微生物学通报  2021, Vol. 48 Issue (5): 1755−1764

扩展功能

文章信息

何青, 崔皓钧, 马书荣
HE Qing, CUI Haojun, MA Shurong
外生菌根对植物非生物胁迫的缓解作用及作用机理研究进展
Mitigation effect and regulation mechanism of ectomycorrhizal on plant under abiotic stress: a review
微生物学通报, 2021, 48(5): 1755-1764
Microbiology China, 2021, 48(5): 1755-1764
DOI: 10.13344/j.microbiol.china.200790

文章历史

收稿日期: 2020-08-13
接受日期: 2020-10-02
网络首发日期: 2020-10-29
外生菌根对植物非生物胁迫的缓解作用及作用机理研究进展
何青 , 崔皓钧 , 马书荣     
东北林业大学生命科学学院  东北盐碱植被恢复与重建教育部重点实验室    黑龙江  哈尔滨    150040
摘要: 外生菌根在林木共生系统中占据重要的地位,具有提高宿主植物抗逆性的作用。在菌根学领域中,外生菌根与非生物胁迫互作的研究要远少于其他类型的菌根,尤其是缺乏综合、全面的总结性评述。文中总结了近5年来的相关研究,阐述了非生物胁迫(干旱、寒冷、高温、盐碱、重金属和有毒物质)下菌根共生体与植物抗逆性的关系,其他因子与外生菌根协同提高植物对非生物胁迫的耐受能力,以及外生菌根缓解非生物胁迫的生理机制和基因调节机制。本文结合了污染土壤修复、功能蛋白表达及微生物生态系统3个方面的研究,分析了当前研究的热点问题与存在的不足,展望了今后的研究方向,以期为林木生态恢复和菌根学研究的扩充提供可借鉴的思路。
关键词: 外生菌根    非生物胁迫    抗逆性    协同修复    
Mitigation effect and regulation mechanism of ectomycorrhizal on plant under abiotic stress: a review
HE Qing , CUI Haojun , MA Shurong     
Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education; College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
Abstract: Ectomycorrhizal occupies an important position in the forest symbiosis system, and plays a role in improving the resistance of plants. In the field of mycorrhizology, the research on the interaction between ectomycorrhizal and abiotic stress is far less than other types of mycorrhizal. In particular, it lacks comprehensive summary comments. This article summarizes the research in the past 5 years, and elaborates the relationship between mycorrhizal symbiotes and plant resistance under abiotic stress (drought, cold, high temperature, saline-alkali, heavy metals and toxic substances); it elaborates that other factors and ectotrophic mycorrhiza have a kind of ability that they can cooperate to improve the plant resistance to abiotic stress; it elaborates how exogenous mycorrhiza alleviates abiotic stress by physiological and genetic means. This paper combines three aspects of research on contaminated soil remediation, functional protein expression, and microbial ecosystems. This paper analyzes current research hotspots and existing deficiencies, and looks forward to future research directions to provide useful ideas for forest ecological restoration and mycorrhizal research.
Keywords: ectomycorrhizal    abiotic stress    resistance    collaborative remediation    

生态平衡的破坏已经严重威胁到人类的日常生活,继而出现水土流失、水体富营养化、土壤酸碱度失衡以及重金属和有毒物质侵蚀农作物等现象。很多植物正面临着干旱、高温、寒冷、强紫外线等非生物胁迫,仅靠植物的抗逆性并不能达到较好的抵御效果。研究表明,在非生物胁迫下,外生菌根(Ectomycorrhiza,ECM)能够提高植物抗逆性,并促进植物根系对营养物质的吸收[1]。如何利用外生菌根提高植物在逆境环境下的存活率并调节植物生长状况,是目前研究中的重要方向。

土壤中的某类真菌能与植物根系形成共生体,这种共生体叫作菌根(Mycorrhizae),菌根可分为外生菌根、内生菌根和丛枝菌根[2]。其中外生菌根参与生态循环的多个环节,在生态修复的过程中具有不可替代的作用。外生菌根能够促进植物生长发育[3]、提高宿主植物的抗逆性[4]、参与土壤碳氮循环[5]。为此,国内外开展了一系列广泛研究,包括土壤真菌修复效应、菌根苗的抗逆性、菌根真菌与其他因子互作关系[6]等多方面研究,但这些研究尚缺少全面、系统的综述。本文就非生物胁迫下菌根苗的抗逆性、外生菌根与生物因子/非联合生物因子提高植物抗性、外生菌根修复退化和污染土壤、外生菌根抵御非生物胁迫的作用机制几个方面展开论述,总结了近5年来相关研究的最新进展,旨在梳理非生物胁迫下外生菌根和宿主植物之间的关系,明确未来的研究方向、发展动态以及存在的问题,为相关研究人员提供新的思路。

1 非生物胁迫下外生菌根对植物抗逆性的影响

外生菌根具有较强的环境适应能力,能够帮助宿主植物在干旱、高温、低温以及盐碱等不利环境中生存[2]。早在20世纪60年代,人们便发现其具有干旱适应能力[7]。此后,研究人员陆续发现外生菌根对植物的抗寒性、抗盐碱性、抗重金属性。

