微生物学通报  2020, Vol. 47 Issue (6): 1958−1972

扩展功能

文章信息

徐碧林, 朱庆
XU Bi-Lin, ZHU Qing
微生物脂肪酶稳定性研究进展
Recent advances in stability studies of microbial lipase
微生物学通报, 2020, 47(6): 1958-1972
Microbiology China, 2020, 47(6): 1958-1972
DOI: 10.13344/j.microbiol.china.190732

文章历史

收稿日期: 2019-09-06
接受日期: 2020-01-21
网络首发日期: 2020-02-24
微生物脂肪酶稳定性研究进展
徐碧林1 , 朱庆2     
1. 黄冈师范学院生物与农业资源学院 经济林种质资源改良与综合利用湖北省重点实验室 湖北省大别山特色资源开发协同创新中心 湖北 黄冈 438000;
2. 武汉市疾病预防与控制中心 湖北 武汉 430015
摘要: 脂肪酶广泛应用于食品、药物、生物燃料、诊断、生物修复、化学品、化妆品、清洁剂、饲料、皮革和生物传感器等工业领域,微生物脂肪酶是商品化脂肪酶的重要来源。高温、酸性、碱性和有机溶剂等恶劣的工业生产环境使得脂肪酶的进一步工业应用受到限制,获取稳定性好的脂肪酶成为打破这一限制的关键环节。本文重点对提高微生物脂肪酶稳定性的策略进行了综述:挖掘极端微生物脂肪酶资源;利用定向进化、理性设计和半理性设计等蛋白质工程策略改造脂肪酶;利用物理吸附、封装、共价结合和交联等酶的固定化技术提高脂肪酶的稳定性;利用物理/化学修饰、表面展示以及多种改良策略相结合提高脂肪酶的稳定性。结合作者前期对酶工程的研究发现,新型酶催化剂的获得应该基于明确的设计思路,结合多种改造方法,基于定向进化-理性设计、定向进化-半理性设计、蛋白质工程-酶的固定化、蛋白质工程-物理/化学修饰、酶的固定化-物理/化学修饰等组合改造,比单一的改造方法具有更高的效率。
关键词: 微生物脂肪酶    极端脂肪酶    稳定性    蛋白质工程    酶的固定化    
Recent advances in stability studies of microbial lipase
XU Bi-Lin1 , ZHU Qing2     
1. College of Biology and Agricultural Resources, Huanggang Normal University; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization; Hubei Collaborative Innovation Center for Characteristic Resources Exploitation of Dabie Mountains, Huanggang, Hubei 438000, China;
2. Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430015, China
Abstract: Lipases are widely used in industries, such as food, pharmaceuticals, biofuels, diagnostics, bioremediation, chemicals, cosmetics, detergents, feed, leather and biosensors and so on, microbial lipases are the most important source of commercial lipases. The harsh industrial production environments, e.g. high temperature, acidity, alkalinity and organic solvents, limit the further industrial application of lipases, to obtain stable lipases becomes a key link to break this limitation. This paper focuses on the main strategies to improve the stability of lipases are as follow: Excavating extreme microbial lipase resources; Using protein engineering strategies, such as directed evolution, rational design and semi-rational design to modify lipases; Utilizing immobilization technologies of enzymes such as physical adsorption, encapsulation, covalent bonding and cross-linking to improve the stability of lipases; Taking advantage of physical/chemical modification, surface display, and a combination of multiple improvement strategies to increase lipases stability. Combined with the author's previous research on enzyme engineering, it was found that the acquisition of new enzyme catalysts should be based on clear design ideas and combined with a variety of modification methods: combined modification methods based on directed evolution-rational design, directed evolution-semi-rational design, protein engineering-enzyme immobilization, protein engineering-physical/chemical modification and enzyme immobilization-physical/chemical modification, etc., which are more efficient than single modification method.
Keywords: Microbial lipases    Extreme lipases    Stability    Protein engineering    Immobilization of enzymes    

脂肪酶(triacylglycerol acylhydrolases,EC. 3.1.1.3)属于α/β型水解酶超家族,该超家族酶的活性依赖于亲核的Ser-His-Asp催化三联体,其中Ser一般位于酶中心的五肽基序GxSxG上,然而有些脂肪酶的Ser位于GSDL基序上,这类脂肪酶为α/β/α型,不同于α/β型水解酶,α/β/α型水解酶具有相对独特的属性;作为一类具有多种催化能力的酶,脂肪酶在微水相或非水相环境中能催化多种化学反应,例如三酰甘油酯以及其他一些水不溶性酯类的水解、酯化、转酯化、醇解及酯类的逆向合成反应,还表现出磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶等活性,且其催化活性一般不需要辅因子[1]。独特的性质以及高效的生物/化学转化能力,使得脂肪酶在食品、药物、生物燃料、诊断、生物修复、化学品、化妆品、清洁剂、饲料、皮革和生物传感器等工业生产中有着广泛应用,成为了继蛋白酶和淀粉酶之后的三大重要工业用酶之一[2-3]。据统计,从2015年至2020年,全球脂肪酶市场的复合增长率约为6.5%,到2020年其产值将达到5.9亿美元;由于人们对健康、饮食习惯以及即将到来的高科技食品和饮料行业的认识不断提高,全球脂肪酶市场将以更快的速度增长[4]

脂肪酶广泛存在于动植物和微生物中,由于微生物种类多、生长周期短、易于进行遗传操作、具有比动植物更广的作用pH、温度范围以及底物专一性等,而且微生物脂肪酶比动植物脂肪酶具有更好的有机溶剂耐受性[5],一般都是分泌型的胞外酶,生产成本低,适合于工业化大生产和获得高纯度样品。因此,微生物脂肪酶是工业用脂肪酶的重要来源[6-7]

目前许多商业脂肪酶稳定性差,在高温、酸性、碱性和有机溶剂等恶劣的工业环境下容易快速失活,不能满足工业需求,因此,如何获得适合工业应用的高稳定性脂肪酶成为了研究热点之一。随着生物信息学和分子生物学技术的不断发展,研究者们通过发掘极端微生物脂肪酶,利用定向进化、酶的固定化、物理/化学修饰和表面展示等技术手段拓展了脂肪酶原有的催化性质,尤其是稳定性,使其能更好地满足工业需求。

本文主要对微生物脂肪酶的稳定性研究进行综述,以期让更多研究者了解到工业微生物脂肪酶稳定性研究的进展,并为他们提供新的研究思路,以加速高稳定性微生物脂肪酶资源的挖掘,并通过脂肪酶稳定性的改良推动脂肪酶的生物催化产业快速发展。

1 极端微生物脂肪酶

来源于极端环境微生物的酶大多与其宿主有相似的适应性,例如,来源于(超)嗜热微生物的酶大多具有较好的热稳定性,来源于嗜盐微生物的酶大多能耐受高盐环境,来源于嗜碱微生物的酶则大多能耐受碱性环境等。因此,从极端环境微生物分离能耐受恶劣因素的脂肪酶成为了一种行之有效的方法。

1.1 (超)嗜热脂肪酶

嗜热酶(thermophilic enzymes)通常来源于嗜热微生物或超嗜热微生物[8-9],产嗜热脂肪酶最重要的2个微生物属是BacillusGeobacillus[10-11];另外一个重要来源是能在更恶劣的环境下生存的古生菌,比如最适生长温度为100 ℃的Pyrococcus furiosus。部分芽孢杆菌脂肪酶在高于60 ℃时仍能保持稳定,来源于Bacillus thermoleovoransRhizopus oryzae的脂肪酶在70−75 ℃时仍然能正常发挥功能;而来源于古生菌Pyrococcus horikoshii的脂肪酶在95 ℃仍保持稳定的结构[12]。由于(超)嗜热微生物极端且昂贵的培养条件,导致以其为来源获取嗜热脂肪酶时一般很少用嗜热菌本身来生产酶。随着分子生物学技术的发展,这些(超)嗜热酶现已被克隆并在异源宿主中表达,例如大肠杆菌、枯草芽孢杆菌和巴斯德毕赤酵母等[13]

