微生物学通报  2021, Vol. 48 Issue (2): 545−554

扩展功能

文章信息

康庚庚, 李慧, 李卫巍, 张瑛汀, 杨倩文, 王涵可, 卢颖
KANG Genggeng, LI Hui, LI Weiwei, ZHANG Yingting, YANG Qianwen, WANG Hanke, LU Ying
2018–2020年人轮状病毒锦州地方株VP4及VP7基因特征
Gene characterization of human rotavirus Jinzhou strains VP4 and VP7 during 2018 and 2020
微生物学通报, 2021, 48(2): 545-554
Microbiology China, 2021, 48(2): 545-554
DOI: 10.13344/j.microbiol.china.200213

文章历史

收稿日期: 2020-03-09
接受日期: 2020-04-24
网络首发日期: 2020-07-23
2018–2020年人轮状病毒锦州地方株VP4及VP7基因特征
康庚庚1,2 , 李慧1 , 李卫巍3 , 张瑛汀1,2 , 杨倩文1,2 , 王涵可1,2 , 卢颖1     
1. 锦州医科大学基础医学院    辽宁  锦州    121000;
2. 锦州医科大学第三临床学院    辽宁  锦州    121000;
3. 锦州市妇婴医院    辽宁  锦州    121000
摘要: 【背景】 人A组轮状病毒(Rotavirus Group A,RVA)是婴幼儿胃肠炎的主要病原体及发展中国家婴幼儿死亡的重要原因,目前无特效药物治疗,疫苗预防是唯一可行的预防感染方法。外衣壳蛋白VP7和VP4是疫苗设计的主要靶点,针对该基因加强RVA地方株分子流行病学监测十分必要。【目的】 对锦州地方流行RVA株VP7和VP4基因进行型别鉴定和序列特征分析。【方法】 收集锦州地区2018-2020年RVA感染腹泻患儿的粪便标本,提取病毒RNA,通过RT-PCR扩增VP7、VP4基因片段并测序,得到7株RVA VP7和VP4序列。使用在线基因分型工具RotaC V2.0对测序结果进行分型分析。应用BLAST、DNAStar、MEGA X、BioEdit等生物软件与临床流行株及疫苗株进行系统发育分析及氨基酸序列比对分析。【结果】 分型结果表明7株锦州地方株均为G9P[8]型,系统发育分析证实其VP7和VP4基因分别属于G9-Ⅵ和P[8]-3谱系,核苷酸序列相似性分别为99.32%-100%与99.41%-100%。JZ株VP7与疫苗株Rotavac和Rotasiil相比,在抗原表位区7-1a、7-1b、7-2中分别存在4个和3个氨基酸替换。JZ株VP4与疫苗株Rotarix和RotaTeq VP4氨基酸序列相比,发现7个和4个氨基酸替换,位于抗原表位区8-1和8-3。【结论】 2018-2020年在辽宁锦州地区检测到7株G9P[8]型RVA株,VP7和VP4序列相似性高于99%,G9P[8]型可能是辽宁省锦州地区2018-2020年婴幼儿轮状病毒腹泻的主要流行基因型之一。与同基因型疫苗株比较,位于JZ株VP7和VP4抗原表位区的氨基酸位点差异对于野毒株免疫逃逸机制的研究具有意义。
关键词: 人A组轮状病毒    外衣壳蛋白VP7    外衣壳蛋白VP4    系统进化分析    
Gene characterization of human rotavirus Jinzhou strains VP4 and VP7 during 2018 and 2020
KANG Genggeng1,2 , LI Hui1 , LI Weiwei3 , ZHANG Yingting1,2 , YANG Qianwen1,2 , WANG Hanke1,2 , LU Ying1     
1. College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121000, China;
2. The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, China;
3. Jinzhou Women and Children's Hospital, Jinzhou, Liaoning 121000, China
Abstract: [Background] Human rotavirus group A (RVA) is the main pathogen of gastroenteritis in infants and important cause of infant death in developing countries. There are no specific drugs until now and vaccines are the only feasible method to prevent infection. As outer capsid proteins VP7 and VP4 are the main targets of rotavirus vaccine, it is necessary to strengthen molecular epidemiological surveillance of local clinical circulating RVA strains against these genes. [Objective] To identify VP7 and VP4 genotypes and analyze their sequence characterization of RVA circulating strains in Jinzhou. [Methods] The fecal samples of infants suffered from RVA infection diarrhea in Jinzhou during 2018-2020 were collected and viral RNA were extracted. VP7 and VP4 gene fragments were amplified by RT-PCR and PCR products were sequenced. Seven RVA strains VP7 and VP4 genes were obtained. The sequencing results were analyzed by genotyping using online tool RotaC V2.0. Phylogenetic and amino acid sequence alignments analysis compared to clinical epidemic strains and vaccine strains were carried out with BLAST, DNAStar, MEGA X, BioEdit. [Results] The genotyping results showed that 7 Jinzhou strains in this study was G9P[8]. Phylogenetic analysis confirmed that VP7 and VP4 belonged to lineages G9-Ⅵ and P[8]-3, and nucleotide sequence identity were 99.32%-100% and 99.41%-100%, respectively. There were 4 and 3 amino acid substitutions in the antigen epitope regions 7-1a, 7-1b, 7-2 when JZ strains VP7 were compared with vaccine strains Rotavac and Rotasiil VP7. The amino acid sequences of JZ strains VP4 were compared with vaccine strains Rotarix and RotaTeq VP4. Seven and four amino acid substitution sites located in the antigen epitope regions 8-1, 8-3 were found. [Conclusion] Seven G9P[8] RVA strains were detected in Jinzhou, Liaoning province from 2018 to 2020. The identity of VP7 and VP4 sequences was higher than 99%. G9P[8] was probably one of the main epidemic genotypes of infantile rotavirus diarrhea in Jinzhou, Liaoning province in 2018-2020. Compared to the same genotypic vaccines strains, amino acids variations located in VP7 and VP4 epitope regions of JZ strains are significant for understanding immune escape mechanisms of wild RVA strains.
Keywords: human rotavirus group A    outer capsid protein VP7    outer capsid protein VP4    phylogenetic analysis    