1.1 外生菌根对植物抗旱性的影响

外生菌根真菌(Ectomycorrhizal Fungi,ECMF)单独存在即具有较强的干旱适应能力[8],其宿主植物在菌根真菌的作用下能够吸收外界营养物质,调节自身水分代谢,从而提高抗旱性[9]。研究发现,木霉(Trichoderma)接种下的油松(Pinus tabulaefor)幼苗株高和针叶长度有所提高,各项生理指标也发生相应的变化[10]。不同水分条件下研究黄连木(Pistacia chinensis Bunge)幼苗的接种效应,发现共生体植株中可溶性蛋白的含量较高,而脯氨酸和丙二醛的含量则相对较低[11]。接种外生菌根粘盖牛肝菌(Suillus bovinus)能明显促进植物生物量、苗高及菌根侵染率,其促进效果随着干旱程度的改变而发生改变[12]。在持续干旱处理下,接种外生菌根后的橡树(Quercus alustris Münchh)对干旱的耐受能力更强,而且这种增强效应与脂质代谢有关[13]。综上可知,在干旱条件下,外生菌根能增加植物的苗高、生物量及有机物含量,这可以看作是菌根真菌应对干旱的一种适应性调节;同时,这种调节能力还表现在改变植物水势、增强根系吸水能力、加快叶片光合速率、提高抗氧化酶含量等方面。

1.2 外生菌根对植物抗寒性的影响

寒冷地区存在相当数量的外生菌根,其中某些菌根中存在与物质跨膜相关的基因组及与冷应激反应相关的解旋酶[14],这些基因是植物适应严寒的关键基因。此前,研究人员利用高压流量计评估植物霜冻的硬度发现:低温胁迫下,苏格兰松(Pinus sylvestris)在接种外生菌根真菌毛革菌(Hebeloma sp.)和褐环牛乳肝菌(Suillus luteus)后其霜冻硬度得到明显改善,幼苗的水力传导率较对照组显著提高[15],表明外生菌根在应对寒冷胁迫时具有与丛枝菌根相同的作用效果。然而,与其他几种胁迫比较,国内外对寒冷胁迫的研究相对较少,已挖掘的抗寒真菌大多为丛枝菌根,加强外生菌根与低温胁迫互作关系的研究是十分必要的。

1.3 外生菌根对植物抗盐性和耐酸性的影响

全球盐碱土地分布广泛[16],土地盐碱化限制了农业经济发展,也破坏了生态循环的可持续发展。外生菌根能够增强植物对盐碱的适应能力[17]。不同的菌根适应范围不同,有些菌根共生体能适应较大的pH范围,并长期生活在盐碱地上[18],这种菌根共生体主要通过产生H+和有机酸[19]来调节土壤pH值,减弱酸碱对植物的伤害。黑松(Pinus thunbergii)幼苗在面对高盐胁迫时,与对照组幼苗相比,接种外生菌根土生空团菌(Cenococcum geophilum)、紫晶蜡蘑(Laccariaamethystea)后,苗木的死亡率开始下降,幼苗鲜质量提高,Na+/K+的比值也发生变化[20]。以上2种菌根共生体均促进了盐胁迫下的植物生长,而且后者效果更为明显。同年,Zwiazek等对黑松菌根苗进行研究,认为外生菌根真菌印度块菌(Tubre indicum)与牛肝菌(Boletus sp.)首先提高植物的Na+含量和生长速度,进而缓解盐胁迫[21]

酸雨沉积污染陆地生态系统,致使该区域土壤阳离子增加,植物遭受离子毒害[22]。外生菌根能通过调节Na+/K+改变土壤酸碱度,有效增强植株的耐酸能力[23]。在模拟酸雨的基础上接种外生菌根,接种后的幼苗恢复了反硝化酶活性且古细菌基因丰富度、土壤有机碳及养分含量有所增加[24],该结果表明外生菌根能够缓解酸雨带来的土壤质量问题。此外,为了提高植物的抗酸性、改善植物生长状况,土壤中的难溶性离子还能够在菌根真菌的作用下被活化成K、N、Mg等元素,使其更容易被植物吸收利用[25]

1.4 外生菌根对植物抗重金属和有毒物质的影响

许多真菌的基因组中存在抗重金属编码基因,具有调节重金属离子转运的功能。外生菌根的形成可以调节植物的光合作用、电导率、胞间CO2浓度及重金属离子和有毒物质的吸收、转运,从而增强宿主植物的抗性[26]。用不同浓度的Pb(NO3)2处理下卷边网褶菌(Paxillus involutus)与杨树(Populus canescens)的共生体,该共生体植株的干重显著高于对照组杨树,而且随着处理时间的增长,根和茎中铅的积累量呈直线上升趋势[27]。外生菌根对锰胁迫具有相同的效应,彩色豆马勃(Pisolithus arhizus)能够有效缓解离子毒害作用,保证高浓度锰胁迫下桉树的存活率和生长质量[28]。当宿主植物受到重金属胁迫时,金属硫蛋白和谷胱甘肽作为金属稳定剂参与到植物的适应性调节中,其含量随着外部金属浓度的增加而增加[29]。目前已经筛选出一些菌根真菌能够较好地应对重金属胁迫,但这些菌种对于胁迫的耐受阈值尚未明确,其作用的具体机制仍在探索中。

2 外生菌根与其他因子间的互作效应 2.1 外生菌根与其他因子联合提高植物抗性

菌根真菌能够与各种生物因子如根际微生物、菌根辅助细菌、其他菌根真菌之间相互作用,协同提高宿主植物的抗逆性并促进植物根系的定殖。以ECMF粘盖牛肝菌(Suillus bovinus)、彩色豆马勃和分离出的溶磷菌株yL14、硅酸盐细菌菌株k50为供试菌株等量混合构建菌剂作为肥料,施肥后的马尾松幼苗中N、P、K的占比有所提高,土壤有机质含量大幅度上升[30]。假单胞菌(Pseudomons adaceae)与牛肝菌混合菌剂处理岩茨(Cistus ladanifer)后,菌根数量显著增加,植株死亡率逐渐减小[31]。王冉等研究发现,接种印度块菌与供试菌株的混合试剂后,华山松的株高远高于对照组植株[32]。不同的菌根共生体复合施加于宿主植物时,菌根的形成率较单一共生体处理下增加一倍,而且细胞外磷酸酶的活性提高了8.8%,植物存活率显著提高[33]。此外,蚯蚓之类的动物也能增强外生菌根对非生物胁迫的缓解效应[34]。因此,外生菌根和生物因子协同作用的效果远大于某单一因子的作用效果。

