微生物学通报  2022, Vol. 49 Issue (3): 1167−1176

扩展功能

文章信息

张亚会, 李文茹, 谢小保
ZHANG Yahui, LI Wenru, XIE Xiaobao
铜绿假单胞菌异质性耐药的研究进展
Research progress on heteroresistance of Pseudomonas aeruginosa
微生物学通报, 2022, 49(3): 1167-1176
Microbiology China, 2022, 49(3): 1167-1176
DOI: 10.13344/j.microbiol.china.210772

文章历史

收稿日期: 2021-08-23
接受日期: 2021-10-30
网络首发日期: 2021-12-17
铜绿假单胞菌异质性耐药的研究进展
张亚会1,2 , 李文茹1 , 谢小保1     
1. 广东省科学院微生物研究所 华南应用微生物国家重点实验室 广东省菌种保藏与应用重点实验室,    广东  广州    510070;
2. 浙江海洋大学,    浙江  舟山    316022
摘要: 异质性耐药是指细菌中的同源亚群对某种抗生素表现出不同的敏感性,被认为是细菌由敏感进化成完全耐药的中间阶段。常规的临床检验无法有效检测出异质性耐药,这对临床治疗用药造成了巨大的威胁,引起患者的反复感染和用药失败。铜绿假单胞菌作为医院内感染的主要条件致病菌之一,其耐药机制已被广泛研究,而异质性耐药研究则相对较少。本文主要就铜绿假单胞菌的异质性耐药研究进行了梳理,并对异质性耐药从表型特征、机制和检测方法等方面进行了简要阐明。
关键词: 铜绿假单胞菌    异质性耐药    生物膜    
Research progress on heteroresistance of Pseudomonas aeruginosa
ZHANG Yahui1,2 , LI Wenru1 , XIE Xiaobao1     
1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China;
2. Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
Abstract: Heteroresistance refers to the different susceptibilities of homologous bacterial subgroups to an antibiotic, which is considered as the intermediate stage of bacterial evolution from susceptibility to resistance. Conventional clinical tests cannot effectively detect heteroresistance, which poses a serious threat to clinical treatment and medication, resulting in repeated infection and medication failure of patients. Pseudomonas aeruginosa is one of the main opportunistic pathogens causing nosocomial infection. Despite the extensive research on the drug resistance mechanism of P. aeruginosa, the studies about the heteroresistance of this bacterium are rare. In this review, we summarized the related studies about the heteroresistance of P. aeruginosa and expounded the phenotypic characteristics, mechanism, and detection methods of heteroresistance.
Keywords: Pseudomonas aeruginosa    heteroresistance    biofilm    

细菌耐药性是21世纪全球关注的热点。目前几乎所有的病原菌,包括医源性病原菌都出现抗生素耐药的现象。随着抗生素尤其是广谱抗生素的广泛应用,细菌对抗生素的耐药性,尤其是日益严重的多重耐药和泛耐药性已经成为全球性医学与社会问题。近年的中国细菌耐药监测网分析报告显示,革兰氏阴性菌是最常见的医院内感染细菌,其检出率高达71%[1-3]。铜绿假单胞菌(Pseudomonas aeruginosa,PA)在引起院内感染最主要的革兰氏阴性菌中位居第四,仅次于鲍曼不动杆菌,给临床治疗带来了巨大的挑战。

铜绿假单胞菌又名绿脓杆菌,属于非发酵革兰氏阴性杆菌,是一种重要的院内感染条件致病菌。近年来,随着抗菌药物的广泛及不合理使用,使得铜绿假单胞菌对β-内酰胺类、氟喹诺酮类和氨基糖苷类等常用抗菌药物的耐药率逐渐增加,国内外铜绿假单胞菌耐药、多重耐药和泛耐药的情况都非常严峻[4-6]。此外,研究发现还存在一种耐药情况即细菌异质性耐药(heteroresistance,HR)[7]。“异质性耐药”一词首次出现在1970年[8],其实早在1946年Alexander等[9]在链霉素治疗流感嗜血杆菌的研究中就描述过异质性耐药现象,其是细菌与抗菌药物在不断抗衡中出现的一种特殊的耐药形式。异质性耐药是指同一遗传背景的细菌中不同克隆亚群对某种抗菌药物表现出不同的敏感性[10]。常规药敏实验结果可以认定细菌对抗菌药物的敏感、中介或耐药等状态,而异质性耐药更强调各状态之间的转化和过渡。现有临床药敏实验往往检测不出耐药亚群,通过采用特殊的检测方法,从一些常规药敏实验中表现敏感而抗菌药物治疗不佳的临床患者分离培养的细菌中检测到耐药甚至更高水平耐药的亚群,正是这些耐药亚群的存在将很可能导致患者反复感染和治疗失败[11-13]。这一现象在包括铜绿假单胞菌在内的多种细菌中被越来越多地报道。

