微生物学通报  2022, Vol. 49 Issue (12): 5321−5330

扩展功能

文章信息

陈兆芳, 张维娜, 孟勇, 刁德睿, 李骁原, 武有聪
CHEN Zhaofang, ZHANG Weina, MENG Yong, DIAO Derui, LI Xiaoyuan, WU Youcong
植入物动物感染模型在葡萄球菌生物膜研究中的应用与进展
Application of foreign body infection models in the biofilm of Staphylococcus spp.: a review
微生物学通报, 2022, 49(12): 5321-5330
Microbiology China, 2022, 49(12): 5321-5330
DOI: 10.13344/j.microbiol.china.220889

文章历史

收稿日期: 2022-09-13
接受日期: 2022-10-24
网络首发日期: 2022-11-08
植入物动物感染模型在葡萄球菌生物膜研究中的应用与进展
陈兆芳1 #, 张维娜1 #, 孟勇1 , 刁德睿1 , 李骁原1 , 武有聪1,2     
1. 大理大学基础医学院病原生物学综合实验室, 云南  大理    671000;
2. 大理大学基础医学院医学微生物学及免疫学教研室, 云南  大理    671000
摘要: 葡萄球菌生物膜引起的持续性感染及耐药性问题一直是临床治疗的难题,围绕生物膜形成分子机制的研究成为防治葡萄球菌生物膜相关感染的关键。建立葡萄球菌感染动物模型有利于研究体内生物膜形成、扩散、致病机制及药物的体内抗生物膜效果评估等。然而,动物体内生物膜形成的影响因素多,如动物种类、植入材料、接种部位、感染剂量、观察时间及评估方法等均会影响体内生物膜形成。结合本课题研究,系统地总结了近40年来葡萄球菌生物膜感染动物模型,重点综述动物模型的建立方法、适用范围及优缺点,为葡萄球菌生物膜感染的防治提供理论依据。
关键词: 生物膜    感染模型    葡萄球菌    
Application of foreign body infection models in the biofilm of Staphylococcus spp.: a review
CHEN Zhaofang1 #, ZHANG Weina1 #, MENG Yong1 , DIAO Derui1 , LI Xiaoyuan1 , WU Youcong1,2     
1. Integrated Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Dali University, Dali 671000, Yunnan, China;
2. Department of Medical Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, Yunnan, China
Abstract: Persistent infection and drug resistance caused by the biofilm of Staphylococcus spp. have always been a difficult problem in clinical treatment. The research on the molecular mechanism of biofilm formation has become the key to the prevention and treatment of infections associated with the biofilm of Staphylococcus spp.. The establishment of animal models of infection by Staphylococcus spp. is conducive to the study of biofilm formation, diffusion, and pathogenesis and the in vivo evaluation of the anti-biofilm effect of drugs. However, there are many influencing factors of biofilm formation in animals, such as animal species, implantation material, inoculation site, infection dose, observation time, and evaluation method. This study systematically summarized the animal models of biofilm infection by Staphylococcus spp. in the past 40 years, focusing on the establishment methods, application scope, advantages, and disadvantages of animal models, thereby providing a theoretical basis for the prevention and treatment of biofilm infection by Staphylococcus spp..
Keywords: biofilm    infection model    Staphylococcus spp.    

1943年,“瓶子效应”指出微生物(细菌或真菌)并非仅以浮游菌的生命形式存在,还能在生命体或非生命体表面附着生长,以生物膜(biofilm)的形式存在[1]。葡萄球菌生物膜的形成是一个多因素、分阶段的复杂过程,细胞首先黏附于物体表面,之后产生胞外基质(如多糖、蛋白或核酸等)包裹细胞形成致密的膜状细菌群体,在群体感应系统、双组分系统和全局调节子等介导下,包裹于基质内的细胞通过相互交流、信息传递来协同应对环境压力和宿主免疫防御[2-3]。生物膜细菌和浮游菌表现出不同的生物学表型、生理生化特性、药物敏感性和致病性等。在生物材料表面形成生物膜是葡萄球菌的主要致病机制之一,也是药物治疗失败进而引起植入物相关感染(implant-associated infection,IAI)的主要原因,如人工瓣膜、假体关节和心脏起搏器感染等[4-7]。植入物为葡萄球菌生物膜形成提供极好的定殖表面,根据手术类型及植入物材料的不同,平均IAI发生率为2%−40%,其中,超过50%的IAI由葡萄球菌感染引起,给临床治疗带来巨大挑战[8-9]

葡萄球菌生物膜感染动物模型是研究体内生物膜形成、扩散过程、致病机制及体内抗生物膜作用效果的重要途径。尽管细菌生物膜概念的提出已有半个多世纪,近40年来,葡萄球菌生物膜感染动物模型的研究也取得了较大进展,但目前尚无一个理想、完全切合临床实际的动物感染模型[10-11]。本文以感染途径为线索,重点总结葡萄球菌生物膜感染动物模型建立的方法、体内生物膜形成评估、应用及优缺点(表 1),以期为防控葡萄球菌生物膜引起的持续性感染奠定基础。