研究发现工业所需酶的热稳定性和耐酸碱度大多时候是密切相关的。来源于Bacillus sonorensis 4R超嗜热耐碱脂肪酶80 ℃的半衰期为150 min,90、100、110和120 ℃的半衰期依次为121.59 、90.01 、70.01 和50 min;在80 ℃和最适pH 9.0的条件下保温2 h仍稳定[14]。来源于嗜热Geobacillus thermodenitrificans AV-5、最适反应温度和最适pH为65 ℃和9.0,以及在pH 10.0的条件下最高活性和稳定性只损失15%和2.6%的脂肪酶,可以用于制取生物柴油[15]。Sun等[16]分离自嗜热真菌Neosartorya fischeri P1的脂肪酶LIP09则表现出较高的热稳定性(最适反应温度为60 ℃,50 ℃保温30 min仍保留96%活性)和对酸性环境的耐受性(最适pH为5.0,在pH 3.0−7.0、40 ℃保温1 h仍保留90%以上活性),优良的特性使得LIP09成为了食品和饲料工业的潜在候选酶。此外,热稳定性好的脂肪酶一般对有机溶剂也有较强的耐受性,来源于Bacillus licheniformis SCD11501的脂肪酶在55 ℃和75 ℃的半衰期分别为150 min和60 min,无论在疏水(正己烷)还是亲水(二甲基亚砜)存在的环境下仍然能保持较好的活性,表明其既可催化水解反应也可催化合成反应[17]。还有一些来源于嗜热菌的脂肪酶能同时耐受高温、酸性、碱性和有机溶剂,例如,Golaki等[18]从嗜热菌Cohnella sp. A01中克隆得到脂肪酶3646,最适反应温度和最适pH分别为70 ℃和8.5,在pH 8.5−10.0保温180 min仍然高度稳定,此外,该酶还耐受有机溶剂、洗涤剂、金属离子和抑制剂,这一系列的特殊属性表明,其可以应用于洗涤剂和皮革行业。Bakir等[19]从嗜热菌Anoxybacillus flavithermus HBB 134的发酵产物中纯化得到最适反应温度和最适pH分别为50 ℃和9.0的脂肪酶,甘油、山梨醇和甘露醇能提高其热稳定性,且其对丙酮、乙酸乙酯和二乙醚高度稳定,较高的热稳定性和对碱性环境及有机溶剂的耐受性赋予了该酶广泛的工业应用前景。

1.2 嗜盐脂肪酶

嗜盐菌(halophiles)是指能在高盐环境下生长的微生物,包括古生菌、细菌和真核生物。根据它们对盐的耐受程度可以分为3类:轻度嗜盐(0.2−0.5 mol/L盐浓度)、中度嗜盐(0.5−2.5 mol/L盐浓度)和极端嗜盐(> 2.5 mol/L盐浓度)微生物[20]。根据Sani等[13]的定义,对NaCl的耐受浓度达1%−6%、6%−15%和15%−30%的脂肪酶依次为低耐盐脂肪酶、中度嗜盐脂肪酶和极端嗜盐脂肪酶。在极端微生物中,作为具有潜在生物技术意义的脂肪酶生产者——嗜盐菌,构成了一组越来越受关注的微生物,因为由其产生的极端酶不仅在较宽的盐浓度范围内仍能保持活性,而且对高温、低温和有机溶剂也有较强的耐受性,从而为在极端条件下运行的不同工业过程提供了可能性。

Ishikawa等[21]从668种商品盐样品中分离出了97种产生脂肪酶的菌株,对其中两种具有高脂肪酶活性菌株的16S rRNA基因序列分析结果表明,它们分别与嗜盐假单胞菌和反硝化嗜盐菌具有较近的亲缘关系;来自这两株菌的脂肪酶其最适反应温度为50−60 ℃,最适pH和最适盐浓度分别为8.0−9.0和20% NaCl;不仅如此,其在40−70 ℃、pH 7.0−10.0和15%−30%的盐浓度下仍能保持活性,表明它们具有较好的热稳定性和高盐稳定性。Ai等[22]从自贡古盐井分离得到的菌株Chromohalobacter canadensis中克隆得到脂肪酶LipS2,该酶的最适反应温度和最适pH分别为55 ℃和8.5,在2.5−3.5 mol/L NaCl浓度下具有较高活性,且其热稳定性和pH稳定性与盐浓度密切相关,在3 mol/L NaCl浓度下这两个稳定性最好;不仅如此,该酶对甲醇、乙醇、乙酸乙酯和丙酮具有较高的耐受性,而且苯、正己烷和非离子表面活性剂能提高其活性。Neagu等[23]则分别从中度嗜盐菌Marinococcus halophilus JCM 2472和耐盐菌Marinococcus halophilus S3-6中克隆得到能转化生物柴油工业中产生废弃甘油的脂肪酶,该酶在15−70 ℃、pH 8.0−10.0和0−3 mol/L NaCl浓度范围内均有活性,且最适反应温度和最适盐浓度为60 ℃和1 mol/L NaCl,表明其有较好的热稳定性和盐耐受性。Ghati等[24]则从印度热泉中分离得到既耐热又耐盐的Bacillus cereus菌株AGP-03,并从中克隆得到既耐热又耐酸碱且耐受苯的脂肪酶,该酶在pH 5.5−10.0、30−80 ℃、3%−11% NaCl浓度下仍能保持活性,且最适pH、最适反应温度和最适盐浓度分别为8.5、55 ℃和4.5% NaCl;此外,苯的极高稳定性使该酶成为潜在的生物催化剂,可用于非水基生物技术工艺中。Esakkiraj等[25]则从Halobacillus sp. AP-MSU 8纯化得到耐盐和耐碱的脂肪酶,该酶的最适pH、最适反应温度和最适盐浓度分别为9.0、40 ℃和2.5 mol/L NaCl,表面活性剂聚乙二醇和吐温-20能提高该酶的活性。上述来源于嗜盐菌的嗜盐脂肪酶不仅能耐受不同的盐浓度,还具有较好的热稳定性以及对有机溶剂的耐受性,这些显著特征赋予了其具有用于苛刻的工业/生物技术应用的巨大潜力。

1.3 嗜冷脂肪酶

嗜冷菌(psychrophiles)是指生活在地球寒冷环境中的微生物,其能在−20−0 ℃环境下存活,高于30 ℃时不能正常生长,主要分布于海底、高山、洞穴和极地地区。嗜冷酶(psychrophilic enzymes)通常来源于嗜冷微生物,指在0−30 ℃范围内比嗜温酶有更高催化活性和相对较差热稳定性的酶[26]。生活在具有多重压力因子(例如深海水下的低温和高压及海水中的高盐浓度和低温等)环境下的许多嗜冷菌,赋予了来源于其酶相似的耐受性。嗜冷脂肪酶在低温下的高催化活性、高对映选择性以及对高盐、高压,尤其是有机溶剂的耐受性,使得这些生物催化剂在包括洗涤剂(冷洗)生产在内的各种工业中的应用成为可能,例如食品工业(发酵、奶酪制造、面包店、肉嫩化)、环境生物修复(消化器、堆肥、石油或异种生物应用)和精细化学品合成(手性中间体的有机合成)等[13]

Salwoom等[27]从嗜冷菌Pseudomonas sp. LSK25克隆得到冷适应脂肪酶LSK25,该酶在5−30 ℃和pH 6.0−8.0范围内均有活性,最适反应温度和最适pH分别为30 ℃和6.0,且正庚烷、正己烷、正十六烷、二甲苯和甲苯能显著提高该酶的活性(提高约350%),二甲亚砜和甲醇对其活性几乎没有影响,表明该酶对有机溶剂有较好的耐受性。Ganasen等[28]从南极Pseudomonas中克隆得到脂肪酶AMS8,该酶在较广的pH范围内仍能保持稳定,其最适反应温度为30 ℃,最适pH为10.0,30 ℃和40 ℃半衰期分别为4 h和2 h;此外,二甲基亚砜、戊烷、正十烷、正十三烷、正十四烷和正十六烷都能在不同程度上提高其活性,且甲醇、乙醇、异丙醇和几烷均不能改变AMS8的二级结构,表明该酶对碱和有机溶剂均有较好的耐受性。Ji等[29]则从嗜冷菌Yersinia enterocolitica KM1中克隆得到嗜冷脂肪酶并进行异源表达,该酶在15−60 ℃、pH 5.0−11.0均有活性,最适反应温度和最适pH分别为25 ℃和7.5;此外,Mg2+、10%的乙醇、乙烷、甲醇和乙腈能激活其活性。Maharana等[30]从南极洲菌株Rhodotorula sp. Y-23分离得到嗜冷脂肪酶,该酶在pH 5.0和−20 ℃有较好的稳定性,在pH 8.0和35 ℃有较高活性,在50 mmol/L Fe3+、20 mmol/L EDTA-Na、20 mmol/L脱氧胆酸钠、1% (体积比) H2O2和几乎所有50% (体积比)的有机溶剂中都能保持稳定;此外,该脂肪酶与市售的洗涤剂相容,向其中添加脂肪酶可增加脂质降解性能,使其成为洗涤剂配方中的潜在候选者。