尽管早在1986年已有铜绿假单胞菌对环丙沙星异质性耐药的报道[14],并且近年来铜绿假单胞菌对碳青霉烯类、多粘菌素、头孢吡肟、哌拉西林/他唑巴坦等抗生素的异质性耐药现象也有部分研究报道[11, 15-24],但其异质性耐药机制暂未十分明确。关于铜绿假单胞菌异质性耐药问题,临床医生在诊治和防控中仍面临诸多难题。因此,临床应高度重视PA异质性耐药现象,异质性耐药的研究对认识致病菌耐药的发展过程、评估治疗方案和指导临床抗菌药物的使用具有重要意义。

1 铜绿假单胞菌异质性耐药的研究现状 1.1 异质性耐药特征及检测方法

异质性耐药的广泛定义是,与主要菌群相比具有一个或几个亚群的异质菌群表现出更高水平的抗生素耐药。然而,这一定义需要考虑几个重要的特征[25-26]:(1) 耐药亚群的形成原因:单克隆或多克隆。当细菌种群由表现出不同抗性水平的不同基因型混合组成时,异质性耐药为多克隆的,而单克隆异质性耐药则是内部异质性引起的,通常耐药遗传稳定性不好,传几代之后子代便丢失了这种耐药性。目前异质性耐药的研究主要是在单克隆异质性耐药方面进行。(2) 耐药亚群的耐药水平:亚群MIC的最小增加倍数,即细菌亚群比主要群体的MIC高X倍,目前定义异质性耐药MIC增加的临界值用2、4、8倍或者其他的倍数来描述耐药的水平,但一般认可≥8倍。(3) 耐药亚群的发生频率:异质性耐药的发生频率用来描述总体种群中异质性耐药的比例,不同细菌对不同抗生素的异质性耐药比例相差较大。为了便于比较不同的异质性耐药研究,应该尽可能报告以抗生素浓度高出主要原始敏感亚群MIC水平8倍及以上耐药亚群的出现频率,目前对单克隆异质性耐药判定的发生频率建议大于1×10-7 [25]。(4) 耐药亚群的稳定性:耐药亚群在无抗菌药物压力的情况下传代(一般为50代)[27-28]其耐药水平不变,则称其为稳定的异质性耐药。

截至目前尚无检测异质性耐药的标准方法,不同实验室使用的方法也不尽相同,不同细菌之间也略有差异。一般将异质性耐药监测分为两部分。第一部分是先利用抗生素纸片(包括E-test)琼脂扩散方法进行初步检测,在进行E-test、K-B法药敏实验时,抑菌圈内有多个菌落生长,此时则可以认为是异质菌,若无菌落生长则可以认为是非异质菌。然而这2种药敏方法特异性和灵敏度较差,表现为假阳性和假阴性的发生率高。异质性耐药表型初筛还可采用菌群谱型分析微量滴定(microtitration population analysis profiling,MPAP)方法[27],有研究结果[29]提示MPAP法是目前最接近异质性耐药检测金标准菌落谱型分析法(population analysis profile,PAP)的检测方法,既比K-B法和E-test法有更高的准确度,又比PAP节约检测成本、操作更简便,但是MPAP采用微量滴定的方法仍存在一定的假阳性率,因此仅作为HR的初筛方法。第二部分是异质菌的确认,异质性耐药菌株的确认方法为经典的菌落谱型分析法。在琼脂培养基或液体培养基中加入2倍MIC梯度的抗生素浓度,进行单菌落计数(CFU)或观察其是否生长(浊度)。若异质菌亚群的最大非抑菌浓度比原细菌群体的最低抑菌浓度≥8倍且发生频率≥1×10-7,则为异质性耐药[25]。PAP实验尽管比较烦琐,但目前仍是体外检测异质性耐药最可靠且常用的方法。此外,改良菌群分析曲线法[30]也是异质性耐药菌株确认检测的方法,但同样存在许多缺点,不适于作为临床实验室的常规检测方法。随着显微技术和微流控技术的发展,对单细胞生长速率的跟踪成为可能。通过比较多个抗菌药物浓度下的单个细菌生长率,可以观察到细菌群体中与耐药性有关的任何异质性,期望将来能应用到异质性耐药的临床检测[25]。第二代测序(next generation sequencing,NGS)技术[31]和数字PCR[32]作为新一代异质性耐药检测技术,可以高通量和高深度地检测敏感菌株中大于1%的耐药亚群,具有广阔的临床应用前景,但是这些最新方法走向临床仍面临着诸多困难。