表 1 葡萄球菌生物膜感染动物模型的比较 Table 1 Comparison of foreign body infection models to study Staphylococcal biofilm
模型类别
Model type
生物材料
Biological materials
实验动物
Animal species
菌种、剂量及感染途径
Strains, dosage and infective route
适用范围及优缺点
Application, advantages & disadvantages
参考文献
References
Central venous catheter (CVC) model Silastic lumen-within-
lumen catheter
SD rats, mice, New Zealand white rabbits S. aureus (102−104 CFU), S. epidermidis (104 CFU), inoculating via CVC or tail vein 能够准确、真实反映细菌在体内生物膜形成及扩散过程,但技术要求高、操作繁琐、易引起动物败血症而被迫中止
Accurately and truly reflect the biofilm formation and diffusion process of bacteria in vivo, but it has high technical requirements, complicated operation, and forced to stop the experiment due to animal sepsis
[12]
Blood-borne orthopedic implant infection model Orthopedic-grade titanium Kirschner wire (K-wire) C57BL/6 mice S. aureus (1×107 CFU), injecting via the posterior orbital vein 模拟血行性IAI发生、发展及转归过程,可实现生物膜形成的实时监测,结果检测方便,但需要特殊设备,技术要求高
To mimic the occurrence, development and outcome of the blood-borne IAI, real-time monitor the biofilm formation, and the detection is convenient, but it requires special equipment and high technical requirements
[13]
Endocarditis model 14-gauge teflon intravenous catheter SD rats HA-MRSA (105 CFU), injecting via the tail vein 能较好地模拟葡萄球菌在动物体内生物膜形成及播散过程,但动物死亡率高,耐受性差
To mimic biofilm formation and dissemination of Staphylococcus spp. in animals, but the animal mortality is high and the tolerance is poor
[14]
Urinary tract infection model Ureteral stent,
PU catheter
Wistar rats, C57BL/6 mice S. aureus (105−107 CFU), injecting through the bladder 最常见的临床介入性治疗之一,可经皮或微创植入膀胱,操作简单、实用性强
One of the most common clinical interventional treatment, which can be implanted percutaneous into bladder. The operation is simple and practical
[15-16]
Periprosthetic joint infection model Silicone intravenous catheter, K-wire, stainless steel insect pins C57BL/6 mice S. aureus (104−106 CFU), MRSA (103/105 CFU), local injection or cultured in vitro before implantation 感染率高,感染灶未被免疫反应清除,重复性好;但细菌接种剂量远高于发生临床感染时的暴露量,且小鼠血容量小,无法对血药浓度进行动态监测
Infection rate is high, the infectious foci are not eliminated by immune response, and the repeatability is good. However, the dose of bacterial inoculation is much higher than that of in the reality of clinical infection. The serum pharmacal concentration cannot be dynamically monitored due to the less blood volume
[17-20]
Subcutaneous implant infection model 96-well microplate, silicone rubber discs, polyurethane triple lumen iv catheters, tissue cage, teflon catheter New Zealand white rabbits, BALB/c mice, CD-1 mice, fisher rats, guinea pig, hamster S. aureus (107−108 CFU), S. epidermidis (107−1010 CFU), local injection or cultured in vitro before implantation 动物体形大,同一动物可多点埋置植入物,以便观察多组处理因素的作用机制;成本低廉、操作简单、结果稳定
The same animal can be implanted at multiple points because of its large size. Low cost, simple operation, and stable results
[2-3, 10-11, 14, 21-25]
Intraperitoneal embedding model Oreopoulos-
Zellerman[A1] catheter, silastic catheters, 96-well microplate
C57BL/6 mice, CF-1 mice, New Zealand white rabbits S. aureus (108 CFU), S. epidermidis (104−109 CFU), local injection or cultured in vitro before implantation 不同动物对病原菌的免疫应答不同,诱导生物膜感染效果亦不同,C57BL/6J小鼠易发生金黄色葡萄球菌生物膜慢性感染
Immune responses to pathogens are different between different animal species, and effect of biofilm infection in animals is different. C57BL/6J mice are prone to chronic biofilm infection of S. aureus
[11, 26-27]
1 心血管系统途径感染模型 1.1 鼠中心静脉导管感染模型