外源激素、农用化学品和农艺措施等非生物因子也能与外生菌根联合修复土壤并作用于植物。对体外培养下的菌根化杨树施加适当浓度的外源激素,通过对植株侧根的根部结构、菌根形态和基因表达水平的评估表明,外源激素的处理影响了菌根定殖率以及哈蒂氏网的形成频率[35]。藻酸钙凝胶包埋外生菌根菌丝体时,与低磷处理组相比,扦插苗的枝条高度、根茎直径、总干燥质量以及成球率都显著提高[36]

施加氮肥后,外生菌根基质外菌丝体的生物量由原来的57%降低为51%,菌丝体的坏死周转率增加[37]。氮肥通过促进外生菌根向森林腐殖质转化,进而增加土壤肥力、改善土壤环境;施肥还能辅助外生菌根定殖,影响植物长期生长[38]。丛枝菌根与其他农业技术(灌溉、轮作、间作、生草、土壤管理等)联合防治非生物胁迫的效果显著,但外生菌根在该方面的研究几乎没有,加强探索提高外生菌根作用效果的农艺措施十分必要。

2.2 外生菌根与其他因子联合修复污染和退化土壤

外生菌根可与其他生物联合修复污染和退化土壤[39]。研究表明,外生菌根与其他类型的菌根同时存在时,土壤中不稳定的矿物质和有机磷含量会增加,土壤微生物C/N比及各项酶的活性也随之增加[40]。除增加土壤中的营养物质外,外生菌根还能通过改变根际微生物群落组成结构来修复已退化的土壤[41]。在土壤微生物群落中,包括硝化细菌在内的多种细菌的丰富度和菌落结构受到外生菌根的支配[42]。假单胞菌与红绒盖牛肝菌(Xerocomus chrysenteron)分别单接种和双接种杨树,双接种下的杨树根际土壤酶活性变化最为明显,而且土壤微生物优势度指数和碳源利用丰富度指数显著高于单接种组[43]。重金属和石油烃是常见的土壤污染物。外生菌根积累土壤中的Mn、Pb等重金属元素,有效地减弱了土壤的离子毒害作用[27-28]。程国玲等研究4种外生菌根对石油烃的降解效果发现,降解率从高到低依次为混合接种、双接种、单接种,表明菌根真菌联合修复石油烃污染的土壤效果更佳[44]

3 外生菌根抵御非生物胁迫的机制 3.1 外生菌根抵御非生物胁迫的生理机制

3.1.1 水分和营养物质的吸收

如何控制植物体内的水分流失和保证水分正常循环是植物应对非生物胁迫的关键环节。外生菌根能够有效促进植物吸收水分[45],接种外生菌根大毒滑锈伞(Hebeloma crustuliniforme)后,颤杨(Populus tremuloides)的根系水力传导度大于对照组实生苗,导水率增加[46]。植物根部直径与菌根真菌的菌丝长短呈正相关性[47],真菌菌丝能够充分利用30 m深的地下水并阻隔植物根系水分的流失,解决植物根系水分的代谢与利用问题[48]。外延菌丝除了能够深入土壤内部,还能增大根系表面积,提高根系保水能力。当植物缺水时,菌丝会延伸至土壤较小的缝隙中,以便吸收更多的水分[49]。研究发现,同一干旱条件下,外生菌根侵染后的植物叶片肉质化和比叶面积增加,叶片含水量显著提高[50]。表明外生菌根不仅能作用于外延菌丝,还能直接作用于机体本身。

营养元素的缺乏会导致植物的抗逆性下降、生理功能逐步紊乱,通常表现为叶片发黄、萎蔫,植株停止生长甚至死亡[51]。外生菌根大致从以下3个方面帮助植物吸收更多的矿物质营养[52]:(1) 外生菌根能够活化土壤中的N、P等元素[25],利用高亲和力离子转运系统来改善相关代谢过程,进而提高矿物质养分和难溶性离子的吸收量[53]。(2) 外生菌根可以改变根系构型,促进C、N、P等元素向根系积累和分配[54]。(3) 外生菌根所产生的细胞外代谢酶和表面反应性代谢产物能够释放矿物质相关蛋白中所含有的N元素,以供植物吸收[55]

3.1.2 活性氧的清除

活性氧(Reactive Oxygen Species,ROS)是一种机体代谢的有害产物,能够引起质膜过氧化。在非生物胁迫下,植物体代谢活动遭到破坏,ROS大量积累,植物的健康状况也随之遭到破坏[56]。因此,活性氧清除机制是植物体减轻氧化损害、缓解非生物胁迫的重要机制。外生菌根通过控制活性氧清除酶的含量来改变植物抗性[57]。接种外生菌根的油松幼苗与对照组相比,叶片中的超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化物酶(Peroxidase,POD)含量有着不同程度的增加,同时丙二醛(Malondialdehyde,MDA)含量显著降低[12]。植物通过提高抗氧化酶的活性来消除体内的活性氧,缓解干旱、盐碱等环境带来的生理胁迫[11]。上述清除酶产物还能在外生菌根共生体建立的早期发挥信号作用,促进更多的共生体形成[58]

