:10.1111/nph.14989
[49]
CHEN EC, MATHIEU S, HOFFRICHTER A, SEDZIELEWSKA-TORO K, PEART M, PELIN A, NDIKUMANA S, ROPARS J, DREISSIG S, FUCHS J, BRACHMANN A, CORRADI N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi[J]. eLife, 2018, 7: e39813. DOI:10.7554/eLife.39813
[50]
TISARUM R, THEERAWITAYA C, SAMPHUMPHUANG T, PHISALAPHONG M, SINGH HP, CHA-UM S. Promoting water deficit tolerance and anthocyanin fortification in pigmented rice cultivar (Oryza sativa L. subsp. indica) using arbuscular mycorrhizal fungi inoculation[J]. Physiology and Molecular Biology of Plants, 2019, 25(4): 821-835. DOI:10.1007/s12298-019-00658-4
[51]
LI H, CHEN XW, WU L, LUO N, HUANG WX, MO CH, LI YW, XIANG L, ZHAO HM, CAI QY, WONG MH. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant and Soil, 2020, 455(1): 121-138.
[52]
CHEN X, ZHANG ZY, GU MH, LI H, SHOHAG MJI, SHEN FK, WANG XL, WEI YY. Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain[J]. Science of the Total Environment, 2020, 748: 141166. DOI:10.1016/j.scitotenv.2020.141166
[53]
MITRA D, B E GS, KHOSHRU B, de LOS SANTOS VILLALOBOS S, BELZ C, CHAUDHARY P, SHAHRI FN, DJEBAILI R, ADEYEMI NO, EL-BALLAT EM, EL-ESAWI MA, MORADI S, MONDAL R, SENAPATI A, PANNEERSELVAM P, das MOHAPATRA PK. Impacts of arbuscular mycorrhizal fungi on rice growth, development, and stress management with a particular emphasis on strigolactone effects on root development[J]. Communications in Soil Science and Plant Analysis, 2021, 52(14): 1591-1621. DOI:10.1080/00103624.2021.1892728
[54]
FIORILLI V, VALLINO M, BISELLI C, FACCIO A, BAGNARESI P, BONFANTE P. Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi[J]. Frontiers in Plant Science, 2015, 6: 636.
[55]
GUTJAHR C, SAWERS RJH, MARTI G, ANDRÉS-HERNÁNDEZ L, YANG SY, CASIERI L, ANGLIKER H, OAKELEY EJ, WOLFENDER JL, ABREU-GOODGER C, PASZKOWSKI U. Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(21): 6754-6759. DOI:10.1073/pnas.1504142112
[56]
VALLINO M, FIORILLI V, BONFANTE P. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability[J]. Plant, Cell & Environment, 2014, 37(3): 557-572.
[57]
DING Y, XING Y, REN ML. Effects of phosphorus on iron plaque on root surface of rice seedlings and nutritional absorption[J]. Journal of Anhui Science and Technology University, 2021, 35(5): 47-52. (in Chinese)
丁艳, 邢媛, 任蒙莲. 低磷水稻根表铁膜形成对养分吸收的影响[J]. 安徽科技学院学报, 2021, 35(5): 47-52.