中心静脉导管(central venous catheter,CVC)插管是医学上重要的急救措施,也大大增加了细菌生物膜感染的风险。Ulphani等[12]首先建立金黄色葡萄球菌生物膜感染的鼠CVC模型:采用“鼠安全夹克(rodent restraint jacket)”固定SD雄性大鼠,经右侧颈外静脉将CVC插入上腔静脉,CVC固定于“鼠安全夹克”上;植入48 h后,通过CVC接种金黄色葡萄球菌SA-160 (100 μL,102−104 CFU),菌液在CVC中停留15 min后用0.5 mL N.S冲洗入血;感染5−8 d后处死大鼠,取CVC、大鼠脏器(心、肺、肝、肾)和外周血进行CFU计数;结果发现,金黄色葡萄球菌能黏附于CVC形成多细胞微菌落群,并通过菌血症传播至大鼠的各组织脏器,而经尾静脉注射等量菌液的大鼠未形成菌血症,各器官中也未分离到病原菌,提示该模型可用于CVC相关感染的发病机制和治疗研究。Rupp等[28]利用鼠CVC感染模型研究了细胞间多糖黏附素(polysaccharide intercellular adhesin,PIA)在表皮葡萄球菌体内生物膜形成中的作用,研究发现,表皮葡萄球菌SE1457 (104 CFU)感染的7只SD大鼠中有5只在植入的CVC上形成生物膜,引起菌血症(感染率71.4%),而表皮葡萄球菌SE1457-M10突变株(转座子Tn917插入icaA基因,不能合成PIA)感染组中只有1只SD大鼠出现CVC相关感染(感染率14.3%)。另外,也有研究将CVC植入小鼠[29-31]和新西兰白兔[32]的颈静脉或上腔静脉,从而研究金黄色葡萄球菌、表皮葡萄球菌、铜绿假单胞菌和白假丝酵母菌等病原菌体内的致病机制及其在植入物表面形成生物膜的情况。

鼠CVC生物膜感染模型能准确反映细菌在真实环境中形成生物膜的情况,以及成熟生物膜向各组织脏器扩散的途径,因此被广泛用于评价药物的体内抗菌及抗生物膜作用效果。但需要对动物进行静脉插管,操作难度大,不同病原菌毒力不同,感染剂量差别大,有些动物不能耐受菌血症/败血症而被迫终止试验。

1.2 血源性骨科感染小鼠模型

植入性医疗器械为细菌生物膜的形成提供黏附介质,尤其是菌血症后的植入物更容易形成生物膜感染[33]。Wang等[13]建立了葡萄球菌血源性骨科感染小鼠模型:雄性C57BL/6小鼠麻醉后行右膝部股骨远端髌旁关节切开术,股骨髓内置入钛克氏针(直径0.6 mm,长度9 mm),术后21 d,经眶后静脉注射具有生物发光的金黄色葡萄球菌SAP231 (107 CFU),并用全动物可视化系统(lumina III IVIS,PerkinElmer)监测发光细菌在动物体内的动态感染(bioluminescence imaging,BLI)情况及生物载量;结果发现,菌血症后第3−28天,小鼠手术植入物腿部的BLI信号量均显著高于手术无植入物和未手术的对侧腿部BLI信号量;为验证此结果,在感染后第28天处死小鼠,取骨和关节组织匀浆进行CFU计数,发现手术植入物的小鼠腿部骨和关节组织生物量显著高于手术无植入物和未手术的对侧腿部,葡萄球菌优先定殖黏附于有植入物的手术部位,此结果与可视化下BLI生物载量监测结果一致。

此外,Wang等[13]利用此动物模型探索金黄色葡萄球菌TA毒素(α-toxin)和黏附因子clumping factor A (ClfA)的单克隆抗体在小鼠体内抗骨科植入性感染及生物膜形成中的作用,在注射菌液前21天给予抗-TA和抗-ClfA预防治疗,造模后检测BLI信号、CFU计数和扫描电镜观察;结果发现抗-TA和抗-ClfA单克隆抗体能显著抑制血源性骨科植入物生物膜相关感染,在植入物表面偶见球菌样细菌,未见生物膜形成,而且2种单克隆抗体联合使用效果优于单一使用,此结果为研发抗葡萄球菌生物膜感染的非抗生素类药物靶点提供实验基础。该模型首次将生物发光技术和动物可视化系统结合,较好地模拟血源性IAI的发生过程,并可实时监测体内细菌生物膜的形成过程,结果检测方便,无须处死动物,大大降低了工作量,BLI生物载量客观可靠,有利于菌血症后血源性IAI的持续性监测、治疗效果评估及病情转归等研究[13]

1.3 大鼠感染性心内膜炎模型

心脏瓣膜及主动脉瓣的修补及置换是引起感染性心内膜炎的重要因素。Xiong等[14]建立了金黄色葡萄球菌心内膜炎感染大鼠模型:经颈动脉将聚乙烯导管逆行插入SD大鼠左心室,导管尖端穿过主动脉瓣以诱导无菌赘生物形成,置管3 d后,经尾静脉注射金黄色葡萄球菌HA-MRSA 300-169 (105 CFU),以诱发大鼠心内膜炎感染;感染后24 h,模型动物给予万古霉素(120 mg/kg)单独治疗,或万古霉素与金黄色葡萄球菌DNABII蛋白的单克隆抗体TRL1068 (15 mg/kg)联合治疗,同时设置N.S对照组;感染后7 d处死小鼠,取心、肾、脾和肝组织匀浆进行CFU计数;结果显示,N.S对照组心肌赘生物多,留置导管及各组织脏器上的生物载量最高,同时,模型动物的病死率最高(6/8);与N.S组相比,万古霉素单独治疗组和联合TRL1068治疗组动物脏器的生物载量均显著降低,尤其是联合TRL1068治疗效果最佳(病死率3/10)。该模型能较好地模拟葡萄球菌在动物体内形成生物膜及播散的过程,但大鼠死亡率高,耐受性较差[14]