1.2 PA对碳青霉烯类、粘菌素及其他抗生素异质性耐药的研究现状

铜绿假单胞菌的异质性耐药常见于碳青霉烯类抗菌药物,何建春[17]报道了铜绿假单胞菌对亚胺培南(IMP)和美罗培南(MEM)的异质性耐药现象,分析发现PA对MEM的异质性耐药率明显高于IMP (MEM-HR:72.5%;IMP-HR:54.3%)且呈现逐年增加的现象,可能是医院为治疗严重的铜绿假单胞菌感染而广泛使用碳青霉烯类抗生素所致。在MEM和IMP的PAP实验中分别分离的耐药亚群其MIC值均至少是原始菌株的4倍,并且在无抗生素的平板上连续培养1周后耐药亚群的稳定性可保持。Xu等[18]在131株铜绿假单胞菌中检测到46株在IMP药敏纸片抑菌圈内有亚群生长,异质性耐药率为35.1%;从中随机选取6株菌进行菌落谱型分析确认异质性耐药,发现耐药亚群的MIC比原始菌株高4-8倍,耐药亚群的发生频率为2×10-7-5.3×10-6;在无抗生素培养基中传代1周后,耐药亚群稳定性良好,与何建春的结论一致。以上研究表明,HR可以是稳定的,即亚群的耐药性在停用抗生素后不恢复,但也有研究显示,HR也可以是不稳定的,即亚群的耐药性在停用抗生素后降低或恢复为敏感。Oikonomou等[33]研究报道IMP-HR-PA、MEM-HR-PA耐药亚群发生频率分别为5×10-7-1×10-2、4×10-7-2×10-2,21个被检测的分离株有3株(14.29%)为不稳定的异质性耐药亚群,MEM和IMP的异质性耐药亚群PA10和PA273分别恢复为原始菌株表型。

铜绿假单胞菌对粘菌素的异质性耐药研究相对较少,Hermes等[20]在评估碳青霉烯敏感和耐碳青霉烯铜绿假单胞菌对多粘菌素B的异质性耐药情况时发现,24株实验菌株中仅1株被检测出异质性耐药,其异质性耐药的检出率远低于碳青霉烯类。另外,MIC值较高的耐药亚群在无抗生素的情况下传代,表现出稳定的耐药表型,这种稳定性似乎是铜绿假单胞菌特有的,在铜绿假单胞菌碳青霉烯类的异质性耐药检测中也是类似的情况[9]。然而不动杆菌属和克雷伯氏菌属异质性耐药分离株在一段时间不接触抗生素后,往往呈现出亚群MIC回归到较低值[34]。Lin等[21]从231株对碳青霉烯不敏感的铜绿假单胞菌中检出9株对粘菌素异质性耐药菌株,其耐药亚群的MIC值比原始菌株高4-32倍,耐药亚群的发生频率为3.61×10-8-7.06×10-6。耐药亚群在无抗生素培养基中传代1周后,其粘菌素MIC值保持不变。

Jia等[22]首次报道了临床分离的铜绿假单胞菌对头孢吡肟的异质性耐药情况,研究发现铜绿假单胞菌菌血症菌株对头孢吡肟有较高的异质性耐药率(57.3%)。在PAP实验中,5个头孢吡肟异质性耐药(FEP-HR)菌株在含有浓度为32-256 mg/L头孢吡肟的平板上均有耐药亚群的生长,在最高药物浓度下生长耐药亚群的发生频率为0.74×10-7-1.91×10-7。为了检测头孢吡肟异源耐药的稳定性,将在最高药物浓度存在的菌株接种到无抗生素培养基中传12代,发现稳定性良好[22]。还有研究报道异质性耐药菌中耐药能力较强的亚群经无抗生素培养传代5-10次后少数保持高耐药性,大多数恢复到原始菌的耐药水平且保持异质性耐药特性[35]

目前铜绿假单胞菌的异质性耐药研究已逐渐增多,在描述其HR时,耐药性水平和耐药亚群的频率是需要考虑的2个重要因素[25]。值得注意的是,HR的频率与多个因素有关,涉及临床菌株、抗生素种类、检测方法及其定义的标准[27]

1.3 PA异质性耐药机制的研究

尽管对PA异质性耐药的研究已在逐渐深入,但目前PA异质性耐药的机制仍未十分明确。PA对碳青霉烯类抗生素异质性耐药的分子机制主要是oprD基因表达下调、外排泵系统的高表达[24, 36-37]及生物膜的形成[15, 24]。Xu等研究结果表明[18]oprD基因下调、oprD突变及mexEmexY的小幅上调可能与铜绿假单胞菌亚胺培南的异质性耐药有关,但ampCmexBmexD可能与其异质性耐药无关,这与何建春[17]的研究结果基本一致。然而另有研究显示[38],MEM-HR和IPM-HR耐药亚群与原始菌株相比,除了oprD基因表达下降和mexB基因的表达水平显著提高(P<0.05)外,mexY基因的表达水平也显著提高,但mexE基因的表达水平无变化。吴婷婷等[15]在其研究中也指出,36株亚胺培南异质性耐药铜绿假单胞菌均不产金属β-内酰胺酶,但高表达外排泵MexAB,其中有6株存在oprD2缺失,生物膜形成量明显增加。此外,生物膜的特性表现出协同效应,延缓了抗菌药物的渗透,降低了微生物的生长速度并带来了一些生理变化,从而促进了异质性耐药菌中不同水平耐药亚群的出现。因此,生物膜的形成也可能与铜绿假单胞菌的碳青霉烯类异质性耐药有关[24]