1.4 碱性、酸性脂肪酶

根据Madigan等[31]的定义,嗜碱菌(alkaliphiles)是指在pH 10.0−11.0环境下生长的微生物。然而文献中广泛报道的碱性脂肪酶则是指最适pH高于8.0的脂肪酶。碱性脂肪酶不仅来自嗜碱微生物,如1.1和1.2所述,来源于(超)嗜热和嗜盐微生物的许多脂肪酶在碱性条件下也具有较好的稳定性。Tambekar等[32]从嗜盐-嗜碱菌Pseudomonas aeruginosa DHT12的发酵产物中分离得到热稳定性和pH稳定性较好的碱性脂肪酶,其最适pH和最适反应温度为9.0和60 ℃,该菌产生的酶在皮革、肥皂和洗涤剂、制药、生物燃料、油脂化学、食品和纺织品等许多行业中都具有广阔的应用前景。Ji等[33]则从嗜冷菌Yersinia enterocolitica KM1发酵产物中分离纯化得到碱性嗜冷脂肪酶,该酶的最适pH为9.0,在0−60 ℃均具有活性,最适反应温度为37 ℃,而且能被Ca2+以及10%的乙醇、二甲亚砜、甲醇和乙腈激活。上述特性使得该酶可能在低温洗涤剂和生物催化领域有着广泛的应用前景。许多商业产品(例如肥皂粉、用于表面除油和清洁玻璃的产品)的配方中都包含脂肪酶,例如常见的包含脂肪酶的商业洗涤剂有:碧浪洗衣液、汰渍洗衣液、澳洲Sunlight清新进口洗洁精、德国汉高Dixan保护洗衣液、澳洲Surf洗衣粉、欧洲Wheel汽车轮胎清洁剂、印度Nirma洗涤剂等。用于洗涤剂配方的所有脂肪酶在碱性区域均具有最佳pH值(介于8.0−12.0之间)。由于向这些产品中添加脂肪酶的主要目的是去除油脂污渍,因此脂肪酶的主要目标是羧酸,其更易溶于碱性环境。此外,最终产品通常是含有表面活性剂和盐的制剂,因此一般这类酶还能耐受表面活性剂和一定的盐浓度[34]。尽管洗衣业在碱性脂肪酶的工业应用上占很大份额,但这类酶在工业中还有许多其他用途,例如从外消旋体制备对映体纯化合物、酯的合成、多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)浓缩和生物柴油合成等[13]

嗜酸菌(acidophiles)是指在高酸性条件下(通常为pH 2.0或更低)生长的微生物,广泛分布于三域系统中[31],其能在低pH条件下生存主要归因于将质子从细胞内部泵出,从而保证细胞内的pH维持在中性的能力。因此,即使在大量水解酶/脂肪酶(EC 3.1.1.3)中也很难发现酸性脂肪酶(在低pH值下具有最佳催化作用的酶),从而导致对低pH下具有高稳定性中性酶的研究更为普遍[13]

表 1列出了近几年文献报道的分离得到的稳定性较好的微生物脂肪酶及其应用。

表 1 近几年文献报道的稳定性好的微生物脂肪酶及其应用举例 Table 1 Examples of stable microbial lipases and their applications reported in recent years
菌株
Strains
最适温度
Optimal temperature (℃)
最适pH
Optimal pH
耐受性
Tolerance
应用
Application
文献
Reference
Haloferax mediterranei 60 7.0 Surfactant, Various detergents Synthetic polypeptides, detergent additives [35]
Bacillus atrophaeus 70 9.0 Xylene [36]
Staphylococcus aureus 60 12.0 Oxidants, Anions and non-ionic surfactants Washing industry [37]
Bacillus sonorensis 80 9.0 Mannitol Bio-detergent [14]
Geobacillus thermodenitrificans 65 9.0 Biodiesel production [15]
Serratia marcescens 50 8.0 Organic solvent, Oxidant Detergent additive and production of biodiesel [38]
Acinetobacter sp. 50 8.0 H2O2, Tween-80, Triton X-100 Synthesis reaction of organic solvent and high temperature [39]
Aspergillus niger 50 5.0 Polar organic solvent Organic synthesis food and pharmaceutical industry [40]
Pseudomonas sp. 50 8.2 Triton X-100, EDTA Biodiesel production [41]
Pseudomonas reinekei 40 9.0 Organic solvents with lgP/≥/2.0 Biodiesel production, detergent formulations and biodegradation of oil [42]
Staphylococcus aureus 52 11.0 Most of the inorganic salts and detergents Biotechnological and industrial applications [43]
Bacillus licheniformis 55 9.5 n-hexane, DMSO Promoting both hydrolytic as well as synthetic reactions [17]
Thermotoga maritima 70 7.5 DL-dithiothreitol (DTT), Reduced glutathione [44]
Trichosporon coremiiforme 50 10.0 Triton X-100, Tween-20, Glycerol [45]
Bacillus thermoamylovorans 60 8.0 [46]
Talaromyces thermophilus 60 9.5 Ca2+, K+, Na + [47]
Talaromyces thermophilus 60 9.5 [48]
Geobacillus sp. EPT9 55 8.5 [49]
2 利用蛋白质工程技术提高脂肪酶的稳定性

蛋白质工程(protein engineering)是指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过化学、物理和分子生物学的手段进行基因修饰或基因合成,对现有蛋白质按照特定的需要(包括酶的活性、稳定性、反应过程中对离子强度的需求、pH等方面性质)进行改造,或制造一种新的蛋白质,以满足人类对生产和生活的需求[50]。来源于极端微生物、耐受性较强的脂肪酶虽然具备对各种恶劣环境的抗逆能力,但是原始菌株较低的产酶量限制了其在工业领域进行大范围应用。为了满足对酶需求不断增加的各类工业生产,研究者一方面从自然界筛选符合要求的酶,一方面利用蛋白质工程技术来改造天然酶,使其更好地适应工业应用环境[51],增强酶的稳定性是蛋白质工程技术研究的重要内容。目前利用蛋白质工程技术提高脂肪酶稳定性的策略主要有3种:定向进化、理性设计以及二者相结合的半理性设计。

2.1 定向进化

定向进化(directed evolution)是指首先使用物理/化学诱变或者易错PCR (error-prone PCR)等方法对目标基因进行随机诱变构建突变体库,经过高通量筛选得到性能提高的突变体,然后再利用体外重组的方法将这些正向突变进行重组,进而筛选出目标性状大幅度提高的突变体的方法[52]。定向进化通常用于设计提高稳定性的酶[53]

Korman等[54]利用定向进化的方法对来源于Proteus mirabilis的脂肪酶进行改造,得到了一个包含13个突变位点的突变体Dieselzyme 4,Dieselzyme 4在50 ℃的半衰期是野生型的30倍;不仅如此,其在50%甲醇中的半衰期是野生型的50倍。Liu等[55]则利用易错PCR和高通量筛选技术改造Penicillium cyclopium脂肪酶,得到了包含2个突变位点的突变体L41P/G47I,再结合定点突变技术构建了单点突变体L41P和G47I,结果表明L41P、G47I和L41P/G47I在45 ℃的半衰期分别是野生型的7、13和9倍,而且3个突变体的最适反应温度比野生型高5 ℃。Veno等[56]也利用易错PCR和高通量筛选技术,对来源于Staphylococcus epidermidis AT2的脂肪酶rT-M386进行改造,得到了50 ℃活性是野生型5倍的单点突变体G210C,G210C的最适反应温度比野生型高20 ℃,50 ℃的半衰期则是野生型的15倍;此外,rT-M386只在部分极性溶剂(lgP < 1)中有活性,而G210C在极性和非极性溶剂中都有活性。Zhang等[57]利用两轮易错PCR对来源于Candida antarctica的脂肪酶进行改造,得到了70 ℃半衰期是野生型20倍的突变体。此外,Goomber等[58]利用易错PCR技术得到了稳定性提高6倍、最适反应温度提高15 ℃的Bacillus脂肪酶突变体Gln121-Arg。He等[59]结合定向进化和一种修饰膜印迹试验对Rhizomucor miehei脂肪酶进行改造,得到了稳定性和乙醇耐受性显著提高的突变体酶。上述系列研究表明,利用定向进化手段可以得到稳定性显著提高的突变体脂肪酶。

2.2 理性设计

理性设计(rational redesign)是指在较为清楚地了解蛋白质的结构、功能和相关性质分子机制的基础上,先从理论层面上对蛋白质分子中特定氨基酸位点的改变进行设计,然后利用定点突变的方法在蛋白质中引入这些突变位点[60]