2 泌尿系统途径(膀胱植入)感染模型

尿路插管是引起尿路感染(urinary tract infection,UTI)的主要诱因,尤其是在导管上形成细菌生物膜引起持续性感染[34-35]。Cirioni等[15]建立了金黄色葡萄球菌大鼠膀胱感染模型:Wistar大鼠麻醉后行耻骨上切口暴露膀胱,于膀胱顶部切开植入输尿管支架;实验组在置入前用RNAIII抑制肽(RNA III inhibiting peptide,RIP) (1 μg/mL,抑制葡萄球菌生物膜形成及毒素分泌)浸润支架,术后膀胱注入金黄色葡萄球菌SD菌株(2×107 CFU/mL),同时设置抗生素治疗组,腹腔注射替考拉宁(10 mg/kg)预防生物膜感染;支架放置24 h后取尿液样本检测感染情况;植入后第5天取出支架做CFU计数;结果显示,与对照组相比,RIP包被组和替考拉宁治疗组的支架和尿液标本中生物载量均显著降低(100−1 000倍),尤其是两者联合使用的效果最佳,在支架上和尿标本中基本无菌落生长(小于10 CFU/mL),与未注射细菌的对照组类似。

Yu等[16]采用微创法(超声引导下)建立了C57BL/6小鼠的导管膀胱感染模型,发现抗菌肽AMP E6与抗黏附涂层的联合使用对金黄色葡萄球菌、腐生葡萄球菌和铜绿假单胞菌具有良好的抗感染活性。另外,还有建立其他病原菌(变形杆菌、大肠杆菌和奇异杆菌)的动物(大鼠、小鼠、兔)膀胱感染模型的报道[36-40]。相较于心血管系统途径感染模型,该模型操作简单,一般不引起菌血症/败血症等全身性感染,动物耐受性好,适用于生物材料涂层技术改进的体内效果观察。

3 骨关节假体感染模型 3.1 关节假体周围感染模型

关节假体周围感染(periprosthetic joint infection,PJI)是关节置换术后的重要并发症[41]。Carli等[17]建立了小鼠PJI模型:首先制作3D打印的钛合金植入物Ti-6Al-4V (表面有直径40 μm的钛微粒),C57BL/6小鼠行单侧胫骨近端Ti-6Al-4V植入手术,切口闭合后在关节间隙内注入金黄色葡萄球菌Xen 36菌株(3×105 CFU),对照组注入N.S,术后对小鼠进行步态分析、膝关节X-线片和血清炎性标志物检测,在第2或6周处死小鼠,分别定量骨、软组织和植入物上的生物载量,并用扫描电镜观察生物膜形成情况;结果显示,所有小鼠手术均存活,未发生脓毒血症,与N.S组比较,感染组小鼠行走困难,膝关节有化脓性改变的影像学特征,血清中急性炎症标志物升高,扫描电镜下可见钛合金表面形成致密生物膜结构,感染后6周尤为显著。

该模型在植入物上人工制作粗糙表面,并且可提供包括生物载量、影像学、炎性标志物和电镜形态等8个定量数据,是最具临床代表性的PJI模型。但使用的感染剂量远高于临床发生感染时的暴露剂量(< 100 CFU/m3),并需要大型设备仪器等原因限制了该模型的推广使用[17]

3.2 小鼠骨科植入物感染模型

Vidlak等[18]建立了小鼠骨科植入物生物膜感染模型:C57BL/6小鼠麻醉后行内侧髌旁关节切开术,将骨科级克氏针K (直径0.6 mm,长8 mm)插入髓内管,术后分别接种金黄色葡萄球菌USA300-LAC菌株、MW2菌株和UAMS-1菌株,并用白介素IL-12基因敲除鼠(IL-12p40 KO)模型研究2种不同接种菌量(103或105 CFU/只)在诱导PJI模型小鼠炎症反应中异同;结果表明,不同的金黄色葡萄球菌临床株均能诱导PJI模型小鼠相似的免疫应答及生物膜的形成,低接种量(103 CFU/只)不能诱导强烈的炎症反应,表现为髓系来源抑制性细胞(myeloid-derived suppressor cells,MDSCs)浸润减少,单核细胞和巨噬细胞浸润增加,促进细菌清除;高接种量(105 CFU/只)能加速生物膜的形成,并诱导模型小鼠较强的炎症反应,但IL-12p40 KO小鼠模型与野生型小鼠模型相比,高接种量在诱导模型小鼠炎症反应、细菌清除、关节周围组织及植入物表面的生物载量方面均无显著差异。