铜绿假单胞菌的粘菌素异质性耐药涉及PmrAB调节系统的改变而导致的LPS修饰系统上调,脂质A合成的特定基因位点的突变与脂质A被额外的4-氨基-4-脱氧-L-阿拉伯糖(4-amino-4-deoxy-L-arabinose,L-Ara4N)修饰。其他的双组分调控系统(two-component regulatory system,TCS)如PhoPQ、ParRS和CprRS也参与介导粘菌素异质性耐药[21]。参与粘菌素异质性耐药的机制复杂多样,在其他几种细菌中也均有描述[10, 39-42]。研究表明,外排泵可使肠杆菌属和鲍曼不动杆菌对粘菌素产生异质性耐药[8, 41]。此外,生物膜为异质性菌株的出现提供了极好的生态位。Silva等的研究表明,生物膜的形成可能引发肺炎克雷伯菌对粘菌素的异质性耐药[42]。Pamp等指出粘菌素耐受性与生物膜内的异质性有关,并依赖于pmrmexAB-oprM基因[43]。由此看来,粘菌素异质性耐药与TCS、外排泵和生物膜之间似乎存在复杂的相互作用。因此,除了双组分系统,其他铜绿假单胞菌粘菌素异质性耐药机制也亟待阐明。

Jia等[22]在研究中探讨了AmpC头孢菌素酶、外排泵和OprD孔蛋白在铜绿假单胞菌头孢吡肟异质性耐药机制中的作用,发现头孢吡肟异质性耐药(FEP-HR)铜绿假单胞菌的耐药亚群与其原始菌株相比,AmpC头孢菌素酶高水平表达,但外排泵和OprD孔蛋白与头孢吡肟的异质性耐药机制无太大联系。可能高表达AmpC β-内酰胺酶的PA可增加生物膜的生成能力[44]。AmpR是PA中AmpC β-内酰胺酶的转录调控因子,在大量抗菌药物暴露的条件下可以调控一系列毒力基因,从而协同促进异质性耐药菌株的出现[45]

2 问题与展望

目前,对于HR现象的研究多在浮游细菌阶段,对生物膜的异质性耐药研究十分有限,但HR在生物膜中的发生率不容忽视。生物膜是一种重要的耐药形式,传统治疗无法根除生物膜相关感染。在PA生物膜中,代谢活性细菌大多位于外层,而低或非代谢活性细胞则位于下层区域[44, 46-49]。在这种生物膜结构中,大多数针对有氧呼吸过程(如DNA复制、翻译、细胞壁合成)的抗生素只能清除外层细菌[47, 49-51]。生物膜耐药水平的异质性能以生长状态依赖的方式表现出来,这种形式的耐药性由生物膜微环境中的营养和氧气限制或抗生素暴露导致,这促使小部分种群进入休眠或缓慢的生长状态(持留菌)[51-54]。持留菌即使在致死剂量的杀菌浓度下也能存活[51, 53],它们就会成为许多生物膜相关感染复发的原因[55-56]。因此,生物膜的生理异质性导致了有差异但又协调一致的耐药性和耐受机制[57]

目前只有一份研究生物膜中HR的报道[42],即在肺炎克雷伯菌的生物膜中发现了能够在比MIC值高4倍的粘菌素浓度下生长的异质性耐药亚群,耐药亚群以稳定的小群体变异形式表现出与其他生物膜群体不同的菌落形态。这些最新发现是预测生物膜内HR发生的合理依据。Lopes等[58]建议修改HR检测的标准,要么使用有临床意义的生物膜敏感终点参数(例如将截断值扩大到最低生物膜抑制浓度而不是MIC),要么延长生物膜的培养时间(因为异质性耐药亚群相对于原菌群有一个较长的滞后阶段),或者将两者都纳入。

HR可能是常规治疗失败和临床治疗结果较差的机制之一,但除忽视生物膜的高耐药及对耐药细胞进行的次优治疗剂量外,抗生素治疗失败还有其他原因,比如生物膜内耐药细胞的选择以及由于微生物间的相互促进作用而传播的耐药特性[13, 59]。已有文献表明,一些条件致病菌在这些感染中发挥了重要作用,极大地促使一些慢性疾病的产生[60-67]。由此可见,构成异质性耐药亚群高耐药水平的细胞可能会进一步复杂化多重微生物感染,因为它们为更敏感的细胞(来自同一或不同物种)提供了保护,通过释放中和物质来抵消抗菌效应,或通过代谢互作及共享遗传物质/耐药基因进行细胞通信提高耐药性[68]。因此,今后的研究需对HR的分子机制进行深入全面的探索,明确HR背后的机制以及在种内和种间耐药性传播的作用,这样才更有助于为临床治疗提供有效的参考。

