微生物学通报  2022, Vol. 49 Issue (12): 5194−5205

扩展功能

文章信息

崔媛媛, 王淼, 万唐江, 王嘉琪, 位秀丽, 肖潇, 李默然
CUI Yuanyuan, WANG Miao, WAN Tangjiang, WANG Jiaqi, WEI Xiuli, XIAO Xiao, LI Moran
耐碳青霉烯类肺炎克雷伯菌对C57BL/6小鼠肺部菌群的扰动
Perturbation of carbapenem-resistant Klebsiella pneumoniae on the pulmonary flora of C57BL/6 mice
微生物学通报, 2022, 49(12): 5194-5205
Microbiology China, 2022, 49(12): 5194-5205
DOI: 10.13344/j.microbiol.china.220902

文章历史

收稿日期: 2022-09-17
接受日期: 2022-10-17
网络首发日期: 2022-11-08
耐碳青霉烯类肺炎克雷伯菌对C57BL/6小鼠肺部菌群的扰动
崔媛媛2 , 王淼3 , 万唐江4 , 王嘉琪2 , 位秀丽2 , 肖潇2 , 李默然1,2     
1. 湖北医药学院附属人民医院, 湖北  十堰    442000;
2. 湖北医药学院基础医学院, 湖北  十堰    442000;
3. 湖北医药学院生物医学工程学院, 湖北  十堰    442000;
4. 湖北医药学院第一临床学院, 湖北  十堰    442000
摘要: 【背景】 肺部菌群与宿主健康和呼吸道疾病密切相关,耐碳青霉烯类肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumonia,CRKP)是临床常见的条件致病菌,感染后对肺部菌群的影响尚不清楚。【目的】 探究耐碳青霉烯类肺炎克雷伯杆菌CRKP2对C57BL/6小鼠肺部菌群的扰动。【方法】 将C57BL/6小鼠随机分为3组,分别用CRKP2、碳青霉烯类敏感肺炎克雷伯菌KP2044和无菌PBS溶液滴鼻,利用16S rRNA基因的高通量测序技术分析肺部菌群结构。【结果】 与健康小鼠相比,菌株KP2044和CRKP2感染后小鼠肺部菌群α多样性和β多样性均显著改变,变形菌门相对丰度显著增加,乳酸杆菌属相对丰度明显下降。与KP2044相比,CRKP2生物膜形成能力较弱,感染后小鼠死亡率较低,对肺部菌群的扰动较小。【结论】 虽然肺炎克雷伯菌是条件致病菌,但高剂量耐碳青霉烯类肺炎克雷伯菌CRKP2仍对健康小鼠肺部菌群造成显著影响;尽管菌株CRKP2具有多重耐药性,但与菌株KP2044相比对肺部菌群的扰动较小,因此推测KP菌株感染对肺部菌群的扰动程度可能与菌株毒力有关。
关键词: 肺部菌群    耐碳青霉烯类肺炎克雷伯菌    16S rRNA基因    高通量测序    
Perturbation of carbapenem-resistant Klebsiella pneumoniae on the pulmonary flora of C57BL/6 mice
CUI Yuanyuan2 , WANG Miao3 , WAN Tangjiang4 , WANG Jiaqi2 , WEI Xiuli2 , XIAO Xiao2 , LI Moran1,2     
1. Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China;
2. School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China;
3. School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, Hubei, China;
4. The First Clinical School, Hubei University of Medicine, Shiyan 442000, Hubei, China
Abstract: [Background] Pulmonary flora is closely associated with host health and respiratory diseases. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a common opportunistic pathogen in clinical practice, while its impact on pulmonary flora after infection remains unclear. [Objective] To explore the perturbation of carbapenem-resistant K. pneumoniae CRKP2 on the pulmonary flora of C57BL/6 mice. [Methods] The C57BL/6 mice were randomly assigned into 3 groups which were intranasally inoculated with CRKP2, carbapenem-sensitive K. pneumoniae KP2044, and sterile PBS solution, respectively. The structure of pulmonary flora was analyzed via 16S rRNA high-throughput sequencing. [Results] Compared with those in healthy mice, the alpha diversity and beta diversity of the pulmonary flora in the mice after KP2044 and CRKP2 strain infection significantly changed. Specifically, the infection with strain CRKP2 and KP2044 significantly increased the relative abundance of Proteobacteria and decreased that of Lactobacillus. Compared with KP2044, CRKP2 showed decreased biofilm formation and caused low mortality of infected mice, which indicated that CRKP2 infection led to weaker alteration of pulmonary flora than KP2044 infection. [Conclusion] Although K. pneumoniae is an opportunistic pathogen, high-dose carbapenem-resistant K. pneumoniae CRKP2 significantly affects the pulmonary flora of healthy mice. Although stain CRKP2 has multi-drug resistance, it leads to lower disturbance on the pulmonary flora than strain KP2044. Therefore, we hypothesize that the degree of disturbance of the pulmonary flora by K. pneumoniae infection may be related to strain virulence.
Keywords: pulmonary flora    carbapenem-resistant Klebsiella pneumoniae    16S rRNA gene    high-throughput sequencing    