3.1.3 光合作用

光合作用是植物能量代谢过程中的控制中心,能够与其他代谢作用协同促进植物的生长发育。多种非生物胁迫作用下,植物的光合作用均可被抑制,而且胁迫时间越长影响越明显[59]。弱光下的菌根可以提高宿主幼苗的存活率和竞争能力,主要表现在光补偿点的减少,光合作用强度以及磷浓度的增加上[60]。适当的施用菌肥能够改变植物的气孔导度、水分利用效率、N含量分布和CO2同化量[61],进而降低光合耗水量并提高净光合速率。测定氮素协同作用下菌根苗的光合气体交换参数和叶绿素荧光参数,发现植株的叶绿素含量、气孔导度、光系统Ⅱ (Photosystem Ⅱ,PSⅡ)实际光化学效率等参数均表现出先升高后降低的趋势[62],其中仅灰鹅膏菌接种能显著提高植物光合速率,植物对菌种的选择表现出了专一性,表明这种联合促进作用仅在一定范围内有效。

3.1.4 碳水化合物及植物激素的转化与吸收

植物光合作用的过程中会产生大量的碳水化合物[63],其中将近一半的光合固定碳可以在菌根真菌的作用下被蔗糖/单糖转运体转运到植物根系部位,重新转运和吸收[64]。吸收后的可溶性糖和脯氨酸还能作为渗透调节物质参与植物的干旱适应过程,以此来维持植物的营养状况,调节机体的渗透胁迫[65]。此外,外生菌根还能够改变宿主根系对茉莉酸、水杨酸、赤霉素等植物激素的敏感性[35]。当施加外源激素时,二者能够相互作用,达到协同促进效果。

3.2 外生菌根抵御非生物胁迫的分子机制

外生菌根抵御非生物胁迫的分子机制集中在菌根真菌促进植物体内水分循环和营养吸收[49]、保证重金属和有毒物质转运[66]、诱导相关蛋白合成[67]几个方面。当植物严重缺水时,外延菌丝会从土壤中吸收水分,同时阻隔了植物自身的水分向土壤中流失,使其得以存活[49]。干旱会降低植物水通道蛋白AQPs的表达量,进而导致植物缺水。研究发现,外生菌根会影响植物体内AQPs基因的表达,以保证植物在干旱条件下的水分循环[4]。菌根的形成有助于积累磷转运蛋白,将土壤中的难溶性磷转化为可溶性磷供植物吸收[68]。迄今为止,已发现包括PtZTPScYCS1HcZnT1TcHMAs在内的多种转运蛋白,它们具有转运重金属、运输植物养分、提高植物抗逆性的作用[52]。盐胁迫下的菌根苗能够正常生长,是因为外生菌根具有很强的Na+/K+平衡能力。在盐胁迫和非盐胁迫下,接种了卷边桩菇(Paxillus involutus)的水稻植株与不接种植株相比,植物体内OsNHX3、OsSOS1、OsHKT2和OsHKT1的表达量显著增加[69]。以上几种基因可能是菌丝保持Na+/K+平衡的关键所在,Na+从植物器官中排除,导致根茎叶中Na+含量减少,Na+不再积累,植物耐盐性增强。外生菌根还能够调控其他离子的流动,研究发现Cd胁迫下的植物叶片中,Ca2+和Cd2+竞争性地通过Ca2+通透性离子通道进入到菌丝细胞;接种外生菌根P. involutus能够激活Ca2+通透性离子通道,促进Ca2+和Cd2+内流,达到缓解Cd胁迫的目的[70]。某些外生菌根能够促进叶片中相关功能蛋白的表达[71],此类蛋白参与蛋白质周转、碳水化合物代谢以及光合作用过程[67]。与非菌根化植物相比,菌根化植物中SOD、POD、过氧化氢酶(Catalase,CAT)的含量均偏高,外生菌根通过调控ROS清除相关蛋白的表达量来降低胁迫对植物产生的影响。

3.3 外生菌根抵御非生物胁迫的相互促进机制

真菌与其他因子互作是外生菌根抵御非生物胁迫的一个重要环节,各类因子与外生菌根联合修复的机制涉及多个方面。其中,大部分的根际微生物,如菌根辅助细菌、根际促生细菌、内生真菌能够促进菌丝生长、提高侵染率,从而加大发挥各类因子的协同修复作用[72]。链霉菌(Streptomyces)诱导处理外生菌根与栎树(Quercus robur)的共生体,转录组测序显示诱导前后表达基因差异显著,链霉菌诱导促进了菌根的识别和侵染[73]。包括非生物因子在内的某些促进因子具有与菌根真菌相似的功能,当它们单独作用于植物时可以增强植物在逆境条件下的抗性[74]。这些因子可以与菌根在功能上互补,增强彼此的作用效果或扩大作用范围[34]。外生菌根还能通过改善土壤微环境来修复污染土壤[41]。不同的外生菌根根际微生物群落不同,同一外生菌根不同部位由于菌根相关真菌生长繁殖的发生,也会出现不同的菌落结构[75]。Lzumi研究发现外生菌根特异性选择不同的细菌群落[76],并与细菌群落联合作用于污染土壤上,提高污染物的降解率,改善土壤微环境[77]。除杨树[43]等林木外,在草原、湿地和农田生态系统下,外生菌根同样具有改变微生物群落结构、改善土壤理化性质的功能[40],但相关研究仍然相对零散。

4 研究动向与展望

本文总结了外生菌根在多种非生物条件下对植物抗逆性的影响及其作用机制。研究发现,外生菌根彩色豆马勃、牛肝菌属、卷边桩菇和块菌能够应对多种非生物胁迫。此外,外生菌根通过不同的途径,如改变菌丝形态、修复污染土壤以及调节根际微环境来影响植物水分和营养物质的吸收、抗氧化酶的活性、ROS的清除、代谢作用、光合作用和基因表达,最终提高植物抗逆性。