异质性耐药现象并不是一个新发现,其广泛存在于各种细菌对各种抗菌药物的耐药过程中,真菌及有些肿瘤细胞中也存在这种现象。如果对异质性耐药菌不能及时发现并给予有效治疗,异质性耐药将最终向完全耐药转化。因此亟须更加准确、便捷的检测方法来进行检测,从而尽可能早地发现异质性耐药现象,并给予最有效的治疗。此外,常规推荐剂量的抗生素对异质性耐药细菌引发的感染并非最佳治疗方案,它只能杀死大部分敏感的细菌,而异质性耐药亚群细菌则被筛选出来并继续生长繁殖,若这些细菌长期处在抗生素的压力下,很容易引起耐药基因的突变而发展为多重耐药菌。临床上则表现为患者反复感染或慢性感染,也会使感染死亡率升高。因此,异质性耐药的细菌在治疗过程中应合理使用抗生素,寻求更有效治疗的药物剂量,还要避免长期使用一种抗生素,尽量联合用药,利用协同效应来达到治疗效果,而且也应加快新型治疗药物的研发。

REFERENCES
[1]
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang ZX, Ji P, Xie Y, et al. CHINET surveillance of bacterial resistance across tertiary hospitals in 2019[J]. Chinese Journal of Infection and Chemotherapy, 2020, 20(3): 233-243. (in Chinese)
胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 张小江, 张朝霞, 季萍, 谢轶, 等. 2019年CHINET三级医院细菌耐药监测[J]. 中国感染与化疗杂志, 2020, 20(3): 233-243.
[2]
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang ZX, Ji P, Xie Y, et al. CHINET surveillance of bacterial resistance in China: 2018 report[J]. Chinese Journal of Infection and Chemotherapy, 2020, 20(1): 1-10. (in Chinese)
胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 张小江, 张朝霞, 季萍, 谢轶, 等. 2018年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志, 2020, 20(1): 1-10.
[3]
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang ZX, Ji P, Xie Y, et al. Antimicrobial resistance profile of clinical isolates in hospitals across China: report from the CHINET Surveillance Program, 2017[J]. Chinese Journal of Infection and Chemotherapy, 2018, 18(3): 241-251. (in Chinese)
胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 张小江, 张朝霞, 季萍, 谢轶, 等. 2017年CHINET中国细菌耐药性监测[J]. 中国感染与化疗杂志, 2018, 18(3): 241-251.
[4]
Yin SP, Chen P, You B, Zhang YL, Jiang B, Huang GT, Yang ZC, Chen Y, Chen J, Yuan ZQ, et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J]. Frontiers in Microbiology, 2018, 9: 1135. DOI:10.3389/fmicb.2018.01135
[5]
Del Barrio-Tofiño E, López-Causapé C, Cabot G, Rivera A, Benito N, Segura C, Montero MM, Sorlí L, Tubau F, Gómez-Zorrilla S, et al. Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(11): e01589-17. DOI:10.1128/AAC.01589-17
[6]
Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones[J]. Drug Resistance Updates, 2015, 21/22: 41-59. DOI:10.1016/j.drup.2015.08.002
[7]
Hou Q. Heteroresistance of bacteria[J]. Journal of Clinical Transfusion and Laboratory Medicine, 2003(3): 238-240. (in Chinese)
侯琦. 细菌的异质性耐药[J]. 临床输血与检验, 2003(3): 238-240. DOI:10.3969/j.issn.1671-2587.2003.03.047
[8]
Kayser FH, Benner EJ, Hoeprich PD. Acquired and native resistance of Staphylococcus aureus to cephalexin and other β-lactam antibiotics[J]. Applied Microbiology, 1970, 20(1): 1-5. DOI:10.1128/am.20.1.1-5.1970
[9]
Alexander HE, Leidy G. Influence of streptomycin on type b Haemophilus influenzae[J]. Science, 1946, 104(2692): 101-102. DOI:10.1126/science.104.2692.101
[10]
El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clinical Microbiology Reviews, 2015, 28(1): 191-207. DOI:10.1128/CMR.00058-14
[11]
Pournaras S, Ikonomidis A, Markogiannakis A, Spanakis N, Maniatis AN, Tsakris A. Characterization of clinical isolates of Pseudomonas aeruginosa heterogeneously resistant to carbapenems[J]. Journal of Medical Microbiology, 2007, 56(Pt 1): 66-70.
[12]
Machado D, Antunes J, Simões A, Perdigão J, Couto I, McCusker M, Martins M, Portugal I, Pacheco T, Batista J, et al. Contribution of efflux to colistin heteroresistance in a multidrug resistant Acinetobacter baumannii clinical isolate[J]. Journal of Medical Microbiology, 2018, 67(6): 740-749. DOI:10.1099/jmm.0.000741
[13]
Charretier Y, Diene SM, Baud D, Chatellier S, Santiago-Allexant E, Van Belkum A, Guigon G, Schrenzel J. Colistin heteroresistance and the involvement of the PmrAB regulatory system in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(9): e00788-18. DOI:10.1128/AAC.00788-18
[14]
SØGaard P, Gahrn-Hansen B. Population analysis of susceptibility to ciprofloxacin and nalidixic acid in Staphylococcus, Pseudomonas aeruginosa, and Enterobacteriaceae[J]. Acta Pathologica Microbiologica Scandinavica Series B: Microbiology, 1986, 94(1/6): 351-356.
[15]
