扩展功能
文章信息
- 陈怡飞, 杨华, 夏效东, 唐标
- CHEN Yi-Fei, YANG Hua, XIA Xiao-Dong, TANG Biao
- 弗格森埃希菌的流行及耐药性研究进展
- Advances in epidemiology and antimicrobial resistance of Escherichia fergusonii
- 微生物学通报, 2020, 47(6): 1973-1981
- Microbiology China, 2020, 47(6): 1973-1981
- DOI: 10.13344/j.microbiol.china.190736
-
文章历史
- 收稿日期: 2019-09-07
- 接受日期: 2019-12-31
- 网络首发日期: 2020-02-21
2. 西北农林科技大学食品科学与工程学院 陕西 杨凌 712100
2. College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
弗格森埃希菌(Escherichia fergusonii)属于肠杆菌科埃希菌属,多存在于环境以及人和动物的肠道中[1]。目前已知埃希氏菌属中有8个种,包括大肠埃希菌(Escherichia coli)[2]、艾伯特埃希菌(Escherichia albertii)[3]、蟑螂埃希菌(Escherichia blattae)[4]、弗格森埃希菌(Escherichia fergusonii)[5]、赫尔曼埃希菌(Escherichia hermanii)[6]、致伤埃希菌(Escherichia vulneris)[7]、非脱羧埃希菌(Escherichia adecarboxylata)[8]和旱獭埃希菌(Escherichia marmotae)[9]。大肠埃希菌是埃希菌属的代表菌,也是临床最常见的条件致病菌,特别是致泻性的大肠埃希菌,可造成动物和人类肠道感染并引发相关疾病。
1985年,首次从人类的临床血液样本中分离得到弗格森埃希菌,由于其生物化学性质不同于大肠埃希菌属的其他种从而被确定为一个新种[5],是一种人畜共患病原菌[10]。已有研究表明自弗格森埃希菌发现以来,除了从动物源食品(牛奶和奶酪)以及恒温动物的粪便中分离得到之外[11-12],该菌也多次从人类伤口感染[1]、尿路感染[13]、菌血症[14]和腹泻[15]的病例中分离出,由此提示当机体的免疫力下降时,该菌可使人患病或引发感染加重其他疾病。由于弗格森埃希菌与大肠埃希菌在表型和基因组上非常相似[16],分离过程中难将其与大肠埃希菌区分。本研究团队也发现目前主流的基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)鉴定方法无法将大肠埃希菌与弗格森埃希菌区分[17],会导致临床上对弗格森埃希菌的误检,造成对该类菌株的认识不足。目前,国内外对弗格森埃希菌的研究较少,且以临床分离的报告为主。
本团队近年来主要从动物源分离该菌,同时展开了细菌耐药性研究。本文拟结合文献报道和自身研究,将从菌株特征、鉴别方法、流行状况、致病性和毒力、耐药性等方面的国内外研究进展对弗格森埃希菌做一综述,并提出尚未解决的问题,以期引起广泛关注并为弗格森埃希菌的深入研究提供有价值的参考。
1 菌株特征弗格森埃希菌与大肠埃希菌属的其他菌种相同,是一种杆状、无芽孢、周生鞭毛、兼性厌氧、具有运动性的革兰氏阴性菌。直径为0.8−1.5 μm,长度在2−5 μm之间。弗格森埃希菌的生长温度范围为21−45 ℃,有氧条件下最适宜生长温度为37−40 ℃[18]。Ingle等[19]将6个弗格森埃希菌分离菌株与艾伯特埃希菌和大肠埃希菌的生物膜形成、最高和最低生长温度进行比较,发现在24 ℃时生物膜的形成规模比37 ℃更大,大多数弗格森埃希菌不能在低于11 ℃的温度下增殖。
2 生化特征根据1985年Farmer等的研究[5],对弗格森埃希菌进行吲哚、甲基红、赖氨酸脱羧酶、鸟氨酸脱羧酶和运动性实验,结果均呈阳性,并且能够通过产气发酵D-葡萄糖,也可发酵阿东糖醇、L-阿拉伯糖、L-鼠李糖、麦芽糖、D-木糖、海藻糖、纤维二糖和D-阿拉伯糖。此外,对弗格森埃希菌进行V-P反应、柠檬酸利用率(17%为阳性)、尿素水解、苯丙氨酸脱氨、精氨酸双水解以及乳糖、蔗糖、肌醇、D-山梨醇、棉子糖和α-甲基-D-糖苷的发酵等实验,结果均呈阴性[20]。Huys等[3]总结了弗格森埃希菌区别于其他埃希菌的主要生化特征,见表 1。
生化试验 Biochemical experiment |
弗格森埃希菌 | 大肠埃希菌 | 艾伯特埃希菌 | 蟑螂埃希菌 | 赫尔曼埃希菌 | 致伤埃希菌 |
E. fergusonii | E. coli | E. albertii | E. blattae | E. hermanii | E. vulneris | |
乳糖* Lactose | - | + | - | - | V- | - |
D-山梨醇* D-sorbitol | - | + | - | - | - | - |
核糖醇* Adonitol | + | - | - | - | - | - |
D-阿拉伯糖醇* D-arabinitol | + | - | - | - | - | - |
吲哚Benzazole | + | + | - | - | + | - |
赖氨酸脱羧酶Lysine decarboxylase | + | + | + | + | - | + |
鸟氨酸脱羧酶Ornithine decarboxylase | + | V+ | + | + | + | - |
KCN中生长Growth in KCN | - | - | - | - | + | - |
D-甘露醇* D-mannitol | + | + | + | - | + | + |
棉子糖* Raffinose | - | V+ | - | - | V- | + |
L-鼠李糖* L-rhamnose | + | V+ | - | + | + | + |
D-木糖* D-xylose | + | + | - | + | + | + |
纤维二糖* Cellose | + | - | - | - | + | + |
乙酸盐利用Acetate utilization | + | + | + | - | V- | V- |