肺部菌群作为呼吸道内正常菌群,不仅在呼吸道成熟过程中起结构性作用,而且对维持呼吸道的生理和免疫平衡至关重要[1]。呼吸道内的菌群平衡是人体保持微环境稳定的关键,也是人体抵御致病菌侵袭的重要因素[2]。呼吸道菌群组成的改变不仅与呼吸道疾病的产生有关[3],而且会增加呼吸道疾病发作的风险[4]。近年来,高通量测序技术的广泛应用使得呼吸道菌群与宿主的关系得到更加深入的研究[5],越来越多的研究发现,呼吸道疾病会导致呼吸道内相关菌群结构和组成的改变,呼吸道菌群失衡能够影响机体的免疫和代谢等[6]。例如,慢性阻塞性肺疾病患者上呼吸道中革兰氏阴性厌氧菌的丰度降低[7];条件致病菌耐碳青霉烯类鲍曼不动杆菌引起的呼吸道相关肺炎患者的肺部菌群发生动态演变,物种丰富度和多样性减少[8]。因此,探究呼吸道菌群与呼吸道疾病的关系为相关疾病的预防和治疗奠定了科学基础。

抗生素的广泛使用导致耐药、多重耐药及广泛耐药菌株不断增加,给原发疾病的治疗带来极大的挑战。2019年,全球约有127万死亡病例可直接归因于抗生素耐药(antimicrobial resistance,AMR),另有495万死亡病例患有某种形式的AMR疾病,其中与耐药性相关的下呼吸道感染死亡人数超过150万[9]。抗生素的滥用导致了临床多重耐药肺炎克雷伯菌(Klebsiella pneumonia,KP)感染激增,尤其是耐碳青霉烯类肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumonia,CRKP)[10]。KP是临床上最为常见的革兰氏阴性杆菌,也是医院感染的主要条件致病菌,在机体免疫力低下时,容易造成呼吸系统、泌尿系统、伤口等部位的感染甚至产生败血症[11-12]。截至目前,人们对耐药菌的治疗依然面临巨大挑战,针对呼吸道菌群的改善,可为多重耐药菌院内感染的防治提供新思路。然而,目前针对KP感染的多数研究围绕宿主肠道菌群展开[13],对肺部菌群干扰的研究较少,感染后肺部菌群的具体改变还不十分清楚。

本研究通过CRKP呼吸道感染C57BL/6小鼠,利用16S rRNA基因高通量测序技术分析肺部菌群的变化,探究CRKP感染对肺部菌群的扰动,以期为后续开发有效避免院内感染的方法提供前期数据及理论基础。

1 材料与方法 1.1 材料

1.1.1 菌株

耐碳青霉烯类肺炎克雷伯菌CRKP2菌株分离自襄阳市某医院临床标本;肺炎克雷伯菌KP2044 [GenBank登录号为AP006725,野生株(wild type,WT)]分离自肝脓肿患者,由军事医学科学院微生物流行病研究所惠赠,已完成全基因组测序;大肠杆菌ATCC 25922和金黄色葡萄球菌ATCC 25923为药敏质控菌株,为本实验室保存菌株。

1.1.2 动物

选用8周龄无特定病原体(specific pathogen free,SPF)级的C57BL/6小鼠,体重为18−22 g,由湖北医药学院动物中心提供。所有C57BL/6小鼠接受相同的食物和无菌蒸馏水,自由摄食、饮水,并保持在相同的温度、湿度和噪声的环境条件下饲养。本研究实验过程符合动物伦理要求,通过湖北医药学院动物伦理委员会审批,审查批号:湖北医药学院动(福)第2020-申103号。