人A组轮状病毒(Rotavirus Group A,RVA)属于呼肠孤病毒科(Reoviridae)轮状病毒属,是全世界婴幼儿胃肠炎的主要病原体[1]。据统计,2016年全球约128 500患儿死于轮状病毒感染[2]。轮状病毒基因组共11条双链RNA片段,编码6种结构蛋白(VP1-VP4,VP6,VP7)和6种非结构蛋白(NSP1-NSP6)[3]。作为分节段的RNA病毒,轮状病毒易变异导致型别众多,不同地域和时间的流行毒株型别不同。外衣壳蛋白VP7 (Glycoprotein,G)和VP4 (Protease-Sensitive,P)是最主要的病毒抗原,其编码基因序列是G、P基因型分型基础,迄今已在人和动物轮状病毒中鉴定出36G和51P基因型[4]。大多数轮状病毒感染可归因于G1-G4、G9和P[8]、P[4]、P[6][5-6]。型别众多及跨时间和地域的差异性给疫苗研发带来了挑战。

目前获得世界卫生组织(World Health Organization,WHO)许可的疫苗包括单价人轮状病毒减毒活疫苗Rotarix® (GlaxoSmithKline Biologicals,Belgium,G1P[8])[7]、五价人牛重配疫苗RotaTeq® (Merck & Co.,Inc.,United States,G1-G4和P[8])[8-9]、单价人牛重配疫苗ROTAVAC® (Bharat Biotech International Limited,ORV 116E,G9P[11])及五价人牛重配疫苗ROTASIIL® (Serum Institute of India,G1-G4,G9),其中Rotarix®和RotaTeq®在世界上使用范围最广泛,我国国内现已上市但尚未普及,虽被证实可减少重症感染发病率,但发展中国家保护效力远低于高收入国家[10-11]。ROTAVAC®及ROTASIIL®由印度研发,已在印度本国证实安全有效[12-13]。目前我国儿童主要使用兰州生物制品所生产的口服羊轮状病毒疫苗(Lanzhou Lamb Rotavirus Vaccine,LLR),是基于G10P[15]的单价疫苗[14]。由于轮状病毒疫苗在我国尚未纳入免疫规划,该疫苗在我国的儿童覆盖率低于全球平均水平,而且与当前亚洲流行株型别不同,因此LLR保护效力有限[14-15],有必要对当前我国不同地区临床流行株主要中和保护性抗原和疫苗靶点VP7和VP4的基因型别和序列进行监测,从而了解临床株与国外开发的4种疫苗的匹配度,以期为实际选用疫苗提供参考依据。