注:*:糖类发酵. +:≥85%菌株为阳性;−:≥85%菌株为阴性;V+:50%−85%为阳性;V−:50%−85%为阴性. Note: *: Carbohydrate fermentation. +: ≥85% of the strains were positive; −: ≥85% of the strains were negative; V+: 50%−85% of the strains were positive; V−: 50%−85% of the strains were negative |
由于弗格森埃希菌与大肠埃希菌有较高的亲缘关系,因此缺乏一种简单有效的方法从复杂基质中分离检测出弗格森埃希菌,这也是直到1985年弗格森埃希菌才被发现并命名的原因之一。根据细菌的酶促反应及代谢产物研制的API 20E肠杆菌生化鉴定试条和VITEK全自动微生物分析系统是早期快速检测弗格森埃希菌的两种方法[21]。然而,2009年的一项研究对根据生化反应鉴别弗格森埃希菌的准确性提出了质疑,该研究指出VITEK 2 Compact全自动微生物鉴定系统错误地将E. coli O157:H7鉴别为弗格森埃希菌[22]。目前国际上已有鉴定弗格森埃希菌的零星报道,本研究团队根据现有研究,归纳并总结了一套具有高准确性筛选和鉴定弗格森埃希菌的方法。
(1) 预增菌。由于不同样本中存在大量背景菌群和天然抑菌剂,使大部分细胞处于受损或抑制状态。为了恢复受损细胞并将菌量提高到可检测水平,需要对采集的样本进行预增菌,通常采用缓冲蛋白胨水(buffered peptone water,BPW) 37 ℃条件下培养12−24 h进行预增菌[23]。
(2) 分离培养。根据早期研究中提出的弗格森埃希菌不能发酵乳糖和山梨醇的特性,使用麦康凯琼脂或山梨醇麦康凯琼脂作为培养基初步鉴定出疑似的弗格森埃希菌菌株(呈无色菌落)[12, 24]。该方法对于从动物的感染部位分离出弗格森埃希菌是足够的,然而当培养样本如肠道物质和粪便含有大量菌群时,由于缺乏有效的选择性培养基,很难从富含其他优势肠杆菌科细菌的样品中分离出弗格森埃希菌。
核糖醇和D-阿拉伯糖醇发酵在大肠埃希菌和其他肠杆菌科菌株中很少见,是弗格森埃希菌的一个典型特征。含有核糖醇的西蒙氏柠檬酸盐琼脂最初是作为肠毒素大肠埃希菌K99的鉴别培养基,该培养基利用溴麝香草酚兰作为pH指示剂(酸性呈黄色碱性呈蓝色)[25]。核糖醇和D-阿拉伯糖醇发酵菌落在这种培养基上呈黄色,而大多数其他细菌在这种培养基上不生长或呈蓝色菌落。Foster等[26]将培养在麦康凯琼脂平板上的来自鹿、牛、羊、猪和家禽的22个分离株接种于柠檬酸核糖醇琼脂平板,得到所有经检测的弗格森埃希菌长出黄色菌落,该实验结果表明,柠檬酸核糖醇琼脂能够从粪便样本中鉴别分离出弗格森埃希菌。然而由于部分大肠埃希菌如肠毒素大肠埃希菌K99也可发酵核糖醇,因此需要对黄色菌落进一步筛选。根据弗格森埃希菌对山梨醇发酵呈阴性而大肠埃希菌呈阳性特点,可利用山梨醇麦康凯琼脂(sorbitol MacConkey agar,SMA)将二者鉴别分离开(大肠埃希菌在SMA平板上呈粉色菌落,弗格森埃希菌呈无色菌落)。综上所述,先利用柠檬酸核糖醇(或D-阿拉伯糖醇)琼脂后结合山梨醇麦康凯琼脂可作为弗格森埃希菌分离筛选的显色培养基。
(3) 菌株复核鉴定。随着分子生物学技术的发展,PCR检测的分子方法已被用于细菌的快速检测。因此,利用特异的PCR引物对弗格森埃希菌的保守基因进行检测,不仅可以提高检测的准确性,而且可以提高鉴别的速度和简单性[27]。Lindsey等[28]用Daydreamer模式基因组学软件针对弗格森埃希菌设计了具有100%准确性和100%覆盖率的高度特异性引物(EF_F:5′-AGATTCACGTAAGCTG TTACCTT-3′,EF_R:5′-CGTCTGATGAAAGATTT GGGAAG-3′) (575 bp),该方法与传统培养方法的结果完全一致且比现有的检测方法更快速简便。因此,选用该特异性引物可对上述培养基筛选分离出的无色菌落进行最终复核鉴定。
4 流行状况弗格森埃希菌作为一种从恒温动物肠道内容物中分离到的条件致病菌,与动物和人类的疾病具有密切联系。弗格森埃希菌的流行状况如表 2所示,从目前已发表的文献来看,弗格森埃希菌在全球各地区均有发现且无明显暴发流行性,畜禽动物、野生动物、鸟类等均为该菌的感染宿主。
时间 Time |
分离地点 Location |
来源 Source |
症状 Symptom |
1985 | America[5] | Blood (human) | ND |
1992 | Switzerland[12] | Gallbladder fluid; blood; feces; a superficial wound of the abdomen (human) |
Pancreatic carcinoma and cholangitis |
1999 | India[29] | Faeces (human) | Diarrhea |
2004 | Spain[30] | Ostriches | Severe hemorrhagic diarrhea and death |
India[31] | Human | Wound infection | |
2005 | Canada[32] | Broiler chicken | 18% to 30% mortality in 1-d-old chicks |
2006 | Italy[10] | Urine (human) | Acute cystitis |
2007 | Canada[24] | Internal organs of goat | Diarrhea |
Norway[26] | Faecal of reindeer | Diarrhea | |
Germany[33] | Carcass of horse | Enteritis and septicemia | |
China[20] | Wound secretion (human) | Postoperative infection | |
2008 | China[34] | Caecum of a dying chick | Necrotizing appendicitis |
2009 | Italy[35] | Faeces (human) | Leukemia |
Canada[36] | Surface water and sewage | ND | |
2010 | Canada[11] | Urine (human) | Cystitis |
2011 | China Taiwan[37] | Blood (human) | Bacteremia |