1.1.3 主要试剂和仪器

蛋白胨、酵母粉、MH培养基(OXOID)和2×Taq Plus Master Mix,北京康为世纪生物科技有限公司;Q5 high-fidelity DNA polymerase、5×Reaction Buffer、5×High GC Buffer和dNTPs,New England Biolabs公司;细菌DNA提取试剂盒,Omega Bio-Tek公司;DNeasy Power Soil Kit,Qiagen公司。PCR仪,Bio-Rad公司;酶标仪和紫外-可见分光光度计,Gene公司;荧光分光光度计,Promega公司;恒温培养箱和气浴恒温振荡器,常州时国旺仪器制造有限公司。

1.2 方法

1.2.1 细菌培养

接种肺炎克雷伯菌(CRKP2,KP2044)于MH琼脂平板上,37 ℃培养过夜,然后挑取新鲜单菌落接种于液体培养基,37 ℃、200 r/min振荡培养,调整OD600值约1.2后1:100稀释接种至新鲜液体培养基中,培养至对数期即OD600约1.0−1.2时,12 000 r/min离心15 min,并用无菌PBS溶液重悬后收集菌液,获得细菌菌液的浓度约1×1010 CFU/mL,动物实验备用。

1.2.2 生物膜定量

接种对数期菌液于48孔板中的新鲜培养基中,各设3个复孔,37 ℃静置培养48 h,检测菌液OD600值;吸出培养基,加入甲醇固定后,结晶紫溶液染色,轻柔冲洗干净,完全干燥后,加入33%冰乙酸溶液,使结晶紫染液完全溶解;吸取溶解液测定OD590值。按照OD590/OD600计算生物膜相对形成量。

1.2.3 药敏试验

根据2020年美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI) (https://www.techstreet.com/publishers/clsi)采用K-B纸片扩散法对32种抗菌药物进行药敏试验,依据CLSI和欧洲药敏试验委员会(European Committee of Antimicrobial Susceptibility Testing,EUCAST) (http://www.eucast.org)标准对药敏结果进行判读。

1.2.4 动物感染试验

9只C57BL/6小鼠随机分为3组,每组3只。对照组(PBS):50 µL无菌PBS滴鼻;KP2044组:50 µL KP2044 (浓度为1×1010 CFU/mL)菌悬液滴鼻;CRKP2组:50 µL CRKP2 (浓度为1×1010 CFU/mL)菌悬液滴鼻。小鼠感染后48 h,处死后无菌条件下收集肺组织(中途死亡小鼠于死亡后迅速收集肺组织),液氮速冻后转−80 ℃冰箱保存。

1.2.5 16S rRNA基因序列测定及系统发育分析

参照细菌DNA提取试剂盒说明书提取细菌基因组DNA,以其为模板,利用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1429R (5′-GGTTACCTTGTTACGACTT-3′)进行16S rRNA基因的PCR扩增并测序。PCR反应体系(50 μL):模板3 μL,正、反向引物(10 μmol/L)各1 μL,2×Taq Plus Master Mix 25 μL,灭菌双蒸水20 μL。PCR反应条件:95 ℃ 5 min;95 ℃ 1 min,57 ℃ 1 min,72 ℃ 2 min,30个循环;72 ℃ 6 min。将测得的序列通过NCBI的BLAST进行序列相似性分析,选取与所测序列一致性为99%的已知16S rRNA基因,采用Clustal X软件进行多序列比对(multiple alignments),利用MEGA-X软件,采用邻接法(neighbor-joining method)构建系统发育树。