Wu TT, Rui ZL, Xu M, Shao QX. Mechanisms of heterogeneous drug resistance against imipenem in Pseudomonas aeruginosa[J]. Journal of Jiangsu University: Medicine Edition, 2018, 28(4): 297-301. (in Chinese)
吴婷婷, 芮志莲, 徐敏, 邵启祥. 铜绿假单胞菌亚胺培南异质性耐药的机制[J]. 江苏大学学报(医学版), 2018, 28(4): 297-301.
[16]
Ma XY, Li HL, Lu Y, Cai YM, Zhang WZ, Zeng JM, Chen C, Huang B. Clinical features and risk factors analysis of carbapenems heteroresistance in Pseudomonas aeruginosa[J]. Journal of Tropical Medicine, 2019, 19(4): 398-403. (in Chinese)
马幸延, 李虹霖, 鲁洋, 蔡依玫, 张伟铮, 曾建明, 陈茶, 黄彬. 铜绿假单胞菌对碳青霉烯类抗生素异质性耐药的临床特征与危险因素分析[J]. 热带医学杂志, 2019, 19(4): 398-403. DOI:10.3969/j.issn.1672-3619.2019.04.003
[17]
He JC. Study on the molecular mechanism of carbapenem heteroresistance in Pseudomonas aeruginosa and Escherichia coli[D]. Chongqing: Master's Thesis of Chongqing Medical University, 2018(in Chinese)
何建春. 铜绿假单胞菌和大肠埃希菌碳青霉烯异质性耐药及机制研究[D]. 重庆: 重庆医科大学硕士学位论文, 2018
[18]
Xu Y, Zheng XK, Zeng WL, Chen T, Liao WL, Qian J, Lin J, Zhou C, Tian XB, Cao JM, et al. Mechanisms of heteroresistance and resistance to imipenem in Pseudomonas aeruginosa[J]. Infection and Drug Resistance, 2020, 13: 1419-1428. DOI:10.2147/IDR.S249475
[19]
Xu L. Colistin heteroresistance and drug combination study of Psoudomonas aeruglnosa[D]. Hangzhou: Master's Thesis of Zhejiang University, 2016(in Chinese)
许磊. 铜绿假单胞菌多粘菌素异质性耐药及联合药敏研究[D]. 杭州: 浙江大学硕士学位论文, 2016
[20]
Hermes DM, Pormann Pitt C, Lutz L, Teixeira AB, Ribeiro VB, Netto B, Martins AF, Zavascki AP, Barth AL. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and-resistant Pseudomonas aeruginosa[J]. Journal of Medical Microbiology, 2013, 62(8): 1184-1189. DOI:10.1099/jmm.0.059220-0
[21]
Lin J, Xu CQ, Fang RC, Cao JM, Zhang XC, Zhao YJ, Dong GF, Sun Y, Zhou TL. Resistance and heteroresistance to colistin in Pseudomonas aeruginosa isolates from Wenzhou, China[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(10): e00556-19. DOI:10.1128/AAC.00556-19
[22]
Jia XJ, Ma WJ, He JC, Tian XL, Liu H, Zou H, Cheng S. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia[J]. International Journal of Antimicrobial Agents, 2020, 55(3): 105832. DOI:10.1016/j.ijantimicag.2019.10.013
[23]
Pournaras S, Ikonomidis A, Neou E, Kantzanou M, Maniatis AN, Tsakris A. Piperacillin/tazobactam- heteroresistant Pseudomonas aeruginosa from urinary infection, successfully treated by piperacillin/ tazobactam[J]. Journal of Antimicrobial Chemotherapy, 2008, 61(3): 757-758. DOI:10.1093/jac/dkm528
[24]
He JC, Jia XJ, Yang SS, Xu XY, Sun KL, Li CY, Yang TX, Zhang LP. Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections[J]. International Journal of Antimicrobial Agents, 2018, 51(3): 413-421. DOI:10.1016/j.ijantimicag.2017.10.014
[25]
Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nature Reviews Microbiology, 2019, 17(8): 479-496. DOI:10.1038/s41579-019-0218-1
[26]
Fu H, Luo QX, Xiao YH. Research progress and clinical significance of polymyxin heteroresistance[J]. Chinese Journal of Antibiotics, 2020, 45(11): 1103-1108. (in Chinese)
傅豪, 罗琦霞, 肖永红. 多黏菌素异质性耐药的研究进展及临床意义[J]. 中国抗生素杂志, 2020, 45(11): 1103-1108. DOI:10.3969/j.issn.1001-8689.2020.11.002
[27]
Nicoloff H, Hjort K, Levin BR, Andersson DI. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification[J]. Nature Microbiology, 2019, 4(3): 504-514. DOI:10.1038/s41564-018-0342-0
[28]
Anderson SE, Sherman EX, Weiss DS, Rather PN. Aminoglycoside heteroresistance in Acinetobacter baumannii AB5075[J]. mSphere, 2018, 3(4): e00271-18. DOI:10.1128/mSphere.00271-18
[29]
Liu YY, Lan K, Xiong R, Lu Y, Cai YM, Xiang GX, Chen C, Huang B. Mechanisms of tigecycline heteroresistance in carbapenem-resistant Escherichia coli[J]. Journal of Molecular Diagnostics and Therapy, 2021, 13(2): 178-182. (in Chinese)
刘宇阳, 蓝锴, 熊蕊, 鲁洋, 蔡依玫, 向国秀, 陈茶, 黄彬. 耐碳青霉烯类大肠埃希菌对替加环素异质性耐药的机制[J]. 分子诊断与治疗杂志, 2021, 13(2): 178-182. DOI:10.3969/j.issn.1674-6929.2021.02.004
[30]
Wootton M, Howe RA, Hillman R, Walsh TR, Bennett PM, MacGowan AP. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital[J]. Journal of Antimicrobial Chemotherapy, 2001, 47(4): 399-403. DOI:10.1093/jac/47.4.399