2012 | Brazil[38] | Cloacal swabs of chickens | ND |
2013 | America[39] | Carcass of beef cow | Acute pneumonia and death |
China[14] | Fresh chicken | ND | |
2014 | Canada[23] | Cloacal and cecal contents of broiler chickens | ND |
Tunisian[40] | Fecal samples of wild birds | ND | |
2015 | China[13] | Urine and whole blood (human) | Urinary tract infection and bloodstream infection |
2016 | Turkey[27] | Rectal swab samples from dairy cattle | Diarrhea |
Canada[41] | Ground beef and chopped kale | ND | |
2017 | South Africa[42] | Fresh faecal samples from primates | ND |
Malaysia[43] | Sugarcane juice extractor | ND | |
China[44] | Chicken feces | ND | |
2019 | Korea[45] | Blood and urine (human) | Hemolytic uremic syndrome |
Nigeria[46] | Human | Septic wound | |
注:ND:无数据. Note: ND: No data. |
从目前已发表的兽医临床和人医临床报告来看(表 2),弗格森埃希菌均可从感染的宿主体内分离得到,引起人和动物的多种机会感染,包括创伤感染、尿道感染、菌血症、腹泻和胸膜炎,证实了该菌的致病能力。
作为埃希氏菌属的成员之一,弗格森埃希菌与大肠埃希菌分离株在致病性和毒力因子方面非常相似。一些弗格森埃希菌甚至可以将大肠埃希菌中特定的染色体和染色体外DNA水平转移进入其基因组中。Fegan等[47]发现一株弗格森埃希菌对E. coli O157抗原的抗体检测呈阳性,说明O抗原决定簇可以在E. coli O157:H7与弗格森埃希菌之间进行遗传转移。Wragg等[48]使用大肠埃希菌毒力基因阵列对来自猪、牛和绵羊的30个分离株进行测试,发现43% (13/30)的菌株存在增加在血清中存活率的基因,10% (3/30)的菌株能同时检测到菌毛调节和铁载体受体基因,在经过PCR和序列分析验证后,指出弗格森埃希菌与大肠埃希菌中相应的毒力基因具有高度相似的序列,并且与大肠埃希菌APEC O1致病岛具有较高相似性。
Šmajs等[49]发现了弗格森埃希菌产生的大肠杆菌素与大肠埃希菌产生的大肠杆菌素非常相似,并在弗格森埃希菌中发现铁-好氧肌动蛋白摄取系统。Ingle等[19]在肠道感染的小鼠模型中发现,弗格森埃希菌所有基因的毒力检测均为阴性,只对铁摄取和囊膜合成的fyuA和kpsE基因的PCR检测呈阳性。2012年一项来自韩国的研究中首次证实,从健康鸡的粪便中分离出生产热不稳定肠毒素(heat-labile enterotoxin,LT)的弗格森埃希菌并且由质粒介导的毒力基因可以转移到大肠埃希菌中[50]。Forgetta等[32]将一株具有致病性和多重耐药性的弗格森埃希菌ECD-227的基因组与已知的致病性大肠埃希菌进行比对,发现ECD-227中同样存在大量的毒力基因(iucABCD、sitABCD、cib、traT),并且通过毒力实验发现ECD-227可导致18%−30%的一日龄雏鸡在感染48 h后死亡。到目前为止,用大肠埃希菌的部分致病基因对弗格森埃希菌进行PCR检测,发现绝大多数弗格森埃希菌致病因子的产物主要参与毒素产生、黏附和铁代谢。大肠埃希菌毒力基因的检测并不一定意味着其在弗格森埃希菌中也有相同的功能。弗格森埃希菌基因组中参考大肠埃希菌预测到的毒力基因目前仍缺少必要的缺失突变的实验验证,需要进一步研究。
6 耐药性由于治疗细菌感染普遍依赖抗生素,动物养殖过程中兽用抗生素的滥用导致了耐药菌株普遍存在。有研究显示,近年来弗格森埃希菌对于治疗肠道细菌感染的抗菌药物有耐药性,并且其耐药表型与大肠埃希菌十分相似[35]。早期的研究报道了弗格森埃希菌对氨苄西林、四环素和复方新诺明具有耐药性以及对头孢菌素和奈替米星敏感[29]。
细菌的多重耐药是细菌变异以及过度使用抗生素筛选的结果。细菌特别是条件致病菌,在多种抗生素的选择压力下,相关耐药基因通过接合、转导和转化等方式在不同种细菌间彼此频繁交换[51],导致多种耐药基因在细菌质粒、染色体、转座子、整合子等遗传物质上整合。弗格森埃希菌自首次发现以来,在人医临床和兽医临床上均分离到多重耐药菌。Savini等[10]在一名膀胱炎患者体内分离出一株弗格森埃希菌,通过测定不同抗生素对该菌的最小抑菌浓度(minimum inhibitory concentration,MIC)发现该致病菌株具有多种抗生素耐药性,包括氨苄青霉素、哌拉西林、庆大霉素、奈替米星、托布拉霉素和复方新诺明。在2010年的一份膀胱炎患者病例报告中,首次报道了临床分离出表达超广谱β-内酰胺酶(extenden-spectncm β-lactamases,ESBL)的多种抗生素耐药的弗格森埃希菌菌株,对常用药物头孢菌素、喹诺酮类、磺胺类抗菌药物均表现为高度耐药[11]。