目前国内外就非生物胁迫与外生菌根之间的相关性研究还有一定的不足:(1) 对于外生菌根的研究大多集中于固定的几种菌根,这样给抗逆性机制的研究带来一定的局限性,而且限制了新菌种的挖掘。(2) 水涝和高温胁迫造成的生态压力与日俱增,然而针对外生菌根提高植物耐涝性和耐高温性的研究仍然较少。(3) 外生菌根作用于植物的具体机制有待进一步研究,尤其是基因调控机制方面尚缺乏全面的研究。针对以上3个方面,我们认为今后的研究方向应该集中于农业技术在外生菌根中的应用,外生菌根抗逆性的生理机制和基因调控机制,以及外生菌根与微生物在多种生态系统下的相互作用。

外生菌根作为保持草原和森林生态系统稳定性的决定性因素之一,对促进植物生长、恢复复杂环境下的森林植被具有重要的意义。随着现代分子技术的不断发展,外生菌根在修复污染土壤、保持生态平衡、保证农业经济稳定发展的过程中发挥着不可替代的作用,深入开展相关方面的研究将是生态恢复领域的一个重大突破。

REFERENCES
[1]
Zhang HY, Lü XT, Hartmann H, Keller A, Han XG, Trumbore S, Phillips RP. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales[J]. Global Ecology and Biogeography, 2018, 27(7): 875-885. DOI:10.1111/geb.12738
[2]
Gong MQ, Chen YL, Zhong CL. Research and Application of Mycorrhiza[M]. Beijing: China Forestry Press, 1997: 40-88. (in Chinese)
弓明钦, 陈应龙, 仲崇禄. 菌根研究及应用[M]. 北京: 中国林业出版社, 1997: 40-88.
[3]
Kilpeläinen J, Barbero-López A, Adamczyk B, Aphalo PJ, Lehto T. Morphological and ecophysiological root and leaf traits in ectomycorrhizal, arbuscular-mycorrhizal and non-mycorrhizal Alnus incana seedlings[J]. Plant and Soil, 2019, 436(1/2): 283-297. DOI:10.1007/s11104-018-03922-w?utm_campaign=BSLB_AWA_SK01_GL_TrendMD2021&utm_content=null&utm_medium=cpc&utm_source=trendmd
[4]
Calvo-Polanco M, Armada E, Zamarreño AM, García-Mina JM, Aroca R. Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor[J]. Journal of Experimental Botany, 2019, 70(21): 6437-6446. DOI:10.1093/jxb/erz389
[5]
Ågren GI, Hyvönen R, Baskaran P. Ectomycorrhiza, friend or foe?[J]. Ecosystems, 2019, 22(7): 1561-1572. DOI:10.1007/s10021-019-00356-y
[6]
Liu RJ, Tang M, Chen YL. Recent advances in the study of mycorrhizal fungi and stress resistance of plants[J]. Journal of Fungal Research, 2017, 15(1): 70-88. (in Chinese)
刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究, 2017, 15(1): 70-88.
[7]
Si QBLG, Zhao M, Bai SL. Research progress of ectomycorrhiza[J]. Molecular Plant Breeding, 2017, 15(2): 757-762. (in Chinese)
斯钦毕力格, 赵敏, 白淑兰. 外生菌根研究进展[J]. 分子植物育种, 2017, 15(2): 757-762.
[8]
Raudabaugh DB. Pure culture response of bryophilous fungi to matric-induced water stress[J]. Mycosphere, 2011, 2(6): 656-667. DOI:10.5943/mycosphere/2/6/6
[9]
Brown JH, Whitham TG, Morgan Ernest SK, Cehring CA. Complex species interactions and the dynamics of ecological systems: long-term experiments[J]. Science, 2001, 293(5530): 643-650. DOI:10.1126/science.293.5530.643
[10]
Wang XL, Liu YM, Gao RM. Effects of ectomycorrhizal fungi on the growth of Pinus tabulaeformis seedlings under drought stress[J]. Science of Soil and Water Conservation, 2019, 17(2): 70-76. (in Chinese)
王秀丽, 柳昱旻, 高润梅. 外生菌根真菌对干旱条件下油松幼苗生长的影响[J]. 中国水土保持科学, 2019, 17(2): 70-76.
[11]
Yin DC, Song RQ, Qi JY, Deng X. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition[J]. Journal of Forestry Research, 2018, 29(6): 1775-1788. DOI:10.1007/s11676-017-0583-4
[12]
Zhao M, Hao WY, Ning XZ, Hao LF, Yan HX, Mu YN, Bai SL. Screening of excellent ectomycorrhizal fungi-tree for drought resistant with Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2020, 40(1): 133-140. (in Chinese)
赵敏, 郝文颖, 宁心哲, 郝龙飞, 闫海霞, 牟亚男, 白淑兰. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1): 133-140.
[13]
Sebastiana M, Duarte B, Monteiro F, Malhó R, Caçador I, Matos AR. The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature[J]. Plant Physiology and Biochemistry, 2019, 144: 157-165. DOI:10.1016/j.plaphy.2019.09.032
[14]
Branco S, Bi K, Liao HL, Gladieux P, Badouin H, Ellison CE, Nguyen NH, Vilgalys R, Peay KG, Taylor JW, et al. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes[J]. Molecular Ecology, 2017, 26(7): 2063-2076. DOI:10.1111/mec.13892
[15]
Korhonen A, Lehto T, Heinonen J, Repo T. Corrigendum: whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal scots pine seedlings[J]. Tree Physiology, 2019, 39(12): 2070.
[16]
Malcolm E, Sumner RN. Sodic Soils-Distribution, Properties, Management, and Environmental Consequences[M]. New York: Oxford University Press, 1998: 273-562.
[17]
Kernaghan G, Hambling B, Fung M, Khasa D. In vitro selection of boreal ectomycorrhizal fungi for use in reclamation of saline-alkaline habitats[J]. Restoration Ecology, 2002, 10(1): 43-51. DOI:10.1046/j.1526-100X.2002.10105.x
[18]
Ishida TA, Nara K, Ma SR, Takano T, Liu SK. Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China[J]. Mycorrhiza, 2009, 19(5): 329-335. DOI:10.1007/s00572-008-0219-9
[19]
Shi L, Xue JW, Liu BH, Dong PC, Wen ZG, Shen ZG, Chen YH. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water[J]. Ecotoxicology and Environmental Safety, 2018, 161: 430-436. DOI:10.1016/j.ecoenv.2018.06.004