1.2.6 肺部菌群16S rRNA基因的高通量测序

采用DNeasy Power Soil Kit提取肺组织样品总DNA,采用荧光分光光度计和1%的琼脂糖凝胶电泳检测DNA的浓度和质量。采用引物F (5ʹ-ACTCCTACGGGAGGCAGCA-3ʹ)和R (5ʹ-CG GACTACHVGGGTWTCTAAT-3ʹ)进行PCR扩增目的基因。PCR反应体系(25 μL):模板DNA 2 μL,正、反向引物(10 μmol/L)各1 μL,Q5 high-fidelity DNA polymerase 0.25 μL,5×Reaction Buffer 5 μL,5×High GC Buffer 5μL,dNTPs (10 mmol/L) 2 μL,灭菌双蒸水8.75 μL。PCR反应条件:98 ℃ 5 min;98 ℃ 30 min,53 ℃ 30 s,72 ℃ 45 s,25个循环;72 ℃ 5 min。PCR扩增16S rRNA基因V3−V4可变区后进行胶回收纯化和定量,采用标准的Illumina TruSeq DNA文库制备实验流程构建上机文库。将混合好的文库(10 nmol/L)逐步稀释定量至4−5 pmol/L后采用Illumia MiSeq PE250平台上机测序(上海派森诺生物科技股份有限公司)。

通过QIIME2 (2019.4)[14]进行微生物组生物信息学分析,使用cutadapt去除引物片段[15],调用DADA2[16]进行质控、去噪、拼接和去嵌合体。合并扩增子序列变体(samplicon sequence variants,ASVs)特征序列和ASV表格。采用QIIME2的classify-sklearn算法[17]对每个ASV的特征序列使用naive bayes分类器进行物种注释(Greengenes数据库)[18]。使用QIIME2的qiime feature-table rarefy功能进行ASV抽平,抽平深度设为最低样本序列量的95%,后续所有分析基于抽平ASV表格。测序所得序列信息提交至NCBI中sequence read archive (SRA)数据库,其BioProject ID为PRJNA855312 (https://submit.ncbi.nlm.nih.gov/subs/sra/SUB11738945/overview)。

1.2.7 统计分析

使用QIIME分析和处理样本。使用R (4.0.4)语言“vegan 2.3-0”软件包进行α多样性指数和相似性分析,采用“ape 5.5”软件包[19]进行主坐标分析。使用“stats 4.0.4”软件包进行Wilcoxon秩和检验。对满足正态分布和方差齐性的多组数据在SPSS 23.0中进行单因素方差分析,多重组间比较采用Fisher՚s最小显著性差异法(least significant difference,LSD),相关图表使用R语言、GraphPad Prism 8或Origin 2021生成。

2 结果与分析 2.1 菌株鉴定、药敏及生物膜形成能力比较

通过16S rRNA基因序列构建系统发育树(图 1A),CRKP2和KP2044与肺炎克雷伯菌Klebsiella pneumonia在同一分支,为肺炎克雷伯菌。CRKP2除对多粘菌素B高度敏感外,对四环素类(3种)中度敏感,对其余药物呈现耐药(表 1);KP2044对碳青霉烯类(2种)、头孢菌素类(7种)、氨基糖苷类(丁胺卡那,庆大霉素)、喹诺酮类(3种)、脂肽类(1种)、磺胺类(1种)高度敏感,对青霉素(苯唑西林,哌拉西林)氨基糖苷类(卡那霉素,新霉素)中度敏感,对青霉素类(青霉素,氨苄西林,羧苄西林)、大环内酯类(2种)、四环素类(多西环素,米诺环素)、糖肽类(1种)、林可霉素类(2种)呈现耐药。以上结果表明,CRKP2为碳青霉烯类耐药菌,KP2044为碳青霉烯类敏感菌。

图 1 基于16S rRNA基因序列构建的系统发育树(A)、生物膜相对形成量(B)和肺炎克雷伯菌肺部感染小鼠的存活率(C) Figure 1 Phylogenetic tree based on 16S rRNA gene sequence (A), the relative amount of biofilm formation (B) and survival rate of Klebsiella pneumoniae lung infected mice (C).