目前的研究中,根据弗格森埃希菌的耐药表型,均发现了对应的耐药基因。Simmons等[52]通过使用3种指示头孢菌素(头孢噻肟、头孢他啶和头孢西丁),单独和组合阿莫西林-克拉维酸的双盘扩散试验,测试了来自农场动物体内具有氨苄青霉素抗性的弗格森埃希菌分离株的ESBL表型,并且对blaSHV、blaCTX-M和blaTEM β-内酰胺酶基因进行PCR检测和测序,揭示了弗格森肠杆菌中存在赋予ESBL表型的blaTEM-1和blaSHV-12基因。Manninger等[41]对从碎甘蓝和碎牛肉中分离出的3株弗格森埃希菌全基因组测序,利用ResFinder (http://cge.cbs.dtu.dk/services/ResFinder/)对测序结果进行分析,在菌株GTA-EF02中预测到4个耐药基因,分别为磺胺类(sul2)、氨基糖苷类(strA和strB)和四环素类[tet(A)]。Qnr基因(qnrA、qnrB、qnrC、qnrD和qnrS)主要通过保护抗菌靶蛋白——Ⅱ型DNA拓扑异构酶免受抗菌药物的作用从而介导对喹诺酮类药物的耐药性[53],Ferreira等[54]从家禽的泄殖腔拭子中分离出200株肠杆菌,其中11株(5.5%)为弗格森埃希菌,并且携带有质粒介导的喹诺酮耐药基因qnrB19。Yahia等[40]从野生鸟类粪便样品中分离出的弗格森埃希菌中检测到ESBL、碳青霉烯酶和获得性AmpC β-内酰胺酶基因blaKPC-3、blaCTX-M-15和blaACT-36。Galetti等[55]在一株分离自家禽的弗格森埃希菌中发现了一个携带有多种不同抗性和毒力基因的移动体40A,该移动体由p46_40A (IncX1类型,45 869 bp)、p80_40A (IncFII类型,79 635 bp)、p150_40A (IncI1-ST1类型,148 340 bp)和p280_40A (IncHI2A-ST2类型,279 537 bp) 4个质粒组成,能稳定遗传并传播抗生素耐药性。
国内有关该菌的报道并不多见。宋宇等[13]从尿路感染上行导致的血流感染患者体内分离出弗格森埃希菌,药敏试验结果显示为多重耐药菌株,对喹诺酮类和头孢类药物具有耐药性。陆彦等[34]也从弱雏鸡中鉴定分离出致病性弗格森埃希菌,菌株对氨苄西林、恩诺沙星、萘啶酸、诺氟沙星和四环素高度耐药,通过PCR扩增结果也发现了耐药基因qnr的存在。粘菌素和替加环素被认为治疗碳青霉烯类耐药肠杆菌感染的“最后一道防线”。近年来,研究人员从采集的细菌样本中检出具有粘菌素抗性的大肠杆菌并且发现了与多粘菌素抗性相关的基因mcr-1[56]。2018年,北京大学人民医院团队首次发现了携带有粘菌素耐药基因mcr-1的弗格森埃希菌[57]。本研究团队[44]从浙江省鸡粪便中分离出两株具有多重耐药性的弗格森埃希菌EFCF053和EFCF056,通过药敏检测以及全基因组测序分析发现,这两株菌耐药谱广且耐药基因丰富,其中一株菌同时检出ESBL和mcr-1基因,这是国内第一次报道该菌同时含有这两类基因;此外,mcr-1基因携带质粒还被证实具有接合转移的能力,具有传播风险。2019年本研究团队从浙江及邻近省份的动物粪便样品中分离到了分别对粘菌素和替加环素耐药的弗格森埃希菌。综上所述,弗格森埃希菌可能是被忽略的重要的耐药基因储存库,其携带的重要的耐药基因有公共卫生安全风险,应当引起广泛的重视。
7 展望弗格森埃希菌是较晚发现的埃希菌属成员,属于人类和动物的条件致病菌。由于该菌和大肠埃希菌不容易区分,国内外有关该菌的研究较少,造成了对该菌的流行情况、致病性和临床意义等认识的低估和忽视。由于分类学原因可能造成大肠杆菌药敏试验结果错误,加之致病机理不同,可能误导临床用药。从目前已报道的分离株来看,弗格森埃希菌多数具有多重耐药性,可能是肠道中耐药基因的重要储存库,有关该菌的筛查检测和耐药性的研究应该受到重视。费格森埃希菌与大肠埃希菌要在抗药性流行病学中加以区分,深入研究其对不同药物的MIC频率分布,监测重要耐药表型碳青霉烯类、粘菌素及替加环素耐药等,保障临床检测的准确性。
[1] |
Ye N, Quan ZF, Wang B, et al. Isolation, identification and drug sensitivity test of Escherichia fergusonii from Takin[J]. Progress in Veterinary Medicine, 2015, 36(2): 68-71. (in Chinese) 叶泥, 权自芳, 王彬, 等. 一株扭角羚弗格森埃希菌的分离鉴定及药敏试验[J]. 动物医学进展, 2015, 36(2): 68-71. |
[2] |
Skerman VBD, Mcgowan V, Sneath PHA. Approved lists of bacterial names[J]. Medical Journal of Australia, 1980, 2(1): 3-4. DOI:10.5694/j.1326-5377.1980.tb131800.x |
[3] |
Huys G, Cnockaert M, Janda JM, et al. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(3): 807-810. DOI:10.1099/ijs.0.02475-0 |
[4] |
Priest FG, Barker M. Gram-negative bacteria associated with brewery yeasts: reclassification of Obesumbacterium proteus biogroup 2 as Shimwellia pseudoproteus gen. nov., sp. nov., and transfer of Escherichia blattae to Shimwellia blattae comb. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(4): 828-833. DOI:10.1099/ijs.0.013458-0 |
[5] |
Farmer Ⅲ JJ, Fanning GR, Davis BR, et al. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens[J]. Journal of Clinical Microbiology, 1985, 21(1): 77-81. DOI:10.1128/JCM.21.1.77-81.1985 |
[6] |
Brenner DJ, Davis BR, Steigerwalt AG, et al. Atypical biogroups of Escherichia coli found in clinical specimens and description of Escherichia hermannii sp. nov.[J]. Journal of Clinical Microbiology, 1982, 15(4): 703-713. DOI:10.1128/JCM.15.4.703-713.1982 |
[7] |
Brenner DJ, Mcwhorter AC, Knutson JKL, et al. Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds[J]. Journal of Clinical Microbiology, 1982, 15(6): 1133-1140. DOI:10.1128/JCM.15.6.1133-1140.1982 |