[31]
Operario DJ, Koeppel AF, Turner SD, Bao YD, Pholwat S, Banu S, Foongladda S, Mpagama S, Gratz J, Ogarkov O, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis[J]. PLoS One, 2017, 12(5): e0176522. DOI:10.1371/journal.pone.0176522
[32]
Sun L, Talarico S, Yao LN, He LH, Self S, You YH, Zhang HF, Zhang YY, Guo YJ, Liu GD, et al. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance[J]. Journal of Clinical Microbiology, 2018, 56(9): e00019-18. DOI:10.1128/JCM.00019-18
[33]
Oikonomou O, Panopoulou M, Ikonomidis A. Investigation of carbapenem heteroresistance among different sequence types of Pseudomonas aeruginosa clinical isolates reveals further diversity[J]. Journal of Medical Microbiology, 2011, 60(Pt 10): 1556-1558.
[34]
Pournaras S, Ikonomidis A, Markogiannakis A, Maniatis AN, Tsakris A. Heteroresistance to carbapenems in Acinetobacter baumannii[J]. Journal of Antimicrobial Chemotherapy, 2005, 55(6): 1055-1056. DOI:10.1093/jac/dki115
[35]
Pournaras S, Kristo I, Vrioni G, Ikonomidis A, Poulou A, Petropoulou D, Tsakris A. Characteristics of meropenem heteroresistance in Klebsiella pneumoniae carbapenemase (KPC)-producing clinical isolates of K. pneumoniae[J]. Journal of Clinical Microbiology, 2010, 48(7): 2601-2604. DOI:10.1128/JCM.02134-09
[36]
Mei SC, Gao YL, Zhu CT, Dong CL, Chen YW. Research of the heteroresistance of Pseudomonas aeruginosa to imipenem[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(4): 6129-6132.
[37]
Qin X, Zhou C, Zerr DM, Adler A, Addetia A, Yuan SH, Greninger AL. Heterogeneous antimicrobial susceptibility characteristics in Pseudomonas aeruginosa isolates from cystic fibrosis patients[J]. mSphere, 2018, 3(2): e00615-17. DOI:10.1128/mSphere.00615-17
[38]
Ikonomidis A, Tsakris A, Kantzanou M, Spanakis N, Maniatis AN, Pournaras S. Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa[J]. FEMS Microbiology Letters, 2008, 279(1): 36-39. DOI:10.1111/j.1574-6968.2007.00997.x
[39]
Band VI, Satola SW, Burd EM, Farley MM, Jacob JT, Weiss DS. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. mBio, 2018, 9(2): e02448-17. DOI:10.1128/mBio.02448-17
[40]
Hong YK, Ko KS. PmrAB and PhoPQ variants in colistin-resistant Enterobacter spp. isolates in Korea[J]. Current Microbiology, 2019, 76(5): 644-649. DOI:10.1007/s00284-019-01672-1
[41]
Telke AA, Olaitan AO, Morand S, Rolain JM. soxRS induces colistin hetero-resistance in Enterobacter asburiae and Enterobacter cloacae by regulating the acrAB-tolC efflux pump[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(10): 2715-2721. DOI:10.1093/jac/dkx215
[42]
Silva A, Sousa AM, Alves D, Lourenco A, Pereira MO. Heteroresistance to colistin in Klebsiella pneumoniae is triggered by small colony variants sub-populations within biofilms[J]. Pathogens and Disease, 2016, 74(5): ftw036. DOI:10.1093/femspd/ftw036
[43]
Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes[J]. Molecular Microbiology, 2008, 68(1): 223-240. DOI:10.1111/j.1365-2958.2008.06152.x
[44]
Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(4): 1168-1174. DOI:10.1128/AAC.48.4.1168-1174.2004
[45]
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, Mathee K. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes[J]. PLoS One, 2012, 7(3): e34067. DOI:10.1371/journal.pone.0034067
[46]
Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability[J]. Applied and Environmental Microbiology, 1998, 64(10): 4035-4039. DOI:10.1128/AEM.64.10.4035-4039.1998
[47]
Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(1): 317-323. DOI:10.1128/AAC.47.1.317-323.2003
[48]
Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(7): 2659-2664. DOI:10.1128/AAC.48.7.2659-2664.2004
[49]
Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population[J]. Journal of Bacteriology, 2012, 194(8): 2062-2073. DOI:10.1128/JB.00022-12
[50]
Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(3): 640-646. DOI:10.1128/AAC.44.3.640-646.2000
[51]