1 材料与方法 1.1 主要试剂和仪器

胶体金法免疫检测试剂盒,北京万泰生物药业股份有限公司;Trizol LS Reagent,Invitrogen公司;Superscript Ⅲ First Strand Synthesis System for RT-PCR试剂盒,Invitrogen公司;LA Taq酶,TaKaRa公司。ABI 3730xl测序仪,赛默飞世尔科技有限公司。

1.2 粪便标本采集检测及病毒纯化

2018年10月-2020年1月,自锦州市妇婴医院急性腹泻住院患儿中采集粪便标本,收集经胶体金法免疫检测试剂盒RVA检测阳性样本7例,分别命名为JZ1810、JZ1811、JZ1812、JZ1901、JZ1903、JZ1911、JZ2001。将样品与PBS缓冲液(0.1 mol/L,pH 7.2)混合制成10%便悬液,涡旋振荡10 min,4 ℃、12 000 r/min离心15 min。将上清液通过0.22 μm滤膜过滤,病毒滤液-80 ℃冻存[16]

1.3 病毒RNA提取及RT-PCR

用Trizol LS Reagent从粪便滤液中提取病毒dsRNA[16]。使用Dynamica分光光度计检测浓度,-80 ℃储存。

应用Superscript Ⅲ First Strand Synthesis System for RT-PCR试剂盒,以提取的病毒dsRNA为模板进行RT-PCR。引物[16]表 1,由苏州金唯智生物科技有限公司合成。PCR反应体系:10×LA Taq Buffer (Mg2+ Plus) 5 μL,dNTP Mixture (各10 mmol/L) 4 μL,上、下游引物(10 μmol/L)各2 μL,模板cDNA 2 μL,LA Taq DNA聚合酶1 μL,加双蒸水至50 μL。PCR反应条件:94 ℃ 3 min;94 ℃ 30 s,50 ℃ 30 s,72 ℃ 2 min,30个循环;72 ℃ 10 min。PCR产物在1.2%琼脂糖凝胶上进行分析。

表 1 本研究使用的引物 Table 1 Primers used in the study
引物名称
Primers name
引物序列
Primers sequence (5′→3′)
扩增产物长度
Product size (bp)
VP4 F TGGCTTCGCTCATTTATAGACA 2 300
VP4 R TTACATTGTAGAATTAACTG
VP7 F GGCTTTAAAAGMGAGAATTTCC 1 062
VP7 R GGGGGTCACATCATACAATTCT
1.4 VP7及VP4测序基因型分析

对RT-PCR扩增结果阳性的7株RVA VP7序列、6株RVA VP4序列PCR产物送赛默飞世尔科技有限公司测序。使用ABI 3730xl测序仪及配套的BigDye Terminator循环测序试剂盒测定核苷酸序列。测定全基因区段全长的核苷酸序列(不包括5′末端和3′末端引物序列),得到的基因序列进行BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)比对,使用SeqMan (DNAStar 5.0)进行序列拼接。使用在线基因分型工具RotaC V2.0[17],应用80% (VP7和VP4)核苷酸截止值,对测序结果进行分型分析。

1.5 系统发育分析及氨基酸序列分析

从GenBank中下载所测序基因的国内外近期流行株、不同谱系标准株及疫苗株序列为参考序列,使用MEGA X软件(http://www.megasoftware. net/)[18]对JZ株VP4和VP7序列与参考序列进行多重比对,并通过邻接法(N-J法)构建系统发生树,Bootstrap对进化树的可靠性进行评价,重复1 000次,通过Kimura-2-Parameter模型测量系统发育距离,水平距离与遗传距离成正比。用BioEdit 4.8.10对JZ株和RVA疫苗株进行氨基酸序列比对并分析。

2 结果与分析 2.1 VP7、VP4的RT-PCR结果及基因型鉴定

应用VP7及VP4基因引物进行RT-PCR扩增病毒dsRNA,得到1 062 bp VP7基因产物和2 300 bp VP4基因产物。全部7株RVA VP7序列及6株VP4序列(其中JZ1810 VP4扩增失败,JZ1901 VP4仅获得C端部分序列)已经提交GenBank,获得的序列登录号见表 2