Chopra等[61]在生物信息学分析和分子模型的基础上,利用重叠PCR技术构建了Bacillus脂肪酶突变体Arg153-His,该突变体60 ℃的热稳定性是野生型的72倍,其稳定性的提高主要来源于额外形成的氢键。Gihaz等[62]利用理性诱变,通过掺入庞大的芳香族残基以占据溶剂通道并诱导芳香族相互作用,从而实现核心区域更好的包装,得到了稳定性是野生型Geobacillus stearothermophilus T6脂肪酶81倍的突变体酶。Li等[63]利用3种理性设计的方法,得到了稳定性提高5.5倍、最适反应温度提高10 ℃的Candida rugosa脂肪酶突变体Asp457Phe;此外,他们利用多重算法对Rhizomucor miehei脂肪酶进行多轮改造,得到了最适反应温度提高14.3 ℃、稳定性是野生型12.5倍的突变体酶[64]。Ishak等[65]在通过对晶体结构进行比较分析的基础上,对来源于Geobacillus zalihae HT1的热稳定脂肪酶TI分子中形成氢键和离子相互作用的位点进行突变,得到了对二甲亚砜、甲醇和正己烷等有机溶剂有更强耐受性的突变体酶。Kumar等[66]利用定点突变的方法,对分子表面的两个单点突变进行组合,得到稳定性是野生型168倍的突变体脂肪酶LipR5,该结果表明位于分子表面提高稳定性的突变位点具有累加效应。Li等[67]则通过组合不同区域的二硫键,得到了解链温度分别提高22.53 ℃和31.23 ℃的突变体。Wu等[68]在计算机模拟的基础上,于Stenotrophomonas maltophilia脂肪酶分子中高柔性区域引入了一对盐桥,得到了50 ℃半衰期是野生型900多倍的突变体酶。Zhang等[69]通过分子动力学模拟,对Yarrowia lipolytica脂肪酶进行定点突变,得到了最适反应温度提高5 ℃、半衰期提高约70%的突变体酶。Zhao等[70]利用多序列比对以及二硫键模拟,最终得到了55 ℃和60 ℃稳定性分别提高102.5倍和20倍的突变体酶。上述利用理性设计得到的稳定性显著提高的突变体脂肪酶相较于野生型酶具有更广泛的工业应用价值。

2.3 半理性设计

大量研究数据表明控制蛋白质某种性质的位点可能仅仅局限于序列的某一小部分,例如对底物的特异选择性或酶活力取决于活性中心区域,而酶的稳定性等性质却主要和酶的外围位点或活性中心附近位点密切相关,因此需要将理性设计和定向进化结合:先利用随机突变确定决定目标性状的位点,再理性地选定一些位点进行重组或饱和突变,进一步提高酶目标性状的改造效率,该方法即为半理性设计(semi-rational design)[60]。在蛋白质结构比较和序列比对的基础上,再借助计算机模拟,可以在很大程度上剔除有害或中性突变,从而实现在缩小突变体库的前提下获取更多有利突变。

Wen等[71]结合定向进化、理性设计和半理性设计,对来源于Yarrowia lipolytica的脂肪酶Lip2进行改造,得到了稳定性提高7倍的突变体酶。Zhang等[72]先利用高通量筛选得到包含2个突变位点的突变体,再对这2个位点进行饱和诱变,得到了稳定性显著提高的突变体脂肪酶。Yedavalli等[73]结合高通量筛选和定点突变,得到了对二甲基亚砜耐受性增强的脂肪酶突变体。Tian等[74]结合定向进化和饱和诱变,对Thermomyces lanuginosus脂肪酶进行改造,得到了对甲醇耐受性显著提高的突变体酶。Dror等[75]结合理性设计和高通量筛选,将Geobacillus stearothermophilus脂肪酶分子表面的带电氨基酸残基替换为疏水氨基酸残基,得到了稳定性提高约87倍的突变体酶,同时还提高了其对甲醇的耐受性。

3 利用酶的固定化技术提高脂肪酶的稳定性

除了蛋白质工程技术,酶的固定化也是提高脂肪酶稳定性的常用策略之一。当脂肪酶加入到反应介质中时一般是以溶解的状态存在,这就难以实现对其进行回收;此外,在反应进程中,一些参数非预期的变化,例如温度和pH等的变化可能会导致酶的变性或者失活[76]。然而,大多数酶在多轮催化反应后仍然能保持活性,具有较高的回收利用价值,回收利用酶的方法之一就是将其固定在不可溶的基质上;此外,固定酶往往比溶解状态的酶有更高的稳定性,可以在极端的环境下发挥功能且有着更高的转化效率[77]。根据酶与载体之间的相互作用,酶的固定方法可以分为物理方法和化学方法。在物理方法中,酶与载体之间主要形成氢键和范德华力等较弱且可逆的相互作用;在化学方法中,酶与载体之间则是通过形成共价键联系在一起且不可逆[76]

3.1 物理方法固定脂肪酶

3.1.1 吸附作用

在吸附固定化方法中,酶分子通过范德华力、疏水相互作用、氢键和离子键吸附在载体表面,该方法用的载体大多数为阳离子和阴离子交换树脂、活性炭、硅胶、氧化铝、可控孔径玻璃、陶瓷、天然材料如纤维素和琼脂糖以及一些工业残留物。大多数研究者在文献中重点强调纳米复合材料的使用,因为其结合了各种材料的优势,是用来进行酶固定的理想材料。吸附固定过程简单、成本低,只需要两步即可完成,因此,该方法是近年来研究最多的脂肪酶固定方法之一。

Zare等[78]Candida rugosa脂肪酶(CRL)固定在铬对苯二甲酸乙二醇酯MIL-101和分别由氨基、三氯三嗪氨基和戊二醛氨基修饰的铬对苯二甲酸乙二醇酯MIL-101上,这4种固定方法都显著提高了该酶的pH稳定性,且固定在三氯三嗪氨基和戊二醛氨基修饰的铬对苯二甲酸乙二醇酯MIL-101上酶的热稳定性得到了显著提高,此外固定在4种材料上的脂肪酶储存35 d仍然能保持80%−90%的酶活,表明通过吸附固定可以显著提高CRL的储存稳定性。de Almeida等[79]将纯化的Candida viswanathii脂肪酶(最适反应温度和最适pH分别为45 ℃和4.0)固定在辛基琼脂糖上使其热稳定性提高了60倍,不仅如此,经过4轮对硝基苯基棕榈酸酯水解后还能保留100%的活性,固定化Candida viswanathii脂肪酶在酸性pH下有较好的稳定性和活性,以及对有机溶剂的耐受性和卵磷脂水解活性,表明其在纺织业、食品、制药工业和化学合成领域具有广泛的应用前景。Gao等[80]将来源于Burkholderia ambifaria的脂肪酶YCJ01固定在苯氨基丙基三甲氧基硅烷修饰的中孔介质二氧化钛上,固定化后上清液中脂肪酶活性降低与固定化酶活性的比值达到2.2,说明固定化后的脂肪酶分子表现出明显的超活化;此外,固定化YCJ01不仅表现出显著提高的pH稳定性和热稳定性以及较高的乙酸肉桂脂合成效率,重复使用10轮后还能保持出色的操作稳定性。有研究者[81-83]分别利用不同的策略和材料,通过吸附固定的方法在不同程度上提高了脂肪酶的稳定性。

3.1.2 封装和诱捕

在封装固定中,酶保留在有孔径且允许底物和产物通过的聚合物结构中。与吸附不同,封装可以避免酶与反应体系直接接触,从而使得由于培养基中溶剂的性质引发的失活效应最小化,此外该方法允许酶在相对长的时间内保持稳定,并且没有必要从培养基中提取酶;这两种固定方法的主要问题是难以控制会使酶浸出以及底物和产物在载体内扩散的孔径大小,且难以实现大规模的应用[84]。Omay[85]在2014年比较了固定脂肪酶的两种物理方法,结果表明两种固定方法都能提高脂肪酶的稳定性和活性,但是用封装法能恢复76%的活性,而吸附法是41%,即封装法比吸附法更有效。

Rehman等[86]利用封装法将Penicillium notatum脂肪酶(PNL)固定在硅聚体上,不仅提高了其活性和更广pH范围内的催化效率,还显著提高了其热稳定性;固定化的PNL表现出一系列有使用价值的特性,使其在许多不同的化学过程中有着广泛的应用潜力。Jin等[87]在无水体系利用封装法将脂肪酶r27RCL固定在分别由丙基、辛基和十八烷基功能化的中孔氧化硅中,由于脂肪酶r27RCL的表面环与介孔氧化硅材料中的烷基基团之间的疏水相互作用激活了该酶,从而显著提高了其酯化活性、正己烷中的热稳定性和有机溶剂耐受性;此外,固定在十八烷基功能化氧化硅上的r27RCL重复使用5轮仍然不丧失活性和对映选择性,上述结果表明固定在该介质上的r27RCL在非水条件下是非常有吸引力的生物催化剂。Mohtar等[88]则利用封装法将Geobacillus sp.脂肪酶ARM喷雾干燥固定在糊化西米淀粉上,固定化的ARM在60−80 ℃有较高的活性,半衰期为4 h;在pH 6.0−9.0的范围内均有活性,10 ℃的半衰期为9个月。上述特性表明,喷雾干燥固定化脂肪酶具有广阔的工业应用前景,特别是在食品加工领域。有研究者[89-91]分别利用不同的方法、载体,通过封装固定提高了不同脂肪酶的稳定性。