[8] |
Izard D, Mergaert J, Gavini F, et al. Separation of Escherichia adecarboxylata from the Erwinia herbicola-enterobacter agglomerans complex and from the other Enterobacteriaceae by nucleic acid and protein electrophoretic techniques[J]. Annales de l'Institut Pasteur/Microbiologie, 1985, 136(2): 151-168. DOI:10.1016/S0769-2609(85)80041-7 |
[9] |
Liu S, Jin D, Lan R, et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7): 2130-2134. |
[10] |
Savini V, Catavitello C, Talia M, et al. Multidrug-resistant Escherichia fergusonii: a case of acute cystitis[J]. Journal of Clinical Microbiology, 2008, 46(4): 1551-1552. DOI:10.1128/JCM.01210-07 |
[11] |
Lagacé-Wiens PRS, Baudry PJ, Pang P, et al. First description of an extended-spectrum-β-lactamase-producing multidrug-resistant Escherichia fergusonii strain in a patient with cystitis[J]. Journal of Clinical Microbiology, 2010, 48(6): 2301-2302. DOI:10.1128/JCM.00364-10 |
[12] |
Funke G, Hany A, Altwegg M. Isolation of Escherichia fergusonii from four different sites in a patient with pancreatic carcinoma and cholangiosepsis[J]. Journal of Clinical Microbiology, 1993, 31(8): 2201-2203. DOI:10.1128/JCM.31.8.2201-2203.1993 |
[13] |
Song Y, Ma SQ. A case of multi-drug resistant Escherichia fergusonii isolated from bloodstream infection induced by ascending urinary tract infection[J]. Chinese Journal of Microecology, 2015, 27(4): 475-476. (in Chinese) 宋宇, 马淑青. 尿路感染上行所致血流感染中分离出多重耐药弗格森埃希菌一例[J]. 中国微生态学杂志, 2015, 27(4): 475-476. |
[14] |
Dai XH, Wei C, Guo LA, et al. Identification and susceptibility test of Escherichia fergusonii isolated from fresh chicken[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(5): 2108-2111. (in Chinese) 代晓航, 魏超, 郭灵安, 等. 生鲜鸡肉中弗格森埃希菌分离鉴定及药敏试验[J]. 西南农业学报, 2013, 26(5): 2108-2111. |
[15] |
Rayamajhi N, Cha SB, Shin SW, et al. Plasmid typing and resistance profiling of Escherichia fergusonii and other enterobacteriaceae isolates from south Korean farm animals[J]. Applied and Environmental Microbiology, 2011, 77(9): 3163-3166. DOI:10.1128/AEM.02188-10 |
[16] |
Lawrence JG, Ochman H, Hartl DL. Molecular and evolutionary relationships among enteric bacteria[J]. Journal of General Microbiology, 1991, 137(8): 1911-1921. DOI:10.1099/00221287-137-8-1911 |
[17] |
Zhang L, Chang J, Cao LJ, et al. Rapid identification and clustering analysis on E. coli isolates from chicken fecal by MALDI-TOF MS[J]. China Poultry, 2018, 40(20): 23-27. (in Chinese) 张玲, 常江, 曹刘杰, 等. 鸡粪便来源大肠杆菌的质谱法快速鉴定及聚类分析[J]. 中国家禽, 2018, 40(20): 23-27. |
[18] |
Gaastra W, Kusters JG, van Duijkeren E, et al. Escherichia fergusonii[J]. Veterinary Microbiology, 2014, 172(1/2): 7-12. |
[19] |