表 1 CRKP2和KP2044对32种药物的敏感性 Table 1 Sensitivity of CRKP2 and KP2044 to 32 drugs
抗生素种类
Types of antibiotic
抗生素
Antibiotics
含药量
Contents (μg/piece)
敏感性Sensitivity
CRKP2 KP2044
碳青霉烯类Carbapenems 亚胺培南Imipenem 10 R S
美罗培南Meropenem 10 R S
青霉素类Penicillins 青霉素Penicillin 10 R R
氨苄西林Ampicillin 20 R R
苯唑西林Oxacillin 1 R I
羧苄西林Carbenicillin 100 R R
哌拉西林Piperacillin 100 R I
头孢菌素类Cephalosporins 头孢氨苄Cephalexin 30 R S
头孢唑林Cefazolin 30 R S
头孢拉定Cefradine 30 R S
头孢呋辛Cefuroxime 30 R S
头孢他啶Ceftazidime 30 R S
头孢曲松Ceftriaxone 30 R S
头孢哌酮Cefoperazone 75 R S
氨基糖苷类Aminoglycosides 丁胺卡那Amikacin 30 R S
庆大霉素Gentamicin 10 R S
卡那霉素Kanamycin 30 R I
新霉素Neomycin 30 R I
大环内酯类Macrolides 红霉素Erythromycin 15 R R
麦迪霉素Midecamycin 30 R R
四环素类Tetracyclines 多西环素Doxycycline 30 I R
米诺环素Minocyclin 30 I R
喹诺酮类Quinolones 诺氟沙星Norfloxacin 10 R S
氧氟沙星Ofloxacin 5 R S
环丙沙星Ciprofloxacin 5 R S
糖肽类Glycopeptides 万古霉素Vancomycin 30 R R
脂肽类Lipopeptides 多粘菌素B Polymyxin B 300 S S
磺胺类Sulfonamides 复方新诺明Cotrimoxazole 25 R S
林可霉素类Lincomycins 克林霉素Clindamycin 2 R R
注:S:高度敏感;I:中度敏感;R:不敏感(耐药)
Note: S: Highly sensitive; I: Medium sensitivity; R: Resistant.

CRKP2菌株的生物膜形成量显著低于KP2044 (P < 0.05,图 1B),因此,KP2044形成生物膜的能力较强。对感染后小鼠连续观察,结果显示PBS组取样前未出现死亡小鼠,CRKP2组在第2天死亡1只小鼠,KP2044组小鼠在第2天全部死亡(图 1C)。

2.2 不同菌株对呼吸道菌群结构和组成的影响

在门水平上(图 2A),肺部菌群优势菌(平均相对丰度 > 1%)主要是变形菌门(Proteobacteria,PBS:14.44%;CRKP2:28.01%;KP2044:99.34%)、厚壁菌门(Firmicutes,PBS:79.89%;CRKP2:56.91%;KP2044:0.35%)、拟杆菌门(Bacteroidetes,PBS:1.45%;CRKP2:6.34%;KP2044:0.09%)和放线菌门(Actinobacteria,PBS:3.03%;CRKP2:2.89%;KP2044:0.06%)。与PBS组相比,CRKP2组的变形菌门、拟杆菌门相对丰度显著升高,厚壁菌门显著减少(P < 0.05)。KP2044组中变形菌门占99%以上,主要是肠杆菌科(Enterobacteriaceae),显著高于PBS组和CRKP2组,厚壁菌门、拟杆菌门和放线菌门显著低于CRKP2组(P < 0.05)。

图 2 肺部菌群门水平相对丰度分布(A)和优势菌差异性分析(B) Figure 2 Relative abundance distribution of pulmonary flora at phylum level (A) and difference analysis of dominant bacteria (B). 相同标记字母代表差异不显著;不同小写字母代表差异显著(P < 0.05) Same marker letters represent no significant difference; Different lowercase letters represent significant difference (P < 0.05).

在属水平上(图 3),与PBS组相比,CRKP2组乳酸杆菌属(Lactobacillus)、片球菌属(Pediococcus)、韦斯氏菌属(Weissella)、盐单胞菌属(Halomonas)相对丰度显著减少(P < 0.05),拟杆菌属(Bacteroides)、布劳特氏菌属(Blautia)、不动杆菌属(Acinetobacter)相对丰度显著增加(P < 0.05),KP2044组的乳酸杆菌属、片球菌属、韦斯氏菌属、盐单胞菌属、加德纳菌属(Gardnerella)和链球菌属(Streptococcus)相对丰度显著下降(P < 0.05)。

图 3 肺部菌群属水平相对丰度交互热图(A)和差异性分析(B) Figure 3 Heat map of the relative abundance of pulmonary flora at genus level (A) and difference analysis (B). 不同小写字母代表差异显著(P < 0.05) Different lowercase letters represent significant difference (P < 0.05).