3.2 化学方法固定脂肪酶

3.2.1 共价结合

在共价结合这种固定方法中,酶与载体之间以共价键的方式结合,酶分子的侧链氨基酸,即含有有利于形成共价键的官能团(羟胺、羧基、咪唑和酚类化合物)的氨基酸残基,例如赖氨酸、半胱氨酸或天冬氨酸和谷氨酸残基等与载体材料之间发生化学反应形成共价键[92]。因为共价键是一种强的化学键,共价固定使酶与载体紧密结合,保证了酶结构的刚性,这种刚性可以保证酶分子的结构在遇到热、有机溶剂和极端pH等环境时不发生变化,从而保证了其稳定性。然而,共价结合可以改变酶分子的活性中心,从而导致其失活。要避免这种情况的发生,就需要通过活化反应对载体表面进行修饰,提供与酶分子的官能团发生相互作用更活跃的官能团[93]

Branco等[94]将来源于超嗜热古生菌Pyrococcus furiosus的脂肪酶(PFUL),分别共价结合在醛活化的琼脂糖(含有DTT,pH 7.0)和乙醛琼脂糖(pH 10.2)上,结果发现固定在乙醛琼脂糖上的PFUL最适反应温度高达90 ℃,且在70 ℃保温48 h仍然非常稳定。Rios等[95]Pseudomonas fluorescens脂肪酶PFL分别共价结合在乙醛基-辛基和辛基活化的琼脂糖珠子上,结果发现在pH 5.0、7.0和9.0以及部分有机溶剂存在的环境下,固定在辛基琼脂糖上的(PFL)稳定性更好,而Ca2+能显著提高固定在乙醛基-辛基琼脂糖上的PFL稳定性。Gao等[96]将来源于Candida antarctica的脂肪酶B (CALB)固定在单分散核壳磁性有机硅纳米花上显著提高了该酶的pH稳定性。该方法为提高脂肪酶的催化活性和稳定性开辟了一条新的途径,并可能在各种以脂肪酶为基础的工业过程中具有潜在的应用前景。有研究者[97-100]分别利用不同的载体,通过共价结合固定的方式实现了对脂肪酶稳定性的提高。

3.2.2 交联

交联固定的过程是由称为交联剂的物质完成的,该交联剂含有2个末端,能与溶解酶分子表面氨基酸的特殊基团形成分子内和分子间交联,最终形成交联酶[101]。将酶加入含有交联剂的媒介中就能形成交联酶、交联酶晶体、交联酶聚合物以及交联喷雾干燥酶。由于排除了固体支持物,交联酶的主要优点是高度催化的酶活性、高稳定性和低生产成本,该过程有可能获得更强大和稳定的工业用酶。

Guajardo等[102]通过交联酶聚合物的方式固定了Candida antarctica脂肪酶(CALB),显著提高了其稳定性,保存14 d活性丝毫无损,该方法固定的脂肪酶的转化效率比其他商业固定化CALB高30%,且重复使用6轮之后活性也未损失。Rehman等[103]分别以戊二醛和琥珀酸N-羟基琥珀酰亚胺作为交联剂固定Pencillium notatum脂肪酶(PNL),不仅提高了PNL对碱性pH的耐受性和最适反应温度,还显著提高了其热稳定性,结果表明这种新型的脂肪酶具有潜在的工业应用价值。Zhang等[104]利用交联固定的方研制了新型生物相容性表面活性剂活化磁性脂肪酶(CLEAs),吐温-80活化的磁CLEAs表现出较好的贮存稳定性,且表面活性剂活化磁CLEAs可应用于连续生产生物柴油。有研究者[105-107]分别利用不同的载体,通过交联固定的方式实现了对脂肪酶稳定性不同程度的提高。

4 提高脂肪酶稳定性的其他方法

除了单独使用上述蛋白质工程和酶的固定法,研究者们还经常结合多种方法来提高脂肪酶的稳定性。Blanco等[108]通过疏水相互作用将脂肪酶固定到一种大孔径、表面含有辛基的无定形氧化硅上,在体系中加入PEG及饱和盐溶液,显著提高了该酶的稳定性。Cao等[109]则通过在Yarrowia lipolytica脂肪酶的催化体系中加入β-环糊精来提高该酶对甲醇的耐受性。Jayawardena等[110]则利用聚蔗糖、苯甲酸酐和聚乙二醇对分别来源于Candida antarcticaHumicola lanuginosa的脂肪酶分子上的氨基进行修饰,显著提高了二者在乳胶漆乳液中的长期稳定性和热稳定性。

Kajiwara[111]利用右旋糖酐将来源于Candida cylindracea的商用脂肪酶赖氨酸残基中的ε-胺与羰基基团结合,使得脂肪酶周围的微环境在有机溶剂存在的情况下更加亲水,从而能进一步提高该酶在有机溶剂中的稳定性。Li等[112]利用各种聚乙二醇功能离子液体对Candida rugosa脂肪酶进行修饰,显著提高了该酶的催化活性、热稳定性、有机溶剂耐受性以及对橄榄油水解反应中温度和pH值变化的适应性,尤其是[HOOCEPEG350Im][H2PO4]修饰后,将其50 ℃的稳定性提高了5倍,对60%的二甲亚砜的耐受性提高了13倍,对5%甲醇耐受性提高了3.4倍。

Moura等[113]利用酵母表面展示的方法将Candida antarctica脂肪酶锚定在酵母细胞壁上,不仅提高了游离酶的最适反应温度和pH值,还提高了其热稳定性和对有机溶剂的耐受性。Yuzbasheva等[114]利用细胞壁蛋白YlPir1p通过N-末端融合变体在酵母细胞表面展示解脂耶氏酵母脂肪酶Lip2p,结果发现展示酶对有机溶剂和清洁剂的稳定性显著高于游离酶。

Khan等[115]结合理性设计和共价固定,显著提高了嗜温Bacillus subtilis脂肪酶的热稳定性。Matsumoto等[116]通过在转酯反应中先用羧酸和全氟羧酸对脂肪酶进行预处理,实现了酶催化活性和热稳定性的提高。Zaak等[117]结合化学修饰和酶的固定化,用聚乙烯亚胺和戊二醛修饰固定化脂肪酶,也不同程度提高了该酶的稳定性。

5 总结与展望

作为生物催化剂的微生物脂肪酶正在受到越来越广泛和深入的研究,但是大多数自然资源的脂肪酶稳定性较差,在恶劣的工业环境下容易快速失活,不能满足生产需求。为了得到能满足各种工业应用的脂肪酶,一方面,发掘潜在的微生物及其基因资源,尤其是极端环境微生物资源,利用基因重组、异源表达及发酵技术大量制备稳定性好的脂肪酶;另一方面,蛋白质工程手段(包括定向进化、理性设计和半理性设计策略)、酶的固定化、物理/化学修饰以及表面展示等技术的应用,不仅能使酶的稳定性显著提高,还能使酶的两个或者多个特性产生叠加效应,产生多项催化性能显著提高的新酶,极大地发展和丰富生物催化剂的来源。

新型酶催化剂的获得应该基于明确的设计思路,结合多种改造方法。早期,我们利用DNA shuffling技术和定点突变对3个高度同源但分别来源于嗜热、嗜温和嗜冷微生物且适应不同温度的蛋白酶WF146、Sphericase和S41进行重组筛选,与传统研究结果相反,发现来源于嗜冷酶S41和嗜温酶Sphericase的结构元件能提高嗜热酶WF146的稳定性,对这些结构元件进行一系列的重组后,得到了80 ℃和85 ℃稳定性分别提高约4.5倍和13倍且Tm值提高5.5 ℃的嗜热突变体酶[118];此外,本团队成功分离到嗜热蛋白酶WF146自降解产物,通过在自降解位点引入刚性最强的氨基酸残基Pro构建突变体N63P、N66P和N63P/N66P,结果发现这3个突变体都在不同程度上提高了嗜热蛋白酶WF146的热稳定性,其中双突变体N63P/A66P在80℃的半衰期是野生型酶的2.8倍[119];通过深入研究Ca2+在WF146蛋白酶加工成熟过程中的作用,发现Ca2+对WF146蛋白酶的活性、加工成熟过程及稳定性都具有重要作用。通过圆二色谱法分析,我们发现当除去溶液中的Ca2+后,WF146蛋白酶酶原的结构变得不稳定,该结果表明Ca2+具有维持WF146蛋白酶结构稳定性的作用,酶原分子通过结合Ca2+形成稳定结构而保证加工成熟过程的顺利进行[120]。不仅如此,现阶段作者正结合理性设计、半理性设计、酶的固定化等修饰改良技术的优化组合,进行高度相似但适应不同温度的微生物脂肪酶的创新研究。前期结果表明,基于定向进化-理性设计、定向进化-半理性设计、蛋白质工程手段-酶的固定化、蛋白质工程手段-物理/化学修饰、酶的固定化-物理/化学修饰等组合改造比单一的改造方法具有更高的效率。