表 2 2018-2020年JZ RVA株VP7与VP4基因序列登录号 Table 2 VP7 and VP4 gene accession number of JZ RVA strains in 2018-2020
锦州RVA株名称JZ RVA strains name VP7基因序列号
VP7 gene accession No.
VP4基因序列号
VP4 gene accession No.
JZ1810 MT107163 -
JZ1811 MN529646 MN529640
JZ1812 MN529645 MN529639
JZ1901 MT107164 MT107167
JZ1911 MT107165 MT107168
JZ1903 MN529647 MN529641
JZ2001 MT107166 MT107169
注:-:标本JZ1810 VP4基因扩增失败
Note: -: JZ1810 VP4 gene cannot be amplified successfully

使用轮状病毒在线基因分型工具RotaC V2.0对测序结果进行分析,结果表明本研究中JZ RVA株均为G9P[8]型。患儿家庭互不相识并来自市内不同区域,表明G9P[8]型RVA病毒株在2018-2020年轮状病毒流行季确实已在锦州地方流行并传播。

2.2 VP7、VP4的种系进化分析

7例JZ株的VP7核苷酸序列高度相似,相似性为99.32%-100%,6株VP4相似性为99.41%-100%。2018-2019年与2019-2020年2个流行季流行株VP7及VP4的基因序列相似性无明显差异。

研究表明,G9型RVA VP7基因分化为6个谱系(Ⅰ-Ⅵ) 11个亚系[19]。为明确JZ株与已知谱系标准株、近年来世界各地流行株及疫苗株的遗传相似性及谱系分布,将JZ株VP7基因核苷酸序列与GenBank中其他G9株进行了比较,系统发育分析表明,JZ株均属于G9 Ⅵ系,与2018及2016年日本株Tokyo18-40、MI1128和2015年昆明株km15064与2013年成都株SC6、江苏株Hu/JS2013及2012年北京株BJ-Q794的亲缘关系最为密切,相似性为99.42%-99.81%。但与80-90年代G9型美国原型株WI61及国内首例G9株T203比较相似性低,分别为88.68%-88.99%及95.05%-95.66% (图 1A)。7株锦州株VP7与Rotavac G9 Ⅱ及Rotasiil G9Ⅰ比较,其核苷酸(氨基酸)一致性基本相同,分别为88.57%-88.99% (93.53%-93.87%)及88.19%-88.56% (94.50%-95.09%)。

图 1 应用MEGA X建立N-J法锦州地方株VP7 (A)和VP4 (B)核苷酸序列与GenBank数据库中已知的人轮状病毒流行株及疫苗株同源基因序列的系统发生树 Figure 1 Phylogenetic trees of JZ strains VP7 (A) and VP4 (B) sequences and homologous genes of RVA epidemic and vaccine strains published in GenBank database were conducted by MEGA X based on neighbor-joining analysis 注:▲表示本研究中锦州地方株,进化树分支点的数字表示该分支点的Bootstrap值(%),仅50%及以上的Bootstrap值显示。树底部标尺表示遗传距离 Note: ▲: Jinzhou strains. Numbers at nodes (above 50%) indicated the level of bootstrap support (%). Bar: The genetic distance

6株JZ株与27株临床流行参考株及疫苗株系统进化分析表明(图 1B),JZ株被划分到目前世界流行谱系P[8]-3中[20-21]。JZ株VP4基因序列与2018年日本株Tokyo18-30、2014年中国株SC9、2012年越南株SP071高度相似,相似性均在99%以上。JZ株与Rotarix P[8]-1相比,核苷酸(氨基酸)相似性为89.59%-90.09% (93.50%-94.13%),与RotaTeq中人WI79株P[8]-2相比,相似性更高,为91.97%-92.83% (95.13%-95.52%)。

2.3 VP7与VP4的氨基酸序列分析

轮状病毒VP7编码由326个氨基酸构成的三聚体糖蛋白,分子量为37 kD,是中和性抗体的主要靶标[3]。野毒株VP7抗原表位处的氨基酸变异形成免疫逃逸可干扰疫苗的有效性。7个JZ株VP7氨基酸序列相似性为99.35%-100%,其中JZ1811、JZ1812、JZ1903序列完全相同。研究表明,VP7三聚体含有2个抗原表位7-1和7-2,7-1表位进一步细分为7-1a和7-1b[22]。应用BioEdit将7株JZ RVA VP7氨基酸序列之间及2种疫苗株Rotavac和Rotasiil的相应序列进行比较(表 3),检测到3个JZ株特异性氨基酸位点变异,分别是JZ1901 (G54E),JZ2001 (T75I),JZ1811、JZ1812和JZ1903 (P112S),均为3个抗原表位之外。在这些表位的29个氨基酸残基中,24个在所有JZ株及Rotavac和Rotasiil中绝对保守,5个氨基酸位点有差异。与Rotavac G9 VP7相比,JZ株替换位点为I87T、G100N、N145D和N221S,与Rotasiil相比为A87T、D100N和T242N。2种疫苗株Rotavac和Rotasiil未曾在国内使用,这些变异并非疫苗选择性压力造成,而是自然选择点突变。