[20]
Wen ZG, Zhu XM, Liu C, Zhao BQ, Dong J, Xing JC, Zhao XH, Hong LZ. Effects of two ectomycorrhizal fungi on growth of Pinus thunbergii seedlings planted in saline soil[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 22-27. (in Chinese)
温祝桂, 朱小梅, 刘冲, 赵宝泉, 董静, 邢锦城, 赵小慧, 洪立洲. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响[J]. 中南林业科技大学学报, 2019, 39(4): 22-27.
[21]
Zwiazek JJ, Equiza MA, Karst J, Senorans J, Wartenbe M, Calvo-Polanco M. Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress[J]. Mycorrhiza, 2019, 29(4): 303-312. DOI:10.1007/s00572-019-00893-3
[22]
Larssen T, Lydersen E, Tang DG, He Y, Gao JX, Liu HY, Duan L, Seip HM, Vogt RD, Mulder J, et al. Acid rain in China[J]. Environmental Science & Technology, 2006, 40(2): 418-425.
[23]
Séne S, Avril R, Chaintreuil C, Geoffroy A, Ndiaye C, Diédhiou AG, Sadio O, Courtecuisse R, Sylla SN, Selosse MA, et al. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) mature trees and seedlings in the neotropical coastal forests of guadeloupe (Lesser antilles)[J]. Mycorrhiza, 2015, 25(7): 547-559. DOI:10.1007/s00572-015-0633-8
[24]
Li Y, Chen Z, He JZ, Wang Q, Shen CC, Ge Y. Ectomycorrhizal fungi inoculation alleviates simulated acid rain effects on soil ammonia oxidizers and denitrifiers in Masson pine forest[J]. Environmental Microbiology, 2019, 21(1): 299-313. DOI:10.1111/1462-2920.14457
[25]
Ma YL, He JL, Ma CF, Luo J, Li H, Liu TX, Polle A, Peng CH, Luo ZB. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus×canescens[J]. Plant, Cell & Environment, 2014, 37(3): 627-642.
[26]
Liu BH, Wang SX, Wang J, Zhang XZ, Shen ZG, Shi L, Chen YH. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris[J]. Science of the Total Environment, 2020, 719: 137475. DOI:10.1016/j.scitotenv.2020.137475
[27]
Szuba A, Karliński L, Krzełowska M, Hazubska-Przybył T. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus×canescens under in vitro conditions[J]. Plant and Soil, 2017, 412(1/2): 253-266. DOI:10.1007/s11104-016-3062-3
[28]
Canton GC, Bertolazi AA, Cogo AJD, Eutrópio FJ, Melo J, De Souza SB, Krohling CA, Campostrini E, Da Silva AG, Façanha AR, et al. Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis[J]. Mycorrhiza, 2016, 26(5): 475-487. DOI:10.1007/s00572-016-0686-3
[29]
Khullar S, Reddy MS. Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis[J]. Environmental Microbiology Reports, 2019, 11(2): 53-61. DOI:10.1111/1758-2229.12712
[30]
Huang PF. Experimental production of complex ectomycorrhizal fungal and bacterial fertilizers of Pinus massoniana and microecological effects[D]. Changsha: Master's Thesis of Central South University of Forestry & Technology, 2012 (in Chinese)
黄鹏飞. 马尾松复合微生物菌剂的研制及应用[D]. 长沙: 中南林业科技大学硕士学位论文, 2012
[31]
Mediavilla O, Olaizola J, Santos-Del-Blanco L, Oria-de-Rueda JA, Martín-Pinto P. Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula[J]. Mycorrhiza, 2016, 26(2): 161-168. DOI:10.1007/s00572-015-0657-0
[32]
Wang R, Liu PG, Wan SP, Yu FQ. Study on mycorrhization helper bacteria (MHB) of Tuber indicum[J]. Microbiology China, 2015, 42(12): 2366-2376. (in Chinese)
王冉, 刘培贵, 万山平, 于富强. 印度块菌(Tuber indicum)菌根促生细菌的研究[J]. 微生物学通报, 2015, 42(12): 2366-2376.
[33]
Chen HR, Renault S, Markham J. The effect of Frankia and multiple ectomycorrhizal fungil species on Alnus growing in low fertility soil[J]. Symbiosis, 2020, 80(2): 207-215. DOI:10.1007/s13199-020-00666-z
[34]
Frouz J, Moradi J, Püschel D, Rydlová J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants[J]. Ecosphere, 2019, 10(5): e02736.
[35]
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, et al. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots[J]. Plant Cell and Environment, 2020, 43(4): 1047-1068. DOI:10.1111/pce.13702
[36]
Da Costa LS, Grazziotti PH, Silva AC, Fonseca AJ, Gomes ALF, Grazziotti DCFS, Rossi MJ. Alginate gel entrapped ectomycorrhizal inoculum promoted growth of cuttings of Eucalyptus clones under nursery conditions[J]. Canadian Journal of Forest Research, 2019, 49(8): 978-985. DOI:10.1139/cjfr-2018-0129
[37]
Ekblad A, Mikusinska A, Ågren GI, Menichetti L, Wallander H, Vilgalys R, Bahr A, Eriksson U. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization[J]. New Phytologist, 2016, 211(3): 874-885. DOI:10.1111/nph.13961
[38]
Børja I, Nilsen P. Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands[J]. Plant and Soil, 2009, 314(1/2): 109-119.
[39]