Soares A, Roussel V, Pestel-Caron M, Barreau M, Caron F, Bouffartigues E, Chevalier S, Etienne M. Understanding ciprofloxacin failure in Pseudomonas aeruginosa biofilm: persister cells survive matrix disruption[J]. Frontiers in Microbiology, 2019, 10: 2603. DOI:10.3389/fmicb.2019.02603
[52]
Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them[J]. Current Opinion in Microbiology, 2011, 14(5): 593-598. DOI:10.1016/j.mib.2011.09.002
[53]
Conlon BP, Rowe SE, Lewis K. Persister cells in biofilm associated infections[A]//Advances in Experimental Medicine and Biology[M]. Cham: Springer International Publishing, 2014: 1-9
[54]
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria[J]. FEMS Microbiology Reviews, 2017, 41(3): 276-301. DOI:10.1093/femsre/fux010
[55]
Conlon BP. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells: an investigation of persister cells, their formation and their role in S. aureus disease[J]. BioEssays, 2014, 36(10): 991-996. DOI:10.1002/bies.201400080
[56]
Gollan B, Grabe G, Michaux C, Helaine S. Bacterial persisters and infection: past, present, and progressing[J]. Annual Review of Microbiology, 2019, 73: 359-385. DOI:10.1146/annurev-micro-020518-115650
[57]
Jorge P, Magalhães AP, Grainha T, Alves D, Sousa AM, Lopes SP, Pereira MO. Antimicrobial resistance three ways: healthcare crisis, major concepts and the relevance of biofilms[J]. FEMS Microbiology Ecology, 2019, 95(8): fiz115. DOI:10.1093/femsec/fiz115
[58]
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice[J]. Critical Reviews in Microbiology, 2021, 47(2): 162-191. DOI:10.1080/1040841X.2020.1863329
[59]
El-Halfawy OM, Valvano MA. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design[J]. Expert Opinion on Drug Discovery, 2012, 7(10): 923-933. DOI:10.1517/17460441.2012.712512
[60]
Fusco DN, Alexander EL, Weisenberg SA, Mediavilla JR, Kreiswirth BN, Schuetz AN, Jenkins SG, Rhee KY. Clinical failure of vancomycin in a dialysis patient with methicillin-susceptible vancomycin-heteroresistant S. aureus[J]. Diagnostic Microbiology and Infectious Disease, 2009, 65(2): 180-183. DOI:10.1016/j.diagmicrobio.2009.05.017
[61]
Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(2): 233-238. DOI:10.1093/jac/dkp428
[62]
Cheong JWS, Harris P, Oman K, Norton R. Challenges in the microbiological diagnosis and management of hVISA infections[J]. Pathology, 2011, 43(4): 357-361. DOI:10.1097/PAT.0b013e3283464ca3
[63]
Sola C, Lamberghini RO, Ciarlantini M, Egea AL, Gonzalez P, Diaz EG, Huerta V, Gonzalez J, Corso A, Vilaro M, et al. Heterogeneous vancomycin- intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of infective endocarditis in Argentina[J]. Annals of Clinical Microbiology and Antimicrobials, 2011, 10: 15. DOI:10.1186/1476-0711-10-15
[64]
Campanile F, Bongiorno D, Falcone M, Vailati F, Pasticci MB, Perez M, Raglio A, Rumpianesi F, Scuderi C, Suter F, et al. Changing Italian nosocomial-community trends and heteroresistance in Staphylococcus aureus from bacteremia and endocarditis[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(5): 739-745.
[65]
Silveira ACDO, Da Cunha GR, Caierão J, De Cordova CMM, D'Azevedo PA. Molecular epidemiology of heteroresistant vancomycin-intermediate Staphylococcus aureus in Brazil[J]. The Brazilian Journal of Infectious Diseases, 2015, 19(5): 466-472. DOI:10.1016/j.bjid.2015.06.013
[66]
Huang SH, Chen YC, Chuang YC, Chiu SK, Fung CP, Lu PL, Wang LS, Wu TL, Wang JT. Prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA among methicillin-resistant S. aureus with high vancomycin minimal inhibitory concentrations in Taiwan: a multicenter surveillance study, 2012-2013[J]. Journal of Microbiology, Immunology and Infection, 2016, 49(5): 701-707. DOI:10.1016/j.jmii.2015.07.003
[67]
Band VI, Crispell EK, Napier BA, Herrera CM, Tharp GK, Vavikolanu K, Pohl J, Read TD, Bosinger SE, Trent MS, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nature Microbiology, 2016, 1: 16053. DOI:10.1038/nmicrobiol.2016.53
[68]
Dufour N, Rao RP. Secondary metabolites and other small molecules as intercellular pathogenic signals[J]. FEMS Microbiology Letters, 2011, 314(1): 10-17. DOI:10.1111/j.1574-6968.2010.02154.x