[58]
WATANAROJANAPORN N, BOONKERD N, TITTABUTR P, LONGTONGLANG A, YOUNG JPW, TEAUMROONG N. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure[J]. Microbes and Environments, 2013, 28(3): 316-324. DOI:10.1264/jsme2.ME13011
[59]
ZHANG JX, LUO SS, MA LN, LIN XL, ZHANG JF, ZHANG JJ, LI XJ, WANG HB, TIAN CJ. Fungal community composition in sodic soils subjected to long-term rice cultivation[J]. Archives of Agronomy and Soil Science, 2020, 66(10): 1410-1423. DOI:10.1080/03650340.2019.1672867
[60]
PARANAVITHANA TM, MARASINGHE S, PERERA GAD, RATNAYAKE RR. Effects of crop rotation on enhanced occurrence of arbuscular mycorrhizal fungi and soil carbon stocks of lowland paddy fields in seasonaly dry tropics[J]. Paddy and Water Environment, 2021, 19(1): 217-226. DOI:10.1007/s10333-020-00833-4
[61]
TIAN L, CHANG CL, MA LN, NASIR F, ZHANG JF, LI WQ, TRAN LSP, TIAN CJ. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae[J]. Rice, 2019, 12(1): 35. DOI:10.1186/s12284-019-0287-9
[62]
BERNAOLA L, COSME M, SCHNEIDER RW, STOUT M. Belowground inoculation with arbuscular mycorrhizal fungi increases local and systemic susceptibility of rice plants to different pest organisms[J]. Frontiers in Plant Science, 2018, 9: 747. DOI:10.3389/fpls.2018.00747
[63]
TISARUM R, THEERAWITAYA C, SAMPHUMPHUANG T, POLISPITAK K, THONGPOEM P, SINGH HP, CHA-UM S. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation[J]. Frontiers in Plant Science, 2020, 11: 348. DOI:10.3389/fpls.2020.00348
[64]
WISSUWA M, GONZALEZ D, WATTS-WILLIAMS SJ. The contribution of plant traits and soil microbes to phosphorus uptake from low-phosphorus soil in upland rice varieties[J]. Plant and Soil, 2020, 448(1/2): 523-537.
[65]
BAO XZ, WANG YT, OLSSON PA. Arbuscular mycorrhiza under water—carbon‒phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes[J]. Soil Biology and Biochemistry, 2019, 129: 169-177. DOI:10.1016/j.soilbio.2018.11.020
[66]
de ANDRADE SAL, DOMINGUES JR AP, MAZZAFERA P. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress[J]. Chemosphere, 2015, 134: 141-149. DOI:10.1016/j.chemosphere.2015.04.023
[67]
GEWAILY S. Influence of arbuscular mycorrhizal (AMF) inoculation on the performance of Sakha 107 rice cultivar under different irrigation intervals[J]. Environment, Biodiversity and Soil Security, 2019, 3(2019): 119-130. DOI:10.21608/jenvbs.2019.15637.1068
[68]
COSME M, STOUT MJ, WURST S. Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus)[J]. Mycorrhiza, 2011, 21(7): 651-658. DOI:10.1007/s00572-011-0399-6
[69]
ZHANG X, WU SL, REN BH, CHEN BD. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains[J]. Mycorrhiza, 2016, 26(4): 299-309. DOI:10.1007/s00572-015-0669-9
[70]
LI HY, SMITH FA, DICKSON S, HOLLOWAY RE, SMITH SE. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?[J]. New Phytologist, 2008, 178(4): 852-862. DOI:10.1111/j.1469-8137.2008.02410.x
[71]
DIEDHIOU AG, MBAYE FK, MBODJ D, FAYE MN, PIGNOLY S, NDOYE I, DJAMAN K, GAYE S, KANE A, LAPLAZE L, MANNEH B, CHAMPION A. Field trials reveal ecotype-specific responses to mycorrhizal inoculation in rice[J]. PLoS One, 2016, 11(12): e0167014. DOI:10.1371/journal.pone.0167014
[72]
KAMEL L, KELLER-PEARSON M, ROUX C, ANÉ JM. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics[J]. New Phytologist, 2017, 213(2): 531-536. DOI:10.1111/nph.14263
[73]
SUZUKI S, KOBAE Y, SISAPHAITHONG T, Tomioka R, TAKENAKA C, HATA S. Differential growth responses of rice cultivars to an arbuscular mycorrhizal fungus, Funneliformis mosseae[J]. Journal of Horticulture, 2015, 2(3): 142.
[74]
BERNAOLA L, CANGE G, WAY MO, GORE J, HARDKE J, STOUT M. Natural colonization of rice by arbuscular mycorrhizal fungi in different production areas[J]. Rice Science, 2018, 25(3): 169-174. DOI:10.1016/j.rsci.2018.02.006
[75]
WANG YT, LI YW, BAO XZ, BJÖRN LO, Li SS, OLSSON PA. Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes[J]. Plant and Soil, 2016, 403(1): 361-373.
[76]
WANG YT, BAO XZ, LI SS. Effects of arbuscular mycorrhizal fungi on rice growth under different flooding and shading regimes[J]. Frontiers in Microbiology, 2021, 12: 756752. DOI:10.3389/fmicb.2021.756752
[77]
MA JF, XIN M, XU CC, ZHU WY, MAO CZ, CHEN X, CHENG L. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 728-737. (in Chinese)
马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737.