图 4A可知,与PBS组相比,CRKP2组肺部菌群α多样性指数显著升高(P < 0.05),表明CRKP2感染后小鼠肺部菌群的丰富度和多样性增加,KP2044组丰富度和多样性显著降低(P < 0.05)。基于Bray-Curtis距离进行主坐标分析(principal coordinate analysis,PCoA) (图 4B),3组沿PCo1和PCo2明显分开,同构主坐标分析发现各组间β多样性的差异显著(R2=0.72,P=0.006)。上述结果说明CRKP2和KP2044感染均显著影响了小鼠肺部菌群的α多样性和β多样性。

图 4 肺部菌群的α多样性指数(A)、PCoA分析(B)和Bray-Curtis距离差异分析(C) Figure 4 Alpha diversity indexes (A), PCoA analysis of pulmonary flora (B) and Bray-curtis distance difference analysis (C). ***:P < 0.001;PBS:PBS组内Bray-Curtis距离;CRKP2:CRKP2与PBS组间Bray-Curtis距离;KP2044:KP2044与PBS组间Bray-Curtis距离;不同小写字母代表差异显著(P < 0.05) ***: P < 0.001; PBS: Bray-curtis distance in PBS group; CRKP2: Bray-curtis distance between CRKP2 and PBS group; KP2044: Bray-curtis distance between KP2044 and PBS group; Different lowercase letters represent significant difference (P < 0.05).

为进一步分析CRKP2和KP2044感染后与健康小鼠肺部菌群的差异,分别计算各组与PBS组的Bray-Curtis距离,比较后发现KP2044组与PBS组的距离显著大于CRKP2组与PBS组的距离,有明显差异(图 4CP < 0.05),说明与CRKP2相比,KP2044感染后对肺部菌群扰动程度更大。

3 讨论与结论

呼吸道作为人体与外界相通的主要器官,其内部菌群在维护机体健康中发挥重要作用[20]。呼吸道内正常菌群数量和结构的改变能够导致菌群失调,甚至引发多种临床疾病,增加呼吸道感染的风险[21-22]。本研究用CRKP和碳青霉烯类敏感KP呼吸道感染C57BL/6小鼠,经16S rRNA基因高通量测序,发现正常小鼠肺部优势菌群主要是厚壁菌门、变形菌门、拟杆菌门和放线菌门,与之前研究结果[22]一致;感染后小鼠肺部菌群的组成和结构均与对照组存在显著差异,说明CRKP和碳青霉烯类敏感KP干扰了正常小鼠的肺部菌群结构。有研究发现,呼吸道菌群失调会进一步导致呼吸道功能紊乱,引起呼吸道系统疾病[23],结合本文研究结果,说明虽然KP属于条件致病菌,但是高浓度KP仍会导致肺部菌群失调,可能与后续疾病的发生发展有关。

KP2044感染后导致小鼠正常肺部菌群结构被严重破坏,菌群的丰富度和多样性显著下降,变形菌门相对丰度达到99%。研究发现,变形菌门的增加与呼吸道疾病密切相关,与正常情况相比,哮喘、慢性阻塞性肺疾病、肺结核、鼻病毒感染的肺炎、肺癌和空气污染物PM2.5暴露均导致呼吸道变形菌门比例上升[24-27]。CRKP2虽然是耐药菌,但与KP2044相比,对小鼠肺部菌群扰动较小(图 3图 4),研究发现KP2044具有较高的毒力[28],而且本研究中KP2044形成生物膜的能力和致死率均高于CRKP2,因此推测KP对肺部菌群的扰动程度主要与菌株毒力有关。

在属水平上,CRKP2和KP2044均导致肺部乳酸杆菌属相对丰度显著下降。虽然目前关于KP对肺部菌群扰动相关的研究较少,但有报道[13]显示小鼠感染KP后肠道菌群中产生短链脂肪酸的罗伊氏乳杆菌(Lactobacillus reuteri)相对丰度显著降低,补充短链脂肪酸等相关代谢产物可以降低KP感染的易感性,说明肠道益生菌罗伊氏乳杆菌和相关代谢物在KP肺炎中起到保护作用。有研究发现,口服热灭活的乳酸杆菌可以提高感染流感病毒小鼠的存活率,减少感染小鼠肺部的病毒复制[29];此外,补充单一的约氏乳杆菌(Lactobacillus johnsonii)可以减轻过敏原对呼吸道的损伤[30];气管插管时,呼吸道内乳酸杆菌属的相对丰度与呼吸机相关肺炎的发生呈负相关[31],以上研究结果提示,乳酸杆菌属也可能在肺部菌群平衡和呼吸道疾病治疗中发挥作用。本研究中,KP感染导致肺部乳酸杆菌属显著减少,进一步说明乳酸杆菌属作为广泛认可的益生菌[32],可能在修复呼吸道受损和缓解微生态失衡等方面起到积极作用[33]。但目前仍缺乏乳酸杆菌属与肺部感染和菌群失衡的直接证据,下一步还需通过分离培养的方法来进一步确定。