REFERENCES
[1]
Sarmah N, Revathi D, Sheelu G, et al. Recent advances on sources and industrial applications of lipases[J]. Biotechnology Progress, 2018, 34(1): 5-28.
[2]
Angajala G, Pavan P, Subashini R. Lipases: an overview of its current challenges and prospectives in the revolution of biocatalysis[J]. Biocatalysis and Agricultural Biotechnology, 2016, 7: 257-270. DOI:10.1016/j.bcab.2016.07.001
[3]
Shelatkar T, Padalia U, Student P. Lipase: an overview and its industrial applications[J]. International Journal of Engineering Science, 2016, 6(10): 2629-2631.
[4]
Negi S. Lipases: a promising tool for food industry[A]//Parameswaran B, Varjani S, Raveendran S. Green Bio-processes: Enzymes in Industrial Food Processing[M]. Singapore: Springer, 2019: 181-198
[5]
Salihu A, Alam MZ. Solvent tolerant lipases: a review[J]. Process Biochemistry, 2015, 50(1): 86-96.
[6]
Mehta A, Bodh U, Gupta R. Fungal lipases: a review[J]. Journal of Biotech Research, 2017, 8(1): 58-77.
[7]
Javed S, Azeem F, Hussain S, et al. Bacterial lipases: a review on purification and characterization[J]. Progress in Biophysics and Molecular Biology, 2018, 132: 23-34. DOI:10.1016/j.pbiomolbio.2017.07.014
[8]
Bruins ME, Janssen AEM, Boom RM. Thermozymes and their applications: a review of recent literature and patents[J]. Applied Biochemistry and Biotechnology, 2001, 90(2): 155-186.
[9]
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1): 1-43.
[10]
Fotouh DMA, Bayoumi RA, Hassan MA. Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry[J]. Enzyme Research, 2016, 2016: 9034364.
[11]
Estupiñán M, Buruaga C, Pastor FIJ, et al. Shift in Bacillus sp. JR3 esterase LipJ activity profile after addition of essential residues from family I.5 thermophilic lipases[J]. Biochemical Engineering Journal, 2019, 144: 166-176. DOI:10.1016/j.bej.2019.01.023
[12]
Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review[J]. Bioresource Technology, 2003, 89(1): 17-34. DOI:10.1016/S0960-8524(03)00033-6
[13]
Sani RK, Krishnaraj RN. Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy[M]. Cham: Springer, 2017: 249-270.
[14]
Bhosale H, Shaheen U, Kadam T. Characterization of a hyperthermostable alkaline lipase from Bacillus sonorensis 4R[J]. Enzyme Research, 2016, 2016: 4170684.
[15]
Christopher LP, Zambare VP, Zambare A, et al. A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2007-2016.
[16]
Sun QQ, Wang H, Zhang HT, et al. Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1[J]. Journal of Bioscience and Bioengineering, 2016, 122(5): 539-544. DOI:10.1016/j.jbiosc.2016.05.003
[17]
Sharma S, Kanwar SS. Purification and bio-chemical characterization of a solvent-tolerant and highly thermostable lipase of Bacillus licheniformis strain SCD11501[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2017, 87(2): 411-419. DOI:10.1007/s40011-015-0612-z
[18]
Golaki BP, Aminzadeh S, Karkhane AA, et al. Cloning, expression, purification, and characterization of lipase 3646 from thermophilic indigenous Cohnella sp. A01[J]. Protein Expression and Purification, 2015, 109: 120-126. DOI:10.1016/j.pep.2014.10.002
[19]
Bakir Z, Metin K. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134[J]. Journal of Microbiology and Biotechnology, 2016, 26(6): 1087-1097. DOI:10.4014/jmb.1512.12056
[20]
Schreck SD, Grunden AM. Biotechnological applications of halophilic lipases and thioesterases[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1011-1021. DOI:10.1007/s00253-013-5417-5
[21]
Ishikawa T, Minegishi H, Shimane Y. Production and characterization of halophilic esterase and lipase from halophilic microorganisms[J]. Studia Universitatis Babes-Bolyai, Biologia, 2019, 64(1): 124-124, 121p.
[22]
Ai L, Huang YP, Wang C. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well[J]. Journal of Basic Microbiology, 2018, 58(8): 647-657. DOI:10.1002/jobm.201800116
[23]
Neagu S, Cojoc R, Tudorache M, et al. The lipase activity from moderately halophilic and halotolerant microorganisms involved in bioconversion of waste glycerol from biodiesel industry[J]. Waste and Biomass Valorization, 2018, 9(2): 187-193. DOI:10.1007/s12649-016-9793-9
[24]
Ghati A, Paul G. Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from 'Bakreshwar' hot spring, India[J]. Process Biochemistry, 2015, 50(5): 771-781. DOI:10.1016/j.procbio.2015.01.026
[25]
Esakkiraj P, Prabakaran G, Maruthiah T, et al. Purification and characterization of halophilic alkaline lipase from Halobacillus sp.[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2016, 86(2): 309-314. DOI:10.1007/s40011-014-0437-1
[26]
Kuddus M. Enzymes in Food Biotechnology: Production, Applications, and Future Prospects[M]. Salt Lake City: Academic Press, 2019: 817-825.
[27]
Salwoom L, Rahman RNZRA, Salleh AB, et al. New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. LSK25, isolated from Signy Island Antarctica[J]. International Journal of Molecular Sciences, 2019, 20(6): 1264. DOI:10.3390/ijms20061264
[28]
Ganasen M, Yaacob N, Rahman RNZRA, et al. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas[J]. International Journal of Biological Macromolecules, 2016, 92: 1266-1276. DOI:10.1016/j.ijbiomac.2016.06.095
[29]
Ji XL, Li S, Wang BQ, et al. Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica[J]. Protein Expression and Purification, 2015, 115: 125-131. DOI:10.1016/j.pep.2015.08.002
[30]
Maharana AK, Singh SM. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23[J]. Journal of Basic Microbiology, 2018, 58(4): 331-342. DOI:10.1002/jobm.201700638
[31]
Madigan MT, Martinko JM, Parker J. Brock Biology of Microorganisms[M]. 9th ed. Upper Saddle River: Prentice Hall, 2000: 1-33
[32]
Tambekar DH, Tambekar S, Bijwe PA. Production and partial characterization of lipase from halo-alkaliphilic Pseudomonas aeruginosa[J]. International Journal of Advances in Pharmacy, Biology and Chemistry, 2015, 4(3): 584-589.
[33]
Ji XL, Chen GY, Zhang Q, et al. Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1[J]. Journal of Basic Microbiology, 2015, 55(6): 718-728. DOI:10.1002/jobm.201400730
[34]
Niyonzima FN, More SS. Microbial detergent compatible lipases[J]. Journal of Scientific & Industrial Research, 2015, 74: 105-113.
[35]
Akmoussi-Toumi S, Khemili-Talbi S, Ferioune I, et al. Purification and characterization of an organic solvent-tolerant and detergent-stable lipase from Haloferax mediterranei CNCMM 50101[J]. International Journal of Biological Macromolecules, 2018, 116: 817-830. DOI:10.1016/j.ijbiomac.2018.05.087
[36]
Ameri A, Shakibaie M, Faramarzi MA, et al. Thermoalkalophilic lipase from an extremely halophilic bacterial strain Bacillus atrophaeus FSHM2: purification, biochemical characterization and application[J]. Biocatalysis and Biotransformation, 2017, 35(3): 151-160. DOI:10.1080/10242422.2017.1308494
[37]
Bacha AB, Al-Assaf A, Moubayed NMS, et al. Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations[J]. Saudi Journal of Biological Sciences, 2018, 25(3): 409-417. DOI:10.1016/j.sjbs.2016.10.006
[38]
García-Silvera EE, Martínez-Morales F, Bertrand B, et al. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production[J]. Biotechnology and Applied Biochemistry, 2018, 65(2): 156-172.
[39]
Gururaj P, Ramalingam S, Devi GN, et al. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07[J]. Brazilian Journal of Microbiology, 2016, 47(3): 647-657. DOI:10.1016/j.bjm.2015.04.002
[40]
Liu G, Hu SQ, Li L, et al. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512[J]. Lipids, 2015, 50(11): 1155-1163. DOI:10.1007/s11745-015-4052-6
[41]
Priji P, Sajith S, Faisal PA, et al. Pseudomonas sp. BUP6 produces a thermotolerant alkaline lipase with trans-esterification efficiency in producing biodiesel[J]. 3 Biotech, 2017, 7(6): 369. DOI:10.1007/s13205-017-0999-8
[42]
Priyanka P, Kinsella G, Henehan GT, et al. Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei[J]. Protein Expression and Purification, 2019, 153: 121-130. DOI:10.1016/j.pep.2018.08.007
[43]