[78]
WANG QF, ZHOU DP, CHU CB, ZHAO Z, ZHOU J, WU SH. Responses of arbuscular mycorrhizal fungi to rice-upland crop rotations in an 8-year paddy ecosystem[J]. ESSOAr, 2022.
[79]
JOHNSON NC, WILSON GWT, WILSON JA, MILLER RM, BOWKER MA. Mycorrhizal phenotypes and the law of the minimum[J]. New Phytologist, 2015, 205(4): 1473-1484. DOI:10.1111/nph.13172
[80]
ZHANG X, WANG L, MA F, YANG JX, SU M. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.)[J]. Journal of the Science of Food and Agriculture, 2017, 97(9): 2919-2925. DOI:10.1002/jsfa.8129
[81]
PANNEERSELVAM P, SAHOO S, SENAPATI A, KUMAR U, MITRA D, PARAMESWARAN C, ANANDAN A, KUMAR A, JAHAN A, NAYAK AK. Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions[J]. Journal of Basic Microbiology, 2019, 59(12): 1217-1228. DOI:10.1002/jobm.201900294
[82]
ZHANG SJ, WANG L, MA F, BLOOMFIELD KJ, YANG JX, ATKIN OK. Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi?[J]. Journal of Plant Ecology, 2015, 8(4): 436-448. DOI:10.1093/jpe/rtu025
[83]
NARWAL E, ANNAPURNA K, CHOUDHARY J, SANGWAN S. Effect of arbuscular mycorrhizal fungal colonization on nutrient uptake in rice aerobic conditions[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(4): 1072-1093. DOI:10.20546/ijcmas.2018.704.118
[84]
IQBAL MT, AHMED IAM, ISIK M, SULTANA F, ORTAŞ I. Role of mycorrhizae inoculations on nutrient uptake in rice grown under aerobic and anaerobic water management[J]. Journal of Plant Nutrition, 2021, 44(4): 550-568. DOI:10.1080/01904167.2020.1845375
[85]
CHEN X. The mechanism of arbuscular mycorrhizal fungi inoculation on selenium uptake and accumulation in rice[D]. Nanning: Master's Thesis of Guangxi University, 2019 (in Chinese).
陈雪. 丛枝菌根真菌对水稻硒吸收、积累的机理研究[D]. 南宁: 广西大学硕士学位论文, 2019.
[86]
BEWKE GB. Review on integrated pest management of important disease and insect pest of rice (Oryzae sativa L.)[J]. World Scientific News, 2018, 100: 184-196.
[87]
SHRINKHALA M. Study on the bioprotective effect of endomycorrhizae against M. graminicola in rice[D]. Leuven: Doctoral Dissertation of Catholic University of Leuven, 2001.
[88]
CAMPO S, MARTÍN-CARDOSO H, OLIVÉ M, PLA E, CATALA-FORNER M, MARTÍNEZ-EIXARCH M, SEGUNDO BS. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice[J]. Rice, 2020, 13(1): 42. DOI:10.1186/s12284-020-00402-7
[89]
GANIE SA, AHAMMED GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice[J]. Plant Cell Reports, 2021, 40(3): 437-459. DOI:10.1007/s00299-020-02649-2
[90]
CHAREESRI A, de DEYN GB, SERGEEVA L, POLTHANEE A, KUYPER TW. Increased arbuscular mycorrhizal fungal colonization reduces yield loss of rice (Oryza sativa L.) under drought[J]. Mycorrhiza, 2020, 30(2/3): 315-328.