表 3 应用BioEdit 4.8.10获得JZ株和疫苗株Rotavac-116E/AG、Rotasiil-AU32 VP7 3个抗原表位区7-1a、7-1b和7-2对应的29个氨基酸比对结果 Table 3 Amino acid sequences comparisons of 29 amino acid sites in three antigenic epitope regions 7-1a, 7-1b and 7-2 between JZ strains and Rotavac-116E/AG, Rotasiil-AU32 VP7 obtained by BioEdit 4.8.10
Strains and lineages 7-1a 7-1b 7-2
87 91 94 96 97 98 99 100 104 123 125 129 130 291 201 211 212 213 238 242 143 145 146 147 148 190 217 221 264
G9-Ⅵ JZ1810 T T G T E W K N Q D A I D K Q N T A D N K D S T L S E S G
JZ1811 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1812 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1901 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1903 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1911 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
JZ2001 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
G9-Ⅱ Rotavac-116E/AG I * * * * * * G * * * * * * * * * * * * * N * * * * * N *
G9-Ⅰ Rotasiil-AU32 A * * * * * * D * * * * * * * * * * * T * * * * * * * * *
注:*:相同氨基酸。I:异亮氨酸;G:甘氨酸;N:天冬酰胺;A:丙氨酸;D:天冬氨酸;T:苏氨酸
Note: *: Identical amino acids. I: Isoleucine, Ile; G: Glycine, Gly; N: Asparagine, Asn; A: Alanine, Ala; D: Aspartic acid, Asp; T: Threonine, Thr

JZ RVA (除JZ1810及JZ1901外) VP4氨基酸序列相似性为99.19%-100%,与Rotarix及RotaTeq VP4做相似性比较,检测到5个JZ株特异氨基酸突变位点:JZ1811、JZ1812、JZ1903 (S146G,M630V)、JZ1911 (L697F,P701S)、JZ2001(I744S)。VP4是RVA外衣壳上刺突蛋白,在感染宿主细胞过程中被胰酶裂解为2个亚单位蛋白,氨基端VP8* (28 kD,aa1-247)及羧基端VP5* (60 kD,aa248-776),分别介导病毒的吸附和穿入[3]。VP8*在病毒体表面形成球状头部,包含4个(8-1、8-2、8-3和8-4)表面暴露抗原表位,含25个氨基酸[23],是轮状病毒亚单位疫苗候选株靶位蛋白[24]。5株P[8]型JZ株VP8*的4个抗原表位与Rotarix比较在146、150、195、113、125、131、135共有7个氨基酸差异,而与RotaTeq有146、150、195、113共4个氨基酸差异,均分布于8-1、8-3 (表 4)。

表 4 应用BioEdit 4.8.10获得JZ株和疫苗株Rotarix、RotaTeq VP4四个抗原表位区8-1、8-2、8-3和8-4对应的25个氨基酸比对结果 Table 4 Amino acid sequences comparisons of 25 amino acid sites in four antigenic epitope regions 8-1, 8-2, 8-3 and 8-4 between JZ strains and Rotarix, RotaTeq VP4 obtained by BioEdit 4.8.10
Strains and lineages 8-1 8-2 8-3 8-4
100 146 148 150 188 190 192 193 194 195 196 180 183 113 114 115 116 125 131 132 133 135 87 88 89
P[8]-3 JZ1811 D G Q D S T N L N G I T A D P V D N R N D D N T N
JZ1812 * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1903 * * * * * * * * * * * * * * * * * * * * * * * * *
JZ1911 * S * * * * * * * * * * * * * * * * * * * * * * *
JZ2001 * S * * * * * * * * * * * * * * * * * * * * * * *
P[8]-1 Rotarix * S * E * * * * * N * * * N * * * S S * * N * * *
P[8]-2 Rotateq * S * E * * * * * D * * * N * * * * * * * * * * *
注:*:相同氨基酸。S:丝氨酸;E:谷氨酸;N:天冬酰胺;D:天冬氨酸
Note: *: Identical amino acids. S: Serine, Ser; E: Glutamic acid, Glu; N: Asparagine, Asn; D: Aspartic acid, Asp
3 讨论与结论