Jørgensen等[19-20]用类似的方法将不锈钢钉(预先置于1×106 CFU/mL MRSA菌液,37 ℃孵育24 h)经皮植入小鼠胫骨,术后给予万古霉素治疗,结果发现在术后第6天生物膜形成,万古霉素治疗能降低胫骨内的生物载量,但对植入物表面的生物膜无影响,即使经过14 d的治疗仍不能清除生物膜感染。该模型操作简单,能准确模拟植入物相关的慢性、持续性骨髓炎,适合于较长时间的干预和疗效观察。

4 人工切口(皮下)途径感染模型 4.1 新西兰白兔皮下埋置法

刘华勇等[11]选取新西兰白兔建立了表皮葡萄球菌生物膜感染动物模型,并利用该模型探索万古霉素对表皮葡萄球菌体内生物膜形成的影响:人工制作96孔培养板的圆形孔底(小盘外径8 mm,内径6 mm,高2 mm)备用,兔麻醉后在脊柱两侧分离出皮下腔隙,埋植小盘(3个/切口),注入表皮葡萄球菌(109 CFU/mL),术后24 h、48 h局部注射万古霉素,72 h取出小盘进行菌落计数,并借助显微镜观察,结果显示,新西兰白兔皮下埋植的聚乙烯小盘均可形成生物膜,并且在形态、厚度及生物膜内活菌量方面与体外培养的生物膜相似,万古霉素局部给药组生物膜内的活菌数明显低于未处理组。Wu等[2-3]用该模型检测表皮葡萄球菌srrAB突变株和vraSR突变株体内生物膜形成情况,该模型一定程度上模拟了体内生物膜的自然形成过程,避免了体外培养后植入的局限性,与导管插管等动物模型相比,操作简单、结果稳定。与鼠动物模型相比,新西兰白兔体形较大,可多点埋置小盘,同一动物体内观察多组处理因素,以降低动物个体差异对处理因素的影响。

4.2 小鼠皮下埋置法

Nejadnik等[21]建立小鼠皮下感染模型:硅胶盘(直径8 mm,厚度0.5 mm)预先孵育于金黄色葡萄球菌Xen29菌液中先形成感染灶,于BALB/c小鼠腹部皮下植入硅胶盘,原位保留5 d,期间每日腹腔注射万古霉素,5 d后取出硅胶盘,并在感染部位植入无菌硅胶盘和聚合物刷涂的硅胶盘,留置5 d后处死动物,取圆盘和周围组织测定生物载量;结果表明,抗生素预处理对防止细菌定殖于硅胶盘无作用,聚合物刷涂的硅胶盘比原始硅胶盘更不容易再次感染,该模型在感染灶的基础上植入生物材料,较好地模拟局部感染引起的IAI,有完整体内生物膜形成的过程。然而动物体积小,不适于多组处理因素的比较。

类似地,Engelsman等[42]采用生物发光的金黄色葡萄球菌Xen29建立了小鼠生物膜感染模型,利用高灵敏度CCD相机监测细菌在周围组织中的生长和扩散。Simonetti等[10]在小鼠背部建立皮下感染模型,检测RIP衍生物FS10联合替加环素对MRSA伤口感染的体内疗效。

4.3 大鼠皮下埋置法

Van Wijngaerden等[22]建立了大鼠皮下导管感染模型:于Wistar大鼠背部分离皮下组织形成通道,置入聚氨酯三腔静脉导管(1 cm,3个/只),植入前导管预先置于5 mL表皮葡萄球菌中(0 ℃,2 h),植入后于72 h和96 h处死动物,在离植入口约2 cm处做一新的切口,取出导管置于N.S中,超声计数生物量;研究发现,引起IAI的最小接种量为(2.7−3.9) Log10 CFU值,替考拉宁联合利福平治疗组小鼠(n=12)回收的导管均无细菌生长,超声处理不会影响细菌的活性,大鼠皮下导管感染模型操作简单、重复性和可靠性高,适用于IAI围手术期防治策略的研究,导管在植入前接触了少量细菌,较真实地模拟了术中皮肤正常菌群的污染。

4.4 其他动物皮下感染模型

皮下埋置法还用于豚鼠、仓鼠和矮种马等[23-25, 43-44]感染模型中,植入物包括teflon导管、硅胶导管和组织笼(聚四氟乙烯管,内径10 mm,外径12 mm,长32 mm)等生物材料。大多数生物膜感染动物模型都是针对金黄色葡萄球菌和/或表皮葡萄球菌建立的,也包括其他条件致病菌,如大肠杆菌、根状放线菌、铜绿假单胞菌和白色念珠菌等[39]。由于手术相关的炎症反应会抑制低毒力病原菌生物膜的形成,因此,在建立这些病原菌的生物膜感染模型时,建议使用免疫抑制剂(如地塞米松)以利于体内生物膜的形成[45]