[91]
DAS D, BASAR NU, ULLAH H, SALIN KR, DATTA A. Interactive effect of silicon and mycorrhizal inoculation on growth, yield and water productivity of rice under water-deficit stress[J]. Journal of Plant Nutrition, 2021, 44(18): 2756-2769. DOI:10.1080/01904167.2021.1927087
[92]
PARVIN S, van GEEL M, YEASMIN T, VERBRUGGEN E, HONNAY O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar[J]. Mycorrhiza, 2020, 30(4): 431-444. DOI:10.1007/s00572-020-00957-9
[93]
NOROUZINIA F, ANSARI MH, AMINPANAH H, FIROZI S. Alleviation of soil salinity on physiological and agronomic traits of rice cultivars using arbuscular mycorrhizal fungi and Pseudomonas strains under field conditions[J]. Revista de Agricultura Neotropical, 2020, 7(1): 25-42. DOI:10.32404/rean.v7i1.4042
[94]
ZHANG XH, ZHU YG, CHEN BD, LIN AJ, SMITH SE, SMITH FA. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12): 2065-2077. DOI:10.1080/01904160500320871
[95]
SHAHABIVAND S, MAIVAN HZ, GOLTAPEH EM, SHARIFI M, ALILOO AA. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity[J]. Plant Physiology and Biochemistry, 2012, 60: 53-58. DOI:10.1016/j.plaphy.2012.07.018
[96]
CORNEJO P, PÉREZ-TIENDA J, MEIER S, VALDERAS A, BORIE F, AZCÓN-AGUILAR C, FERROL N. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments[J]. Soil Biology and Biochemistry, 2013, 57: 925-928. DOI:10.1016/j.soilbio.2012.10.031
[97]
XU J, HU H, ZENG Y, ZENG A, HE YL, TANG SJ, YANG Y, LEI P. Effects of arbuscular mycorrhizal fungi on growth and development of rice seedlings under cadmium stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 30-35, 45. (in Chinese)
许隽, 胡浩, 曾艳, 曾奥, 贺月林, 唐少军, 杨祎, 雷平. 丛枝菌根真菌对镉胁迫水稻秧苗生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 30-35, 45.
[98]
LUO N, LI X, CHEN AY, ZHANG LJ, ZHAO HM, XIANG L, CAI QY, MO CH, WONG MH, LI H. Does arbuscular mycorrhizal fungus affect cadmium uptake and chemical forms in rice at different growth stages?[J]. Science of the Total Environment, 2017, 599/600: 1564-1572. DOI:10.1016/j.scitotenv.2017.05.047
[99]
SHARMA S, SINGH N, KAPOOR R. Arbuscular mycorrhizal fungi in redeeming arsenic toxicity in plants[A]//VARMA A, PRASAD R, TUTEJA N. Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials[M]. Cham: Springer, 2017: 107-133.
[100]
MALDONADO-MENDOZA IE, HARRISON MJ. RiArsB and RiMT-11: two novel genes induced by arsenate in arbuscular mycorrhiza[J]. Fungal Biology, 2018, 122(2/3): 121-130.
[101]
SPAGNOLETTI F, LAVADO RS. The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants[J]. Agronomy, 2015, 5(2): 188-199. DOI:10.3390/agronomy5020188
[102]
MITRA D, DJEBAILI R, PELLEGRINI M, MAHAKUR B, SARKER A, CHAUDHARY P, KHOSHRU B, GALLO MD, KITOUNI M, BARIK DP, PANNEERSELVAM P, das MOHAPATRA PK. Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions[J]. Journal of Plant Nutrition, 2021, 44(13): 1993-2028. DOI:10.1080/01904167.2021.1881552
[103]
LI H, CHEN XW, WONG MH. Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains[J]. Chemosphere, 2016, 145: 224-230. DOI:10.1016/j.chemosphere.2015.10.067
[104]
DOLPHEN R, THIRAVETYAN P. Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria[J]. Chemosphere, 2019, 223: 448-454. DOI:10.1016/j.chemosphere.2019.02.054
[105]
GONZÁLEZ-CHÁVEZ MDCA, del PILAR ORTEGA-LARROCEA M, CARRILLO-GONZÁLEZ R, LÓPEZ-MEYER M, XOCONOSTLE-CÁZARES B, GOMEZ SK, HARRISON MJ, FIGUEROA-LÓPEZ AM, MALDONADO-MENDOZA IE. Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza[J]. Fungal Biology, 2011, 115(12): 1197-1209. DOI:10.1016/j.funbio.2011.08.005
[106]
WEN ZH, CHEN YX, LIU ZQ, MENG J. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability[J]. European Journal of Soil Biology, 2022, 113: 103448. DOI:10.1016/j.ejsobi.2022.103448
[107]
ZHANG X, WANG L, MA F, YANG JX. Effects of arbuscular mycorrhizal fungi on CH4 emissions from rice paddies[J]. International Journal of Phytoremediation, 2017, 19(1): 39-45. DOI:10.1080/15226514.2016.1216077
[108]
ZHANG X, WANG L, MA F, SHAN D. Effects of arbuscular mycorrhizal fungi on N2O emissions from rice paddies[J]. Water, Air, & Soil Pollution, 2015, 226(7): 222.