综上所述,KP2044和CRKP2感染对肺部菌群结构造成不同程度的扰动,KP2044毒力较强,肺部菌群多样性显著下降,β多样性显著改变,CRKP2虽然具有多重耐药性,但毒力较弱,对肺部菌群扰动相对于KP2044较小。2种肺炎克雷伯菌均导致肺部变形菌门增加、乳酸杆菌属减少,说明两者具有作为KP感染标志性评估指标的潜力,或调节肺部菌群失衡的潜在靶标,但仍需进一步研究。

REFERENCES
[1]
Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street[J]. Mucosal Immunology, 2017, 10(2): 299-306. DOI:10.1038/mi.2016.108
[2]
Man WH, De Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health[J]. Nature Reviews Microbiology, 2017, 15(5): 259-270. DOI:10.1038/nrmicro.2017.14
[3]
Xiao CL, Li SY, Zhou WQ, Shang DZ, Zhao S, Zhu XM, Chen KM, Wang RQ. The effect of air pollutants on the microecology of the respiratory tract of rats[J]. Environmental Toxicology and Pharmacology, 2013, 36(2): 588-594. DOI:10.1016/j.etap.2013.04.012
[4]
He M, Ichinose T, Yoshida S, Shiba F, Arashidani K, Takano H, Sun GF, Shibamoto T. Differences in allergic inflammatory responses in murine lungs: comparison of PM2.5 and coarse PM collected during the hazy events in a Chinese city[J]. Inhalation Toxicology, 2016, 28(14): 706-718. DOI:10.1080/08958378.2016.1260185
[5]
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-host interactions: physiology and pathophysiology of respiratory infection[J]. Physiological Reviews, 2018, 98(2): 781-811. DOI:10.1152/physrev.00040.2016
[6]
Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The airway microbiome in patients with severe asthma: associations with disease features and severity[J]. The Journal of Allergy and Clinical Immunology, 2015, 136(4): 874-884. DOI:10.1016/j.jaci.2015.05.044
[7]
De Steenhuijsen Piters WAA, Huijskens EGW, Wyllie AL, Biesbroek G, Van Den Bergh MR, Veenhoven RH, Wang XH, Trzciński K, Bonten MJ, Rossen JWA, et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients[J]. The ISME Journal, 2016, 10(1): 97-108. DOI:10.1038/ismej.2015.99
[8]
Xiao TT, Guo Q, Zhou YZ, Shen P, Wang Y, Fang Q, Li M, Zhang ST, Guo LH, Yu X, et al. Comparative respiratory tract microbiome between carbapenem- resistant Acinetobacter baumannii colonization and ventilator associated pneumonia[J]. Frontiers in Microbiology, 2022, 13: 782210. DOI:10.3389/fmicb.2022.782210
[9]
Wagenlehner FME, Dittmar F. Re: global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. European Urology, 2022, S0302-2838(22): 02614.
[10]
Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005‒2014[J]. Clinical Microbiology and Infection: the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2016, 22(suppl 1): S9-S14.
[11]
Daikos GL, Markogiannakis A, Souli M, Tzouvelekis LS. Bloodstream infections caused by carbapenemase- producing Klebsiella pneumoniae: a clinical perspective[J]. Expert Review of Anti-Infective Therapy, 2012, 10(12): 1393-1404. DOI:10.1586/eri.12.138
[12]
Geng B, Deng Y, Chen XM. Distribution and drug-resistance analysis of nosocomial infection pathogens in ICU[J]. Journal of Modern Medicine & Health, 2021, 37(19): 3335-3337. (in Chinese)
耿波, 邓毅, 陈晓梅. 综合ICU医院感染病原菌分布及耐药性分析[J]. 现代医药卫生, 2021, 37(19): 3335-3337. DOI:10.3969/j.issn.1009-5519.2021.19.025
[13]
Wu T, Xu FM, Su C, Li HR, Lyu N, Liu YY, Gao YF, Lan YH, Li JB. Alterations in the gut microbiome and cecal metabolome during Klebsiella pneumoniae- induced pneumosepsis[J]. Frontiers in Immunology, 2020, 11: 1331. DOI:10.3389/fimmu.2020.01331
[14]
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[15]
Kechin A, Boyarskikh U, Kel A, Filipenko M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing[J]. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology, 2017, 24(11): 1138-1143. DOI:10.1089/cmb.2017.0096