Ren YF, Jia MQ, Liu RJ. Effects and mechanisms of combined remediating polluted and degraded soil with mycorrhizal fungi and other living organisms[J]. Journal of Qingdao Agricultural University (Natural Science), 2014, 31(4): 235-241. (in Chinese)
任义芳, 贾明强, 刘润进. 菌根真菌与其他生物联合修复污染与退化土壤的效应与机制[J]. 青岛农业大学学报: 自然科学版, 2014, 31(4): 235-241. DOI:10.3969/J.ISSN.1674-148X.2014.04.001
[40]
Makarov MI, Malysheva TI, Kadulin MS, Verkhovtseva NV, Sabirova RV, Lifanova VO, Zhuravleva AI, Karpukhin MM. The effect of ericoid mycorrhizal and ectomycorrhizal plants on soil properties of grass meadow in tundra of the khibiny mountains[J]. Eurasian Soil Science, 2020, 53(5): 569-579. DOI:10.1134/S1064229320050087
[41]
Rinta-Kanto JM, Timonen S. Spatial variations in bacterial and archaeal abundance and community composition in boreal forest pine mycorrhizospheres[J]. European Journal of Soil Biology, 2020, 97: 103168. DOI:10.1016/j.ejsobi.2020.103168
[42]
Wagner K, Krause K, Gallegos-Monterrosa R, Sammer D, Kovács ÁT, Kothe E. The ectomycorrhizospheric habitat of norway spruce and Tricholoma vaccinum: promotion of plant growth and fitness by a rich microorganismic community[J]. Frontiers in Microbiology, 2019, 10: 307. DOI:10.3389/fmicb.2019.00307
[43]
Liu H, Wu XQ, Ren JH, Chen D. Effect of co-inoculation with Pseudomonas fluorescens and Xerocomus chrysenteron on the soil enzyme activity and microbial diversity in poplar rhizosphere[J]. Scientia Silvae Sinicae, 2019, 55(1): 22-30. (in Chinese)
刘辉, 吴小芹, 任嘉红, 陈丹. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树根际土壤酶活性及微生物多样性的影响[J]. 林业科学, 2019, 55(1): 22-30.
[44]
Cheng GL, Li PJ. Degradation effect of ectomycorrhizal fungi-inoculated Fraxinus sogdiana on petroleum hydrocarbon in soil[J]. Chinese Journal of Ecology, 2007, 26(3): 389-392. (in Chinese)
程国玲, 李培军. 小叶白蜡接种外生菌根真菌对土壤石油烃的降解效果[J]. 生态学杂志, 2007, 26(3): 389-392. DOI:10.3321/j.issn:1000-4890.2007.03.018
[45]
Ruiz-Lozano JM, Azcón R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status[J]. Physiologia Plantarum, 1995, 95(3): 472-478. DOI:10.1111/j.1399-3054.1995.tb00865.x
[46]
Siemens JA, Zwiazek JJ. Hebeloma crustuliniforme modifies root hydraulic responses of trembling aspen (Populus tremuloides) seedlings to changes in external pH[J]. Plant and Soil, 2011, 345(1/2): 247-256. DOI:10.1007/s11104-011-0776-0
[47]
Chen WL, Eissenstat DM, Koide RT. Root diameter predicts the extramatrical hyphal exploration distance of the ectomycorrhizal fungal community[J]. Ecosphere, 2018, 9(4): e02202.
[48]
Lehto T, Zwiazek JJ. Ectomycorrhizas and water relations of trees: a review[J]. Mycorrhiza, 2011, 21(2): 71-90. DOI:10.1007/s00572-010-0348-9
[49]
Zou YN, Srivastava AK, Ni QD, Wu QS. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange[J]. Frontiers in Microbiology, 2015, 6: 203.
[50]
Wang Y, Ding GJ. Effects of ectomycorrhizal on growth, physiological characteristics and nutrition in Pinus massoniana seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(2): 97-102. (in Chinese)
王艺, 丁贵杰. 外生菌根对马尾松幼苗生长、生理特征和养分的影响[J]. 南京林业大学学报: 自然科学版), 2013, 37(2): 97-102.
[51]
Wang XL. Physiological and biochemical responses of the new cultivar of Zelkova schneiderina 'HenTiangao' under saline-alkalinity stress[D]. Changsha: Master's Thesis of Central South University of Forestry and Technology, 2016 (in Chinese)
汪晓丽. 大叶榉新品种'恨天高'对盐碱胁迫的生理生化响应[D]. 长沙: 中南林业科技大学硕士学位论文, 2016
[52]
Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin R, Duponnois R, et al. The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings[J]. Mycorrhiza, 2006, 16(8): 559-565. DOI:10.1007/s00572-006-0073-6
[53]
Kozdrój J, Piotrowska-Seget Z, Krupa P. Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(Ⅱ) impact[J]. Ecotoxicology, 2007, 16(6): 449-456. DOI:10.1007/s10646-007-0149-x
[54]
Zhang ZF, Zhang JC, Huang YQ, Guo XP, Yang H, Deng Y. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings[J]. Chinese Journal of Ecology, 2015, 34(5): 1198-1204. (in Chinese)
张中峰, 张金池, 黄玉清, 郭晓平, 杨慧, 邓艳. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5): 1198-1204.
[55]
Wang T, Tian ZM, Tunlid A, Persson P. Nitrogen acquisition from mineral-associated proteins by an ectomycorrhizal fungus[J]. New Phytologist, 2020, 228(2): 697-711. DOI:10.1111/nph.16596
[56]
Raja V, Majeed U, Kang H, Andrabi KI, John R. Abiotic stress: Interplay between ROS, hormones and MAPKs[J]. Environmental and Experimental Botany, 2017, 137: 142-157. DOI:10.1016/j.envexpbot.2017.02.010
[57]
Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots[J]. Tree Physiology, 2009, 29(8): 1047-1057. DOI:10.1093/treephys/tpp038
[58]
Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius[J]. Mycorrhiza, 2007, 17(3): 185-193. DOI:10.1007/s00572-006-0091-4
[59]
Vega JM, Garbayo I, Domínguez MJ, Vigara J. Effect of abiotic stress on photosynthesis and respiration in Chlamydomonas reinhardtii: induction of oxidative stress[J]. Enzyme and Microbial Technology, 2006, 40(1): 163-167. DOI:10.1016/j.enzmictec.2005.10.050
[60]
Shi L, Wang J, Liu BH, Nara K, Lian CL, Shen ZG, Xia Y, Chen YH. Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments[J]. Mycorrhiza, 2017, 27(8): 823-830. DOI:10.1007/s00572-017-0795-7
[61]
Heinonsalo J, Juurola E, Linden A, Pumpanen J. Ectomycorrhizal fungi affect Scots pine photosynthesis through nitrogen and water economy, not only through increased carbon demand[J]. Environmental and Experimental Botany, 2015, 109: 103-112. DOI:10.1016/j.envexpbot.2014.08.008
[62]
WEI XY, Li J, Tang M. Effects of nitrogen application and inoculating ectomycorrhizal fungi on biomass and photosynthetic characteristics of Pinus tabulaeformis seedlings[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(10): 42-48, 58. (in Chinese)
蔚晓燕, 李静, 唐明. 施氮与接种外生菌根真菌对油松幼苗生物量和光合特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2013, 41(10): 42-48, 58.
[63]
Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ. Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side[J]. Plant Physiology and Biochemistry, 2013, 71: 87-95. DOI:10.1016/j.plaphy.2013.07.002
[64]
Nehls U, Göhringer F, Wittulsky S, Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review[J]. Plant Biology, 2010, 12(2): 292-301. DOI:10.1111/j.1438-8677.2009.00312.x
[65]
Ahmed CB, Rouina BB, Sensoy S, Boukhriss M, Abdullah FB. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree[J]. Journal of Agricultural and Food Chemistry, 2010, 58(7): 4216-4222. DOI:10.1021/jf9041479
[66]
Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano MC, Kaskie M, Ebbs S, Kochian LV, Ma JF. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens[J]. The Plant Journal, 2011, 66(5): 852-862. DOI:10.1111/j.1365-313X.2011.04548.x
[67]
Szuba A, Marczak Ł, Karliński L, Mucha J, Tomaszewski D. Regulation of the leaf proteome by inoculation of Populus×canescens with two Paxillus involutus isolates differing in root colonization rates[J]. Mycorrhiza, 2019, 29(5): 503-517. DOI:10.1007/s00572-019-00910-5
[68]
Tatry MV, Kassis EE, Lambilliotte R, Corratgé C, Van Aarte I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster[J]. The Plant Journal, 2009, 57(6): 1092-1102. DOI:10.1111/j.1365-313X.2008.03749.x
[69]
Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza, 2016, 26(7): 673-684. DOI:10.1007/s00572-016-0704-5
[70]
Zhu ZM, Zhang YH, Sa G, Liu J, Ma XJ, Deng C, Zhao R, Chen SL. Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx[J]. Journal of Beijing Forestry University, 2018, 40(4): 24-32. (in Chinese)
朱智梅, 张玉红, 撒刚, 刘建, 马旭君, 邓晨, 赵瑞, 陈少良. 外生菌根真菌Paxillus involutus吸收Cd2+及H2O2对Cd2+内流的调控作用[J]. 北京林业大学学报, 2018, 40(4): 24-32.
[71]
Sa G, Yao J, Deng C, Liu J, Zhang YN, Zhu ZM, Zhang YH, Ma XJ, Zhao R, Lin SZ, et al. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net[J]. New Phytologist, 2019, 222(4): 1951-1964. DOI:10.1111/nph.15740
[72]
Garbaye J. Tansley review No.76 Helper bacteria: a new dimension to the mycorrhizal symbiosis[J]. New Phytologist, 1994, 128(2): 197-210. DOI:10.1111/j.1469-8137.1994.tb04003.x
[73]
Kurth F, Feldhahn L, Bönn M, Herrmann S, Buscot F, Tarkka MT. Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium[J]. BMC Genomics, 2015, 16(1): 658. DOI:10.1186/s12864-015-1856-y
[74]
Benidire L, El khalloufi F, Oufdou K, Barakat M, Tulumello J, Ortet P, Heulin T, Achouak W. Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network[J]. Science of the Total Environment, 2020, 729: 139020. DOI:10.1016/j.scitotenv.2020.139020
[75]
Thoen E, Aas AB, Vik U, Brysting AK, Skrede I, Carlsen T, Kauserud H. A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community[J]. Mycorrhiza, 2019, 29(3): 167-180. DOI:10.1007/s00572-019-00889-z
[76]
Izumi H. Temporal and spacial dynamics of metabolically active bacteria associated with ectomycorrhizal roots of Betula pubescens[J]. Biology and Fertility of Soils, 2019, 55(8): 777-788. DOI:10.1007/s00374-019-01393-4
[77]
Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity[J]. Chemosphere, 2006, 62(9): 1523-1533. DOI:10.1016/j.chemosphere.2005.06.053