尽管GP型别众多,全世界大多数RVA感染与5种G/P组合有关:G1P[8]、G2P[4]、G3P[8]、G4P[8]、G9P[8][25]。自1983年从美国费城感染住院患儿标本中鉴定了世界上第一例G9型RVA (G9-Ⅰ原型株WI61)[26],目前G9型RVA已成为继G1-G4后全球范围内[20, 27-29]最主要的流行基因型。我们应用RotaC V2.0检测到辽宁锦州地区2018-2020年2个流行季轮状病毒株与国内外当前优势流行株相同,均为G9P[8]型,说明G9P[8]型可能已经替代既往流行株G1P[8]和G3P[8][30-31],成为辽宁锦州地区近2年的优势流行株。

在轮状病毒的11个基因中,VP4和VP7系统进化研究最广泛,基因型内谱系分类最细化。系统进化树证实本研究中锦州流行株均为G9型谱系Ⅵ和P[8]型谱系3,毒株之间VP7和VP4核苷酸序列高度相似,并与国内多地[20, 32]及日本[33]等周边国家近年来流行株相似性高,但与中国较早的G9株T203株相比,亲缘关系相对较远,因为缺乏其他基因数据,锦州7例患儿感染的RVA与国内外近年来G9P[8]流行株是否为同一来源尚待确定。

JZ株、疫苗株Rotavac和Rotasiil VP7分别分布于G9谱系Ⅵ、Ⅱ、Ⅰ,与2个疫苗株比较,检测到5个VP7氨基酸变异位点87、100、145、221、242,其中G100N及I87T可能形成潜在N及O连接糖基化位点。JZ株VP4与疫苗株Rotarix和RotaTeq比较,仅在表位8-1和8-3存在差异,其中位点125、131、135变异与俄罗斯株[34]及比利时株[23]研究结果一致。相比P[8]-1型Rotarix,P[8]-3型JZ株与P[8]-2型RotaTeq匹配度更好,VP4系统进化分析也支持这一结果。本研究涉及病例均未接种任何疫苗,序列差异为自然选择变异,可促进VP7及VP4基因的进化和多样性的产生,并可获得新的抗原性,有助于病毒株逃逸疫苗诱导的中和抗体而使现有疫苗保护效力下降[23]。这些抗原漂移积累所致变异对病毒地方流行株生物学功能和疫苗有效性的影响有待进一步探讨。

截至目前,辽宁地区尚缺乏RVA基因型别及序列的流行病学资料,本研究监测到我国辽宁省锦州地区近2年未接种疫苗散居儿童轮状病毒感染免疫源性基因的序列数据,对阐明轮状病毒感染机制和我国未来疫苗的推广具有一定的参考价值。由于样本数量有限、收集样本的地域集中,检测到的毒株基因型单一,今后的研究中应增加样本量及地域和时间跨度,以获得更加全面及接续性的流行病学信息。

综上所述,我们在2018-2020年辽宁省锦州地区鉴定了7株婴幼儿轮状病毒株VP7和VP4基因,属G9谱系Ⅵ和P[8]谱系3,G9P[8]很可能是近年来辽宁省锦州地区RVA感染腹泻的主要流行基因型之一。VP7与VP4与同基因型疫苗株相应基因比较发现,在抗原表位区检测到氨基酸位点差异,这些变异位点对于RVA野毒株的免疫逃逸机制具有一定研究意义。