5 腹腔埋置法

Gallimore等[26]采用定制的硅胶管(内径3 mm,外径5 mm,长12 mm)建立了小鼠腹腔感染模型:植入前导管置于表皮葡萄球菌29260/2503菌液(104 CFU)中,37 ℃孵育72 h,以确保导管相关生物膜的形成,将长有生物膜的硅胶管植于C57BL/6小鼠腹腔,固定于腹侧壁,3个月和6个月后取血和腹膜灌洗液检测生物载量。结果显示,尽管2株临床株的胞外多聚物分泌量不同,有80%小鼠在生物膜导管植入6个月后仍存在表皮葡萄球菌持续感染,未见细菌扩散至植入部位以外的其他部位感染;与对照组相比,慢性植入物感染的小鼠外周血白细胞显著升高,伴有轻度贫血,2个时间点的炎性指标差异无统计学意义;该模型操作简单、成本低廉、观察时间长,对长期腹膜透析患者的导管相关感染具有一定的参考价值。

也有报道在硅胶管植入CF-1小鼠腹腔后再注射金黄色葡萄球菌E2371 (108 CFU),此感染剂量能引起小鼠腹内植入物周围脓肿,感染后3 d给予甲氧西林和(或)庆大霉素治疗,能显著降低硅胶管上的生物载量,但治疗效果仍不理想,可能原因是植入物感染组小鼠的胞内细菌比例增加(从20%−30%增加至60%−75%)以逃避抗生素的作用[27]。还有在新西兰白兔腹腔植入96孔圆盘建立表皮葡萄球菌生物膜感染动物模型的研究[11],但腹腔埋植圆盘被大网膜包裹,炎性渗出液较多,肉眼及显微镜观察未见明显生物膜形成。

6 结语与展望

生物膜感染是引起慢性、致死性细菌性疾病的主要原因。对生物膜结构、生物学特点及体内外形成机制的研究是解决细菌生物膜感染的关键。由于生物膜细菌的生理生化特点、诱导宿主免疫应答,以及体内致病机制均不同于浮游菌,因此,建立细菌生物膜感染的动物模型显得尤为迫切。不同动物对不同病原菌的敏感性不同,目前尚无通用的葡萄球菌生物膜感染动物模型。今后将在动物选择、菌液接种途径及剂量、可视化检测技术、生物膜-宿主相互作用、新型生物材料及涂层研发、抗生物膜药物作用效果评估等方面进一步探索及完善,以期解决细菌生物膜引起的持续性感染难题。