[109]
IPCC. Climate change 2013-the physical science basis[M]. Cambridge: Cambridge University Press, 2014: 465-570.
[110]
DING LJ, CUI HL, NIE SA, LONG XE, DUAN GL, ZHU YG. Microbiomes inhabiting rice roots and rhizosphere[J]. FEMS Microbiology Ecology, 2019, 95(5): fiz040.
[111]
IPCC. Climate Change 2007-The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007.
[112]
LI YY, CHAPMAN SJ, NICOL GW, YAO HY. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 2018, 116: 290-301. DOI:10.1016/j.soilbio.2017.10.023
[113]
YOSHIDA M, ISHII S, OTSUKA S, SENOO K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil[J]. Soil Biology and Biochemistry, 2009, 41(10): 2044-2051. DOI:10.1016/j.soilbio.2009.07.012
[114]
YOSHIDA M, ISHII S, OTSUKA S, SENOO K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria[J]. Microbes and Environments, 2010, 25(1): 45-48. DOI:10.1264/jsme2.ME09160
[115]
HAO ZP, XIE W, CHEN BD. Application of arbuscular mycorrhizal fungi in agriculture: research progress and challenges[J]. Science & Technology Review, 2022, 40(3): 87-98. (in Chinese)
郝志鹏, 谢伟, 陈保冬. 丛枝菌根真菌在农业中的应用: 研究进展与挑战[J]. 科技导报, 2022, 40(3): 87-98.
[116]
OKONJI CJ, SAKARIYAWO OS, OKELEYE KA, OSUNBIYI AG, AJAYI EO. Effects of arbuscular mycorrhizal fungal inoculation on soil properties and yield of selected rice varieties[J]. Journal of Agricultural Sciences, 2018, 63(2): 153-170.
[117]
HOSEINZADE H, ARDAKANI MR, SHAHDI A, ASADI RAHMANI H, NOORMOHAMMADI G, MIRANSARI M. Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae[J]. Journal of Integrative Agriculture, 2016, 15(6): 1385-1394. DOI:10.1016/S2095-3119(15)61241-2
[118]
PREMKUMARI SM, PRABINA BJ. Impact of the mixed consortium of indigenous arbuscular mycorrhizal fungi (AMF) on the growth and yield of rice (Oryza Sativa L.) under the system of rice intensification (SRI)[J]. International Journal of Environment, Agriculture and Biotechnology, 2017, 2(2): 881-885. DOI:10.22161/ijeab/2.2.41
[119]
BEURA K, PRADHAN AK, GHOSH GK, KOHLI A, SINGH M. Root architecture, yield and phosphorus uptake by rice: response to rock phosphate enriched compost and microbial inoculants[J]. International Research Journal of Pure and Applied Chemistry, 2020, 21(19): 33-39.
[120]
BABY UI, MANIBHUSHANRAO K. Influence of organic amendments on arbuscular mycorrhizal fungi in relation to rice sheath blight disease[J]. Mycorrhiza, 1996, 6(3): 201-206. DOI:10.1007/s005720050127
[121]
RUÍZ-SÁNCHEZ M, ARMADA E, MUÑOZ Y, GARCÍA de SALAMONE IE, AROCA R, RUÍZ-LOZANO JM, AZCÓN R. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions[J]. Journal of Plant Physiology, 2011, 168(10): 1031-1037. DOI:10.1016/j.jplph.2010.12.019
稻田生态系统中丛枝菌根真菌的研究进展
包晓哲 , 马玉颖 , 邹积祥 , 伍龙梅 , 杨陶陶 , 黄庆 , 张彬 , 褚海燕