REFERENCES
[1]
Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children[J]. Emerging Infectious Diseases, 2003, 9(5): 565-572. DOI:10.3201/eid0905.020562
[2]
Troeger C, Khalil IA, Rao PC, Cao SJ, Blacker BF, Ahmed T, Armah G, Bines JE, Brewer TG, Colombara DV, et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years[J]. JAMA Pediatrics, 2018, 172(10): 958-965. DOI:10.1001/jamapediatrics.2018.1960
[3]
Estes MK, Cohen J. Rotavirus gene structure and function[J]. Microbiological Reviews, 1989, 53(4): 410-449. DOI:10.1128/MR.53.4.410-449.1989
[4]
Matthijnssens J, Ruggeri F, Esona MD, Steyer A, Estes M, Banyai K, Ciarlet M, Desselberger U, Kirkwood C, Martella V. Rotavirus classification working group: RCWG[EB/OL]. (2018-05-29)[2020-07-09]. http://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
[5]
Iturriza-Gómara M, Dallman T, Bányai K, Böttiger B, Buesa J, Diedrich S, Fiore L, Johansen K, Koopmans M, Korsun N, et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network[J]. Epidemiology & Infection, 2011, 139(6): 895-909.
[6]
Santos N, Hoshino Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine[J]. Reviews in Medical Virology, 2005, 15(1): 29-56. DOI:10.1002/rmv.448
[7]
Ward RL, Bernstein DI, Plotkin S. Rotarix: a rotavirus vaccine for the world[J]. Clinical Infectious Diseases, 2009, 48(2): 222-228. DOI:10.1086/595702
[8]
Matthijnssens J, Joelsson DB, Warakomski DJ, Zhou TY, Mathis PK, Van Maanen MH, Ranheim TS, Ciarlet M. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq®[J]. Virology, 2010, 403(2): 111-127. DOI:10.1016/j.virol.2010.04.004
[9]
Ciarlet M, Schödel F. Development of a rotavirus vaccine: clinical safety, immunogenicity, and efficacy of the pentavalent rotavirus vaccine, RotaTeq®[J]. Vaccine, 2009, 27(Suppl 6): G72-G81.
[10]
Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, Feikin DR, Binka FN, Steele AD, Laserson KF, Ansah NA, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial[J]. The Lancet, 2010, 376(9741): 606-614. DOI:10.1016/S0140-6736(10)60889-6
[11]
Zaman K, Anh DD, Victor JC, Shin S, Yunus, Dallas MJ, Podder G, Thiem VD, Mai LTP, Luby SP, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial[J]. The Lancet, 2010, 376(9741): 615-623. DOI:10.1016/S0140-6736(10)60755-6
[12]
Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS, et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial[J]. The Lancet, 2014, 383(9935): 2136-2143. DOI:10.1016/S0140-6736(13)62630-6
[13]
Rathi N, Desai S, Kawade A, Venkatramanan P, Kundu R, Lalwani SK, Dubey AP, Venkateswara Rao J, Narayanappa D, Ghildiyal R, et al. A Phase Ⅲ open-label, randomized, active controlled clinical study to assess safety, immunogenicity and lot-to-lot consistency of a bovine-human reassortant pentavalent rotavirus vaccine in Indian infants[J]. Vaccine, 2018, 36(52): 7943-7949. DOI:10.1016/j.vaccine.2018.11.006
[14]
Fu CX, He Q, Xu JX, Xie HP, Ding P, Hu WS, Dong ZQ, Liu XY, Wang M. Effectiveness of the Lanzhou lamb rotavirus vaccine against gastroenteritis among children[J]. Vaccine, 2012, 31(1): 154-158. DOI:10.1016/j.vaccine.2012.10.078
[15]
He Q, Wang M, Xu JX, Zhang CH, Wang H, Zhu W, Fu CX. Rotavirus vaccination coverage among children aged 2-59 months: a report from Guangzhou, China[J]. PLoS One, 2013, 8(6): e68169. DOI:10.1371/journal.pone.0068169
[16]
藤井克樹, 染谷雄一.病原体検出マニュアルロタウイルス(第2版)[EB/OL]. (2019-06)[2020-07-09]. http://www.niid.go.jp/niid/images/lab-manual/Rotavirus20190619.pdf
[17]
Maes P, Matthijnssens J, Rahman M, Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses[J]. BMC Microbiology, 2009, 9(1): 238. DOI:10.1186/1471-2180-9-238
[18]
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549. DOI:10.1093/molbev/msy096
[19]