REFERENCES
[1]
Zobell CE. The effect of solid surfaces upon bacterial activity[J]. Journal of Bacteriology, 1943, 46(1): 39-56. DOI:10.1128/jb.46.1.39-56.1943
[2]
Wu YC, Meng YY, Qian L, Ding BX, Han HY, Chen HL, Bai L, Qu D, Wu Y. The vancomycin resistance-associated regulatory system VraSR modulates biofilm formation of Staphylococcus epidermidis in an ica-dependent manner[J]. mSphere, 2021, 6(5): e0064121. DOI:10.1128/mSphere.00641-21
[3]
Wu YC, Wu Y, Zhu T, Han HY, Liu HY, Xu T, Francois P, Fischer A, Bai L, Götz F, et al. Staphylococcus epidermidis SrrAB regulates bacterial growth and biofilm formation differently under oxic and microaerobic conditions[J]. Journal of Bacteriology, 2015, 197(3): 459-476. DOI:10.1128/JB.02231-14
[4]
Arciola CR, An YH, Campoccia D, Donati ME, Montanaro L. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates[J]. The International Journal of Artificial Organs, 2005, 28(11): 1091-1100. DOI:10.1177/039139880502801106
[5]
Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS. Global gene expression in Staphylococcus aureus biofilms[J]. Journal of Bacteriology, 2004, 186(14): 4665-4684. DOI:10.1128/JB.186.14.4665-4684.2004
[6]
Mirzaei B, Babaei R, Valinejad S. Staphylococcal vaccine antigens related to biofilm formation[J]. Human Vaccines & Immunotherapeutics, 2021, 17(1): 293-303.
[7]
Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies[J]. Microbiology and Molecular Biology Reviews: MMBR, 2020, 84(3): e00026-e00019.
[8]
Nowakowska J, Landmann R, Khanna N. Foreign body infection models to study host-pathogen response and antimicrobial tolerance of bacterial biofilm[J]. Antibiotics: Basel, Switzerland, 2014, 3(3): 378-397.
[9]
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. New England Journal of Medicine, 2004, 351(16): 1645-1654. DOI:10.1056/NEJMra040181
[10]
Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, et al. Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of staphylococcal infected wound[J]. PLoS One, 2016, 11(6): e0151956. DOI:10.1371/journal.pone.0151956
[11]
Liu HY, Wu YC, He NA, Hu J, Xu T, Gong T, Han HY, Wu Y, Qu D. Establishment of an animal model for biofilm infection of Staphylococcus epidermidis[J]. Journal of Microbes and Infections, 2013, 8(2): 72-79. (in Chinese)
刘华勇, 武有聪, 何年安, 胡健, 许涛, 龚婷, 韩海燕, 吴旸, 瞿涤. 表皮葡萄球菌生物膜感染动物模型的建立[J]. 微生物与感染, 2013, 8(2): 72-79.
[12]
Ulphani JS, Rupp ME. Model of Staphylococcus aureus central venous catheter-associated infection in rats[J]. Laboratory Animal Science, 1999, 49(3): 283-287.
[13]
Wang Y, Cheng LI, Helfer DR, Ashbaugh AG, Miller RJ, Tzomides AJ, Thompson JM, Ortines RV, Tsai AS, Liu HY, et al. Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets[J]. PNAS, 2017, 114(26): E5094-E5102.
[14]
Xiong YQ, Estellés A, Li L, Abdelhady W, Gonzales R, Bayer AS, Tenorio E, Leighton A, Ryser S, Kauvar LM. A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii infections[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(10): e00904-e00917.
[15]
Cirioni O, Ghiselli R, Minardi D, Orlando F, Mocchegiani F, Silvestri C, Muzzonigro G, Saba V, Scalise G, Balaban N, et al. RNAIII-inhibiting peptide affects biofilm formation in a rat model of staphylococcal ureteral stent infection[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(12): 4518-4520. DOI:10.1128/AAC.00808-07
[16]
Yu K, Lo JCY, Yan M, Yang XQ, Brooks DE, Hancock REW, Lange D, Kizhakkedathu JN. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model[J]. Biomaterials, 2017, 116: 69-81. DOI:10.1016/j.biomaterials.2016.11.047
[17]
Carli AV, Bhimani S, Yang X, Shirley MB, De Mesy Bentley KL, Ross FP, Bostrom MPG. Quantification of peri-implant bacterial load and in vivo biofilm formation in an innovative, clinically representative mouse model of periprosthetic joint infection[J]. Journal of Bone and Joint Surgery, 2017, 99(6): e25. DOI:10.2106/JBJS.16.00815
[18]
Vidlak D, Kielian T. Infectious dose dictates the host response during Staphylococcus aureus orthopedic-implant biofilm infection[J]. Infection and Immunity, 2016, 84(7): 1957-1965. DOI:10.1128/IAI.00117-16
[19]
Jørgensen NP, Meyer RL, Dagnæs-Hansen F, Fuursted K, Petersen E. A modified chronic infection model for testing treatment of Staphylococcus aureus biofilms on implants[J]. PLoS One, 2014, 9(10): e103688. DOI:10.1371/journal.pone.0103688
[20]
Jørgensen NP, Skovdal SM, Meyer RL, Dagnæs-Hansen F, Fuursted K, Petersen E. Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro[J]. Pathogens and Disease, 2016, 74(4): ftw019. DOI:10.1093/femspd/ftw019
[21]
Nejadnik MR, Engelsman AF, Saldarriaga Fernandez IC, Busscher HJ, Norde W, Van Der Mei HC. Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice[J]. Journal of Antimicrobial Chemotherapy, 2008, 62(6): 1323-1325. DOI:10.1093/jac/dkn395
[22]
Van Wijngaerden E, Peetermans WE, Vandersmissen J, Van Lierde S, Bobbaers H, Van Eldere J. Foreign body infection: a new rat model for prophylaxis and treatment[J]. Journal of Antimicrobial Chemotherapy, 1999, 44(5): 669-674. DOI:10.1093/jac/44.5.669
[23]
Chang CC, Merritt K. Infection at the site of implanted materials with and without preadhered bacteria[J]. Journal of Orthopaedic Research, 1994, 12(4): 526-531. DOI:10.1002/jor.1100120409