Ingle DJ, Clermont O, Skurnik D, et al. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp.[J]. Applied and Environmental Microbiology, 2011, 77(8): 2695-2700. DOI:10.1128/AEM.02401-10 |
[20] |
Tao YY, Sun MY, Li JH, et al. Study of the biological characteristics of Escherichia fergusonii and 16S rRNA detection[J]. Journal of Parasitic Biology, 2013, 8(3): 229-232. (in Chinese) 陶元勇, 孙铭艳, 李建花, 等. 弗格森埃希菌的生物学特征研究与16S rRNA检测[J]. 中国病原生物学杂志, 2013, 8(3): 229-232. |
[21] |
Zhuang HJ, Jin YC, Yang X. Application of API 20E and VITEK - 32 in clinical microbes identification[J]. Chinese Journal of Public Health Engineering, 2011, 10(4): 320-322. (in Chinese) 庄华君, 金映川, 杨旭. API20E、VITEK -32在临床细菌鉴定中的应用[J]. 中国卫生工程学, 2011, 10(4): 320-322. |
[22] |
Crawford-Miksza LK, Himathongkham S, Dodd ML, et al. Misidentification of a variant biotype of Escherichia coli O157:H7 as Escherichia fergusonii by Vitek 2 Compact[J]. Journal of Clinical Microbiology, 2009, 47(3): 872-873. DOI:10.1128/JCM.02425-08 |
[23] |
Simmons K, Rempel H, Block G, et al. Duplex PCR methods for the molecular detection of Escherichia fergusonii isolates from broiler chickens[J]. Applied and Environmental Microbiology, 2014, 80(6): 1941-1948. DOI:10.1128/AEM.04169-13 |
[24] |
Hariharan H, López A, Conboy G, et al. Isolation of Escherichia fergusonii from the feces and internal organs of a goat with diarrhea[J]. The Canadian Veterinary Journal La Revue Vétérinaire Canadienne, 2007, 48(6): 630-631. |
[25] |
Pohl P, Lintermans P, Vandergheynst MC, et al. Selective citrate-adonitol medium for the isolation of various strains of Escherichia coli K99[J]. Annales de Microbiologie, 1984, 135B(1): 29-33. |
[26] |
Foster G, Evans J, Tryland M, et al. Use of citrate adonitol agar as a selective medium for the isolation of Escherichia fergusonii from a captive reindeer herd[J]. Veterinary Microbiology, 2010, 144(3/4): 484-486. |
[27] |
Parin U, Kirkan S, Arslan SS, et al. Molecular identification and antimicrobial resistence of Escherichia fergusonii and Escherichia coli from dairy cattle with diarrhoea[J]. Veterinarni Medicina, 2018, 63(3): 110-116. DOI:10.17221/156/2017-VETMED |
[28] |
Lindsey RL, Garcia-Toledo L, Fasulo D, et al. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii[J]. Journal of Microbiological Methods, 2017, 140: 1-4. DOI:10.1016/j.mimet.2017.06.005 |
[29] |
Chaudhury A, Nath G, Tikoo A, et al. Enteropathogenicity and antimicrobial susceptibility of new Escherichia spp.[J]. Journal of Diarrhoeal Diseases Research, 1999, 17(2): 85-87. |
[30] |
Herráez P, Rodríguez F, de Los Monteros AE, et al. Fibrino-necrotic typhlitis caused by Escherichia fergusonii in ostriches (Struthio camelus)[J]. Avian Diseases, 2005, 49(1): 167-169. DOI:10.1637/7221-061104r |
[31] |
Mahapatra A, Mahapatra S, Mahapatra A. Escherichia fergusonii: an emerging pathogen in South Orissa[J]. Indian Journal of Medical Microbiology, 2005, 23(3): 204. |