Phan TG, Okitsu S, Maneekarn N, Ushijima H. Genetic heterogeneity, evolution and recombination in emerging G9 rotaviruses[J]. Infection, Genetics and Evolution, 2007, 7(5): 656-663. DOI:10.1016/j.meegid.2007.05.001
[20]
Xu C, Fu JG, Ai J, Zhang J, Liu C, Huo X, Bao CJ, Zhu YF. Phylogenetic analysis of human G9P[8] rotavirus strains circulating in Jiangsu, China between 2010 and 2016[J]. Journal of Medical Virology, 2018, 90(9): 1461-1470. DOI:10.1002/jmv.25214
[21]
Morozova OV, Sashina TA, Epifanova NV, Zverev VV, Kashnikov AU, Novikova NA. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015-2016, with cogent genes of the Rotarix and RotaTeq vaccine strains[J]. Virus Genes, 2018, 54(2): 225-235. DOI:10.1007/s11262-017-1529-9
[22]
Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab[J]. Science, 2009, 324(5933): 1444-1447. DOI:10.1126/science.1170481
[23]
Zeller M, Patton JT, Heylen E, De Coster S, Ciarlet M, Van Ranst M, Matthijnssens J. Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq[J]. Journal of Clinical Microbiology, 2012, 50(3): 966-976. DOI:10.1128/JCM.05590-11
[24]
Jayaram H, Estes MK, Prasad BV. Emerging themes in rotavirus cell entry, genome organization, transcription and replication[J]. Virus Research, 2004, 101(1): 67-81. DOI:10.1016/j.virusres.2003.12.007
[25]
Kawai K, O'Brien MA, Goveia MG, Mast TC, El Khoury AC. Burden of rotavirus gastroenteritis and distribution of rotavirus strains in Asia: a systematic review[J]. Vaccine, 2012, 30(7): 1244-1254. DOI:10.1016/j.vaccine.2011.12.092
[26]
Clark HF, Hoshino Y, Bell LM, Groff J, Hess G, Bachman P, Offit PA. Rotavirus isolate WI61 representing a presumptive new human serotype[J]. Journal of Clinical Microbiology, 1987, 25(9): 1757-1762. DOI:10.1128/JCM.25.9.1757-1762.1987
[27]
Dian ZQ, Wang BH, Fan M, Dong SW, Feng Y, Zhang AM, Liu L, Niu H, Li YY, Xia XS. Completely genomic and evolutionary characteristics of human-dominant G9P[8] group A rotavirus strains in Yunnan, China[J]. Journal of General Virology, 2017, 98(6): 1163-1168. DOI:10.1099/jgv.0.000807
[28]
Qian Y, Yuan LJ, Xiong CH, Zhang Y, Liu J, Guan DH, Wang ZL. Identification of rotavirus G9 type from a stool specimen collected from a child with diarrhea in Beijing[J]. Chinese Journal of Virology, 1994, 10(3): 263-267. (in Chinese)
钱渊, 袁丽娟, 熊朝晖, 张又, 刘军, 关德华, 王之梁. 在我国腹泻患儿中发现G9型轮状病毒感染[J]. 病毒学报, 1994, 10(3): 263-267.
[29]
Ren Y, Yao WQ, Han Y, Wang ZS, Zhao Z. First detection of group A rotavirus G9 in Liaoning province[J]. Chinese Journal of Public Health, 2015, 31(4): 476-478. (in Chinese)
任毅, 姚文清, 韩悦, 王作虪, 赵卓. 辽宁省首次检出G9型A组轮状病毒[J]. 中国公共卫生, 2015, 31(4): 476-478.
[30]
Chen SC, Tan LB, Huang LM, Chen KT. Rotavirus infection and the current status of rotavirus vaccines[J]. Journal of the Formosan Medical Association, 2012, 111(4): 183-193. DOI:10.1016/j.jfma.2011.09.024
[31]
Wang YH, Pang BB, Ghosh S, Zhou X, Shintani T, Urushibara N, Song YW, He MY, Liu MQ, Tang WF, et al. Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013[J]. PLoS One, 2014, 9(3): e88850. DOI:10.1371/journal.pone.0088850
[32]
Tian Y, Chughtai AA, Gao ZY, Yan HQ, Chen YW, Liu BW, Huo D, Jia L, Wang QY, MacIntyre CR. Prevalence and genotypes of group A rotavirus among outpatient children under five years old with diarrhea in Beijing, China, 2011-2016[J]. BMC Infectious Diseases, 2018, 18(1): 497. DOI:10.1186/s12879-018-3411-3
[33]
Fujii Y, Oda M, Somura Y, Shinkai T. Molecular characteristics of novel mono-reassortant G9P[8] rotavirus A strains possessing the NSP4 gene of the E2 genotype detected in Tokyo, Japan[J]. Japanese Journal of Infectious Diseases, 2020, 73(1): 26-35. DOI:10.7883/yoken.JJID.2019.211
[34]
Morozova OV, Sashina TA, Fomina SG, Novikova NA. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines[J]. Archives of Virology, 2015, 160(7): 1693-1703. DOI:10.1007/s00705-015-2439-6