[24]
Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model[J]. The Journal of Infectious Diseases, 1982, 146(4): 487-497. DOI:10.1093/infdis/146.4.487
[25]
Christensen GD, Simpson WA, Bisno AL, Beachey EH. Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis[J]. Infection and Immunity, 1983, 40(1): 407-410. DOI:10.1128/iai.40.1.407-410.1983
[26]
Gallimore B, Gagnon RF, Subang R, Richards GK. Natural history of chronic Staphylococcus epidermidis foreign body infection in a mouse model[J]. The Journal of Infectious Diseases, 1991, 164(6): 1220-1223. DOI:10.1093/infdis/164.6.1220
[27]
Espersen F, Frimodt-Møller N, Corneliussen L, Riber U, Rosdahl VT, Skinhøj P. Effect of treatment with methicillin and gentamicin in a new experimental mouse model of foreign body infection[J]. Antimicrobial Agents and Chemotherapy, 1994, 38(9): 2047-2053. DOI:10.1128/AAC.38.9.2047
[28]
Rupp ME, Ulphani JS, Fey PD, Mack D. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model[J]. Infection and Immunity, 1999, 67(5): 2656-2659. DOI:10.1128/IAI.67.5.2656-2659.1999
[29]
Kadurugamuwa JL, Sin LV, Yu J, Francis KP, Kimura R, Purchio T, Contag PR. Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3130-3137. DOI:10.1128/AAC.47.10.3130-3137.2003
[30]
Kokai-Kun JF, Chanturiya T, Mond JJ. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice[J]. Journal of Antimicrobial Chemotherapy, 2009, 64(1): 94-100. DOI:10.1093/jac/dkp145
[31]
Lorenz U, Hüttinger C, Schäfer T, Ziebuhr W, Thiede A, Hacker J, Engelmann S, Hecker M, Ohlsen K. The alternative sigma factor sigma B of Staphylococcus aureus modulates virulence in experimental central venous catheter-related infections[J]. Microbes and Infection, 2008, 10(3): 217-223. DOI:10.1016/j.micinf.2007.11.006
[32]
Fernández-Hidalgo N, Gavaldà J, Almirante B, Martín MT, López Onrubia P, Gomis X, Pahissa A. Evaluation of linezolid, vancomycin, gentamicin and ciprofloxacin in a rabbit model of antibiotic-lock technique for Staphylococcus aureus catheter-related infection[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(3): 525-530. DOI:10.1093/jac/dkp499
[33]
Pietrocola G, Campoccia D, Motta C, Montanaro L, Arciola CR, Speziale P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants[J]. International Journal of Molecular Sciences, 2022, 23(11): 5958. DOI:10.3390/ijms23115958
[34]
Kadurugamuwa JL, Modi K, Yu J, Francis KP, Purchio T, Contag PR. Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice[J]. Infection and Immunity, 2005, 73(7): 3878-3887. DOI:10.1128/IAI.73.7.3878-3887.2005
[35]
Mohammad Zadeh F, Zarei H, Honarmand Jahromy S. Type1 and 3 fimbriae phenotype and genotype as suitable markers for uropathogenic bacterial pathogenesis via attachment, cell surface hydrophobicity, and biofilm formation in catheter-associated urinary tract infections (CAUTIs)[J]. Iranian Journal of Basic Medical Sciences, 2021, 24(8): 1098-1106.
[36]
Satoh M, Munakata K, Kitoh K, Takeuchi H, Yoshida O. A newly designed model for infection-induced bladder stone formation in the rat[J]. The Journal of Urology, 1984, 132(6): 1247-1249. DOI:10.1016/S0022-5347(17)50115-9
[37]
Vermeulen CW, Goetz R. Experimental urolithiasis. VIII. Furadantin in treatment of experimental proteus infection with stone formation[J]. The Journal of Urology, 1954, 72(2): 99-104.
[38]
Haraoka M, Matsumoto T, Takahashi K, Kubo S, Tanaka M, Kumazawa J. Effect of prednisolone on ascending renal infection due to biofilm disease and lower urinary tract obstruction in rats[J]. Urological Research, 1995, 22(6): 383-387. DOI:10.1007/BF00296880
[39]
Fung LCT, Mittelman MW, Thorner PS, Khoury AE. A novel rabbit model for the evaluation of biomaterial associated urinary tract infection[J]. The Canadian Journal of Urology, 2003, 10(5): 2007-2012.
[40]
Kaijser B, Larsson P. Experimental acute pyelonephritis caused by enterobacteria in animals. A review[J]. The Journal of Urology, 1982, 127(4): 786-790. DOI:10.1016/S0022-5347(17)54049-5
[41]
Fan YF, Xiao YB, Sabuhi WA, Leape CP, Gil D, Grindy S, Muratoglu OK, Bedair H, Collins JE, Randolph M, et al. Longitudinal model of periprosthetic joint infection in the rat[J]. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 2020, 38(5): 1101-1112. DOI:10.1002/jor.24556
[42]
Engelsman AF, Van Der Mei HC, Francis KP, Busscher HJ, Ploeg RJ, Dam GMV. Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2009, 88(1): 123-129.
[43]
Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation[J]. Journal of Microbiological Methods, 2010, 83(2): 89-105. DOI:10.1016/j.mimet.2010.08.018
[44]
Voermans M, Van Soest JM, Van Duijkeren E, Ensink JM. Clinical efficacy of intravenous administration of marbofloxacin in a Staphylococcus aureus infection in tissue cages in ponies[J]. Journal of Veterinary Pharmacology and Therapeutics, 2006, 29(6): 555-560. DOI:10.1111/j.1365-2885.2006.00803.x
[45]
Řičicová M, Kucharíková S, Tournu H, Hendrix J, Bujdáková H, Van Eldere J, Lagrou K, Van Dijck P. Candida albicans biofilm formation in a new in vivo rat model[J]. Microbiology: Reading, England, 2010, 156(Pt 3): 909-919.