[32] |
Forgetta V, Rempel H, Malouin F, et al. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken[J]. Poultry Science, 2012, 91(2): 512-525. DOI:10.3382/ps.2011-01738 |
[33] |
Weiss ATA, Lübke-Becker A, Krenz M, et al. Enteritis and septicemia in a horse associated with infection by Escherichia fergusonii[J]. Journal of Equine Veterinary Science, 2011, 31(7): 361-364. DOI:10.1016/j.jevs.2011.01.005 |
[34] |
Lu Y, Zhao HY, Qi XL, et al. Identification of Escherichia fergusonii and analysis of its drug resistance[J]. Progress in Veterinary Medicine, 2013, 34(5): 48-51. (in Chinese) 陆彦, 赵红玉, 齐晓丽, 等. 弗格森埃希菌的鉴定及药敏试验[J]. 动物医学进展, 2013, 34(5): 48-51. DOI:10.3969/j.issn.1007-5038.2013.05.010 |
[35] |
Savini V, Catavitello C, Bianco A, et al. First enteric Escherichia fergusonii from Italy[J]. Le Infezioni in Medicina, 2009, 17(4): 259-260. |
[36] |
Maheux AF, Boudreau DK, Bergeron MG, et al. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water[J]. Journal of Applied Microbiology, 2014, 117(2): 597-609. DOI:10.1111/jam.12551 |
[37] |
Lai CC, Cheng A, Huang YT, et al. Escherichia fergusonii bacteremia in a diabetic patient with pancreatic cancer[J]. Journal of Clinical Microbiology, 2011, 49(11): 4001-4002. DOI:10.1128/JCM.05355-11 |
[38] |
Ferreira JC, Penha Filho RAC, Andrade LN, et al. Evaluation and characterization of plasmids carrying CTX-M genes in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil[J]. Diagnostic Microbiology and Infectious Disease, 2016, 85(4): 444-448. |
[39] |
Rimoldi GM, Moeller RB Jr. Escherichia fergusonii associated with pneumonia in a beef cow[J]. Journal of Veterinary Medicine, 2013, 2013: 829532. |
[40] |
Yahia HB, Chairat S, Gharsa H, et al. First report of KPC-2 and KPC-3-producing Enterobacteriaceae in wild birds in Africa[J]. Microbial Ecology, 2019, 79(1): 30-37. |
[41] |
Manninger P, Koziol A, Carrillo CD. Draft whole-genome sequences of Escherichia fergusonii strains isolated from beef trim (GTA-EF02), ground beef (GTA-EF03), and chopped kale (GTA-EF04)[J]. Genome Announcements, 2016, 4(2): e00185-16. |
[42] |
Glover B, Wentzel J, Jenkins A, et al. The first report of Escherichia fergusonii isolated from non-human primates, in Africa[J]. One Health, 2017, 3: 70-75. DOI:10.1016/j.onehlt.2017.05.001 |
[43] |
Chong SY, Rao PV, Soon JM. Identification of Escherichia spp. strains in street-vended beverages and associated preparation surfaces using 16S rRNA analysis[J]. International Food Research Journal, 2017, 24(4): 1811-1818. |
[44] |
Tang B, Zhang L, Chang J, et al. Antimicrobial resistance of two Escherichia fergusonii strains isolated from chicken feces[J]. Microbiology China, 2019, 46(11): 3022-3029. (in Chinese) 唐标, 张玲, 常江, 等. 两株分离自鸡粪便费格森埃希菌的耐药性[J]. 微生物学通报, 2019, 46(11): 3022-3029. |