Raza FA, Sabri AN, Rehman A, et al. Characterization of thermophilic alkaline lipase produced by Staphylococcus aureus suitable for leather and detergent industries[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41(2): 287-294. DOI:10.1007/s40995-017-0265-2
[44]
Tian R, Chen HY, Ni Z, et al. Expression and characterization of a novel thermo-alkalistable lipase from hyperthermophilic bacterium Thermotoga maritima[J]. Applied Biochemistry and Biotechnology, 2015, 176(5): 1482-1497. DOI:10.1007/s12010-015-1659-2
[45]
Wang JR, Li YY, Liu DN. Gene cloning, high-level expression, and characterization of an alkaline and thermostable lipase from Trichosporon coremiiforme V3[J]. Journal of Microbiology and Biotechnology, 2015, 25(6): 845-855. DOI:10.4014/jmb.1408.08039
[46]
Yamada C, Sawano K, Iwase N, et al. Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501[J]. Journal of General and Applied Microbiology, 2016, 62(6): 313-319. DOI:10.2323/jgam.2016.06.002
[47]
Zhang X, Li XQ, Xia LM. Expression of a thermo-alkaline lipase gene from Talaromyces thermophilus in recombinant Pichia pastoris[J]. Biochemical Engineering Journal, 2015, 103: 263-269. DOI:10.1016/j.bej.2015.08.011
[48]
Zhang X, Li XQ, Xia LM. Heterologous expression of an alkali and thermotolerant lipase from Talaromyces thermophilus in Trichoderma reesei[J]. Applied Biochemistry and Biotechnology, 2015, 176(6): 1722-1735. DOI:10.1007/s12010-015-1673-4
[49]
Zhu YB, Li HB, Ni H, et al. Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9[J]. World Journal of Microbiology and Biotechnology, 2015, 31(2): 295-306.
[50]
Van Beilen JB, Li Z. Enzyme technology: an overview[J]. Current Opinion in Biotechnology, 2002, 13(4): 338-344. DOI:10.1016/S0958-1669(02)00334-8
[51]
Singh RK, Tiwari MK, Singh R, et al. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes[J]. International Journal of Molecular Sciences, 2013, 14(1): 1232-1277. DOI:10.3390/ijms14011232
[52]
Hibbert EG, Dalby PA. Directed evolution strategies for improved enzymatic performance[J]. Microbial Cell Factories, 2005, 4(1): 29. DOI:10.1186/1475-2859-4-29
[53]
Schmidt-Dannert C, Arnold FH. Directed evolution of industrial enzymes[J]. Trends in Biotechnology, 1999, 17(4): 135-136. DOI:10.1016/S0167-7799(98)01283-9
[54]
Korman TP, Sahachartsiri B, Charbonneau DM, et al. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution[J]. Biotechnology for Biofuels, 2013, 6(1): 70.
[55]
Liu YH, Liu H, Huang L, et al. Improvement in thermostability of an alkaline lipase I from Penicillium cyclopium by directed evolution[J]. RSC Advances, 2017, 7(61): 38538-38548. DOI:10.1039/C7RA06307E
[56]
Veno J, Kamarudin NHA, Ali MSM, et al. Directed evolution of recombinant C-terminal truncated Staphylococcus epidermidis Lipase AT2 for the enhancement of thermostability[J]. International Journal of Molecular Sciences, 2017, 18(11): 2202. DOI:10.3390/ijms18112202
[57]
Zhang NY, Suen WC, Windsor W, et al. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution[J]. Protein Engineering, Design and Selection, 2003, 16(8): 599-605. DOI:10.1093/protein/gzg074
[58]
Goomber S, Kumar R, Singh R, et al. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees[J]. International Journal of Biological Macromolecules, 2016, 88: 507-514. DOI:10.1016/j.ijbiomac.2016.04.022
[59]
He D, Luo W, Wang ZY, et al. Establishment and application of a modified membrane-blot assay for Rhizomucor miehei lipases aimed at improving their methanol tolerance and thermostability[J]. Enzyme and Microbial Technology, 2017, 102: 35-40. DOI:10.1016/j.enzmictec.2017.03.010
[60]
Korendovych IV. Rational and semirational protein design[A]//Bornscheuer UT, Höhne M. Protein Engineering: Methods and Protocols[M]. New York: Humana Press, 2018: 15-23
[61]
Chopra N, Kaur J. Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network[J]. Molecular and Cellular Biochemistry, 2018, 443(1/2): 159-168.
[62]
Gihaz S, Kanteev M, Pazy Y, et al. Filling the void: introducing aromatic interactions into solvent tunnels to enhance lipase stability in methanol[J]. Applied and Environmental Microbiology, 2018, 84(23): e02143-18.
[63]
Li GL, Chen Y, Fang XR, et al. Identification of a hot-spot to enhance Candida rugosa lipase thermostability by rational design methods[J]. The Royal Society of Chemistry Advances, 2018, 8: 1948-1957.
[64]
Li GL, Fang XR, Su F, et al. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds[J]. Applied and Environmental Microbiology, 2018, 84(2): e02129-17.
[65]
Ishak SNH, Masomian M, Kamarudin NHA, et al. Changes of thermostability, organic solvent, and pH stability in Geobacillus zalihae HT1 and its mutant by calcium ion[J]. International Journal of Molecular Sciences, 2019, 20(10): 2561. DOI:10.3390/ijms20102561
[66]
Kumar R, Singh R, Kaur J. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations[J]. Biochemical and Biophysical Research Communications, 2014, 447(4): 626-632. DOI:10.1016/j.bbrc.2014.04.051
[67]
Li LL, Zhang SH, Wu WK, et al. Enhancing thermostability of Yarrowia lipolytica lipase 2 through engineering multiple disulfide bonds and mitigating reduced lipase production associated with disulfide bonds[J]. Enzyme and Microbial Technology, 2019, 126: 41-49. DOI:10.1016/j.enzmictec.2019.03.008
[68]
Wu JP, Li M, Zhou Y, et al. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability[J]. Biotechnology Letters, 2015, 37(2): 403-407. DOI:10.1007/s10529-014-1683-2
[69]
Zhang HT, Sang JC, Zhang Y, et al. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability[J]. International Journal of Biological Macromolecules, 2019, 137: 1190-1198. DOI:10.1016/j.ijbiomac.2019.07.070
[70]
Zhao JF, Wang Z, Gao FL, et al. Enhancing the thermostability of Rhizopus oryzae lipase by combined mutation of hot-spots and engineering a disulfide bond[J]. RSC Advances, 2018, 8(72): 41247-41254. DOI:10.1039/C8RA07767C
[71]
Wen S, Tan TW, Zhao HM. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica[J]. Journal of Biotechnology, 2013, 164(2): 248-253. DOI:10.1016/j.jbiotec.2012.08.023
[72]
Zhang JH, Lin Y, Sun YF, et al. High-throughput screening of B factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction[J]. Enzyme and Microbial Technology, 2012, 50(6/7): 325-330.
[73]
Yedavalli P, Rao NM. Engineering the loops in a lipase for stability in DMSO[J]. Protein Engineering, Design and Selection, 2013, 26(4): 317-324. DOI:10.1093/protein/gzt002
[74]
Tian KY, Tai K, Chua BJW, et al. Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease[J]. Bioresource Technology, 2017, 245: 1491-1497. DOI:10.1016/j.biortech.2017.05.108
[75]
Dror A, Kanteev M, Kagan I, et al. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9449-9461. DOI:10.1007/s00253-015-6700-4
[76]
Dwevedi A. Basics of enzyme immobilization[A]//Dwevedi A. Enzyme Immobilization: Advances in Industry, Agriculture, Medicine, and the Environment[M]. Cham: Springer, 2016: 21-44
[77]
Liu DM, Chen J, Shi YP. Advances on methods and easy separated support materials for enzymes immobilization[J]. TrAC Trends in Analytical Chemistry, 2018, 102: 332-342. DOI:10.1016/j.trac.2018.03.011
[78]
Zare A, Bordbar AK, Jafarian F, et al. Candida rugosa lipase immobilization on various chemically modified Chromium terephthalate MIL-101[J]. Journal of Molecular Liquids, 2018, 254: 137-144. DOI:10.1016/j.molliq.2018.01.097
[79]
de Almeida AF, Terrasan CRF, Terrone CC, et al. Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: hydrolysis of triacylglycerol and soy lecithin[J]. Process Biochemistry, 2018, 65: 71-80. DOI:10.1016/j.procbio.2017.10.019
[80]
Gao Z, Chu JL, Jiang TY, et al. Lipase immobilization on functionalized mesoporous TiO2: specific adsorption, hyperactivation and application in cinnamyl acetate synthesis[J]. Process Biochemistry, 2018, 64: 152-159. DOI:10.1016/j.procbio.2017.09.011
[81]
Ferreira MM, Santiago FLB, Da Silva NAG, et al. Different strategies to immobilize lipase from Geotrichum candidum: kinetic and thermodynamic studies[J]. Process Biochemistry, 2018, 67: 55-63. DOI:10.1016/j.procbio.2018.01.028
[82]