[16]
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. DOI:10.1038/nmeth.3869
[17]
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2՚s q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 90. DOI:10.1186/s40168-018-0470-z
[18]
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069-5072. DOI:10.1128/AEM.03006-05
[19]
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R[J]. Bioinformatics, 2019, 35(3): 526-528. DOI:10.1093/bioinformatics/bty633
[20]
Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P, Armstrong-James DPH, Adcock IM, Chotirmall SH, Chung KF, et al. Functional effects of the microbiota in chronic respiratory disease[J]. The Lancet Respiratory Medicine, 2019, 7(10): 907-920. DOI:10.1016/S2213-2600(18)30510-1
[21]
Wang H, Kang D, Zhou XD, Li YQ. Prevention of infectious diseases through microecology modulation techniques[J]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2018, 36(5): 564-567.
王晖, 康迪, 周学东, 李雨庆. 微生态调节技术在感染性疾病预防中的应用[J]. 华西口腔医学杂志, 2018, 36(5): 564-567.
[22]
Shah T, Shah Z, Baloch Z, Cui XM. The role of microbiota in respiratory health and diseases, particularly in tuberculosis[J]. Biomedicine & Pharmacotherapy, 2021, 143: 112108.
[23]
Esposito S, Principi N. Impact of nasopharyngeal microbiota on the development of respiratory tract diseases[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2018, 37(1): 1-7.
[24]
Cardenas PA, Cooper PJ, Cox MJ, Chico M, Arias C, Moffatt MF, Cookson WO. Upper airways microbiota in antibiotic-naïve wheezing and healthy infants from the tropics of rural Ecuador[J]. PLoS One, 2012, 7(10): e46803. DOI:10.1371/journal.pone.0046803
[25]
Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1): e8578. DOI:10.1371/journal.pone.0008578
[26]
Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, et al. Analysis of the lung microbiome in the healthy smoker and in COPD[J]. PLoS One, 2011, 6(2): e16384. DOI:10.1371/journal.pone.0016384
[27]
Krishna P, Jain A, Bisen PS. Microbiome diversity in the sputum of patients with pulmonary tuberculosis[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2016, 35(7): 1205-1210.
[28]
Xu L, Wang M, Yuan J, Wang H, Li MR, Zhang FS, Tian YJ, Yang J, Wang JJ, Li B. The KbvR regulator contributes to capsule production, outer membrane protein biosynthesis, antiphagocytosis, and virulence in Klebsiella pneumoniae[J]. Infection and Immunity, 2021, 89(5): e00016-e00021.
[29]
Park S, Kim JI, Bae JY, Yoo K, Kim H, Kim IH, Park MS, Lee I. Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice[J]. Journal of Microbiology, 2018, 56(2): 145-149. DOI:10.1007/s12275-018-7411-1
[30]
Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, Boushey HA, Zoratti E, Ownby D, Lukacs NW, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection[J]. PNAS, 2014, 111(2): 805-810. DOI:10.1073/pnas.1310750111
[31]
Emonet S, Lazarevic V, Leemann Refondini C, Gaïa N, Leo S, Girard M, Nocquet Boyer V, Wozniak H, Després L, Renzi G, et al. Identification of respiratory microbiota markers in ventilator-associated pneumonia[J]. Intensive Care Medicine, 2019, 45(8): 1082-1092. DOI:10.1007/s00134-019-05660-8
[32]
Molyneaux PL, Mallia P, Cox MJ, Footitt J, Willis-Owen SAG, Homola D, Trujillo-Torralbo MB, Elkin S, Kon OM, Cookson WOC, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 188(10): 1224-1231. DOI:10.1164/rccm.201302-0341OC
[33]
Ojekunle O, Banwo K, Sanni AI. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities[J]. Letters in Applied Microbiology, 2017, 64(5): 379-385. DOI:10.1111/lam.12731