[45] |
Baek SD, Chun C, Hong KS. Hemolytic uremic syndrome caused by Escherichia fergusonii infection[J]. Kidney Research and Clinical Practice, 2019, 38(2): 253-255. |
[46] |
Adesina T, Nwinyi O, De N, et al. First detection of carbapenem-resistant Escherichia fergusonii strains harbouring Beta-lactamase genes from clinical samples[J]. Pathogens, 2019, 8(4): 164. DOI:10.3390/pathogens8040164 |
[47] |
Fegan N, Barlow RS, Gobius KS. Escherichia coli O157 somatic antigen is present in an isolate of E. fergusonii[J]. Current Microbiology, 2006, 52(6): 482-486. DOI:10.1007/s00284-005-0447-6 |
[48] |
Wragg P, La Ragione RM, Best A, et al. Characterisation of Escherichia fergusonii isolates from farm animals using an Escherichia coli virulence gene array and tissue culture adherence assays[J]. Research in Veterinary Science, 2009, 86(1): 27-35. |
[49] |
Šmajs D, Karpathy SE, Šmarda J, et al. Colicins produced by the Escherichia fergusonii strains closely resemble colicins encoded by Escherichia coli[J]. FEMS Microbiology Letters, 2002, 208(2): 259-262. DOI:10.1111/j.1574-6968.2002.tb11091.x |
[50] |
Oh JY, Kang MS, An BK, et al. Isolation and epidemiological characterization of heat-labile enterotoxin-producing Escherichia fergusonii from healthy chickens[J]. Veterinary Microbiology, 2012, 160(1/2): 170-175. |
[51] |
Huang X, Deng ZD, Ni YX, et al. Chinese experts' consensus on prevention and control of multidrug resist-ance organism healthcare-associated infection[J]. Chinese Journal of Infection Control, 2015, 14(1): 1-9. (in Chinese) 黄勋, 邓子德, 倪语星, 等. 多重耐药菌医院感染预防与控制中国专家共识[J]. 中国感染控制杂志, 2015, 14(1): 1-9. DOI:10.3969/j.issn.1671-9638.2015.01.001 |
[52] |
Simmons K, Islam MR, Rempel H, et al. Antimicrobial resistance of Escherichia fergusonii isolated from broiler chickens[J]. Journal of Food Protection, 2016, 79(6): 929-938. DOI:10.4315/0362-028X.JFP-15-575 |
[53] |
Rodríguez-Martínez JM, Velasco C, Álvaro P, et al. Plasmid-mediated quinolone resistance: an update[J]. Journal of Infection and Chemotherapy, 2011, 17(2): 149-182. DOI:10.1007/s10156-010-0120-2 |
[54] |
Ferreira JC, Filho RACP, Kuaye APY, et al. Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil[J]. Infection, Genetics and Evolution, 2018, 60: 66-70. DOI:10.1016/j.meegid.2018.02.003 |
[55] |
Galetti R, Penha Filho RAC, Ferreira JC, et al. Antibiotic resistance and heavy metal tolerance plasmids: the antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry[J]. Infection and Drug Resistance, 2019, 12: 1029-1033. DOI:10.2147/IDR.S196411 |
[56] |
Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. The Lancet Infectious Diseases, 2016, 16(2): 161-168. |
[57] |
Wang R, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1[J]. Nature Communications, 2018, 9(1): 1179. DOI:10.1038/s41467-018-03205-z |