Asmat S, Husain Q, Khan MS. A polypyrrole–methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: preparation, activity, stability and molecular docking investigations[J]. New Journal of Chemistry, 2018, 42(1): 91-102.
[83]
Aghababaie M, Beheshti M, Bordbar AK, et al. Novel approaches to immobilize Candida rugosa lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane[J]. RSC Advances, 2018, 8(9): 4561-4570. DOI:10.1039/C7RA11866J
[84]
Voběrková S, Solčány V, Vršanská M, et al. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates[J]. Chemosphere, 2018, 202: 694-707. DOI:10.1016/j.chemosphere.2018.03.088
[85]
Omay D. Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications[J]. Biocatalysis, 2014, 32(2): 132-140. DOI:10.3109/10242422.2014.894027
[86]
Rehman S, Wang P, Bhatti HN, et al. Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films[J]. International Journal of Biological Macromolecules, 2017, 97: 279-286. DOI:10.1016/j.ijbiomac.2017.01.038
[87]
Jin WB, Xu Y, Yu XW. Improved catalytic performance of lipase under non-aqueous conditions by entrapment into alkyl-functionalized mesoporous silica[J]. New Journal of Chemistry, 2019, 43(1): 364-370. DOI:10.1039/C8NJ04312D
[88]
Mohtar NS, Rahman MBA, Mustafa S, et al. Spray-dried immobilized lipase from Geobacillus sp. strain ARM in sago[J]. PeerJ, 2019, 7: e6880. DOI:10.7717/peerj.6880
[89]
Hou C, Wang Y, Zhu H, et al. Formulation of robust organic–inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization[J]. Journal of Materials Chemistry B, 2015, 3(14): 2883-2891. DOI:10.1039/C4TB02102A
[90]
Nicoletti G, Cipolatti EP, Valério A, et al. Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate[J]. Bioprocess and Biosystems Engineering, 2015, 38(9): 1739-1748. DOI:10.1007/s00449-015-1415-6
[91]
Akoz E, Sayin S, Kaplan S, et al. Improvement of catalytic activity of lipase in the presence of calix[J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 595-604.
[92]
Cirillo G, Nicoletta FP, Curcio M, et al. Enzyme immobilization on smart polymers: catalysis on demand[J]. Reactive and Functional Polymers, 2014, 83: 62-69. DOI:10.1016/j.reactfunctpolym.2014.07.010
[93]
Sharifi M, Robatjazi SM, Sadri M, et al. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: characterization and stability studies[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 191-199.
[94]
Branco RV, Gutarra MLE, Guisan JM, et al. Improving the thermostability and optimal temperature of a lipase from the hyperthermophilic archaeon Pyrococcus furiosus by covalent immobilization[J]. Biomed Research International, 2015, 2015: 250532.
[95]
Rios NS, Mendez-Sanchez C, Arana-Peña S, et al. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: improved stability and reusability[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2019, 1867(9): 741-747. DOI:10.1016/j.bbapap.2019.06.005
[96]
Gao J, Kong WX, Zhou LY, et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization[J]. Chemical Engineering Journal, 2017, 309: 70-79. DOI:10.1016/j.cej.2016.10.021
[97]
Wang XY, Jiang XP, Li Y, et al. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus[J]. International Journal of Biological Macromolecules, 2015, 75: 44-50. DOI:10.1016/j.ijbiomac.2015.01.020
[98]
Mehrasbi MR, Mohammadi J, Peyda M, et al. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil[J]. Renewable Energy, 2017, 101: 593-602. DOI:10.1016/j.renene.2016.09.022
[99]
Çakmakçi E, Muhsir P, Demir S. Physical and covalent immobilization of Lipase onto amine groups bearing thiol-ene photocured coatings[J]. Applied Biochemistry and Biotechnology, 2017, 181(3): 1030-1047.
[100]
Hou C, Zhu H, Li YF, et al. Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1249-1259. DOI:10.1007/s00253-014-5990-2
[101]
La Rotta Hernandez CE, Lütz S, Liese A, et al. Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking[J]. Enzyme and Microbial Technology, 2005, 37(6): 582-588. DOI:10.1016/j.enzmictec.2005.02.025
[102]
Guajardo N, Ahumada K, De María PD, et al. Remarkable stability of Candida antarctica lipase B immobilized via cross-linking aggregates (CLEA) in deep eutectic solvents[J]. Biocatalysis and Biotransformation, 2019, 37(2): 106-114. DOI:10.1080/10242422.2018.1492567
[103]
Rehman S, Bhatti HN, Bilal M, et al. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics[J]. International Journal of Biological Macromolecules, 2016, 91: 1161-1169. DOI:10.1016/j.ijbiomac.2016.06.081
[104]
Zhang WW, Yang XL, Jia JQ, et al. Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 115: 83-89. DOI:10.1016/j.molcatb.2015.02.003
[105]
Liu Y, Guo C, Liu CZ. Enhancing the resolution of (R, S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field[J]. Chemical Engineering Journal, 2015, 280: 36-40. DOI:10.1016/j.cej.2015.05.089
[106]
Picó EA, López C, Cruz-Izquierdo Á, et al. Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids[J]. Journal of Bioscience and Bioengineering, 2018, 126(4): 451-457. DOI:10.1016/j.jbiosc.2018.04.009
[107]
Cui JD, Cui LL, Jia SR, et al. Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for epoxidation of oleic acid[J]. Journal of Agricultural and Food Chemistry, 2016, 64(38): 7179-7187. DOI:10.1021/acs.jafc.6b01939
[108]
Blanco RM, Roldán I. Two additives to improve stability of immobilized lipase[J]. Biocatalysis and Biotransformation, 2018, 36(3): 224-232. DOI:10.1080/10242422.2017.1314466
[109]
Cao H, Jiang Y, Zhang HY, et al. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: insights from experiments and molecular dynamics simulation[J]. Enzyme and Microbial Technology, 2017, 96: 157-162. DOI:10.1016/j.enzmictec.2016.10.007
[110]
Jayawardena MB, Yee LH, Poljak A, et al. Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions[J]. Process Biochemistry, 2017, 57: 131-140. DOI:10.1016/j.procbio.2017.03.014
[111]
Kajiwara S, Komatsu K, Yamada R, et al. Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran[J]. Biochemical Engineering Journal, 2019, 142: 1-6. DOI:10.1016/j.bej.2018.11.003
[112]
Li XJ, Zhang C, Li S, et al. Improving catalytic performance of Candida rugosa lipase by chemical modification with polyethylene glycol functional ionic liquids[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8072-8079.
[113]
Moura MVH, Da Silva GP, De Oliveira Machado AC, et al. Displaying lipase B from Candida antarctica in Pichia pastoris using the yeast surface display approach: prospection of a new anchor and characterization of the whole cell biocatalyst[J]. PLoS One, 2015, 10(10): e0141454. DOI:10.1371/journal.pone.0141454
[114]
Yuzbasheva EY, Yuzbashev TV, Perkovskaya NI, et al. Cell surface display of Yarrowia lipolytica lipase Lip2p using the cell wall protein YlPir1p, its characterization, and application as a whole-cell biocatalyst[J]. Applied Biochemistry and Biotechnology, 2015, 175(8): 3888-3900. DOI:10.1007/s12010-015-1557-7
[115]
Khan MF, Kundu D, Hazra C, et al. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation[J]. International Journal of Biological Macromolecules, 2019, 136: 66-82. DOI:10.1016/j.ijbiomac.2019.06.042
[116]
Matsumoto M, Matsui E. Enhanced activities and thermostability of lipase pretreated with carboxylic and perflurocarboxylic acids in transesterification[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(11): 3219-3222.
[117]
Zaak H, Fernandez-Lopez L, Otero C, et al. Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde[J]. Enzyme and Microbial Technology, 2017, 106: 67-74. DOI:10.1016/j.enzmictec.2017.07.001
[118]
Xu BL, Dai MH, Chen YH, et al. Improving the thermostability and activity of a thermophilic subtilase by incorporating structural elements of its psychrophilic counterpart[J]. Applied and Environmental Microbiology, 2015, 81(18): 6302-6313. DOI:10.1128/AEM.01478-15
[119]
Zhu H, Xu BL, Liang XL, et al. Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp. WF146[J]. Journal of Biological Chemistry, 2013, 288(48): 34826-34838. DOI:10.1074/jbc.M113.498774
[120]
Liang XL, Bian Y, Tang XF, et al. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 999-1006. DOI:10.1007/s00253-010-2534-2
微生物脂肪酶稳定性研究进展
徐碧林 , 朱庆