微生物学通报  2018, Vol. 45 Issue (7): 1574−1587

扩展功能

文章信息

李可峰, 陈海涛, 吴龙飞, 宋涛
LI Ke-Feng, CHEN Hai-Tao, WU Long-Fei, SONG Tao
细菌的光响应及其机制研究进展
Behavior and mechanism of bacterial response to light illumination
微生物学通报, 2018, 45(7): 1574-1587
Microbiology China, 2018, 45(7): 1574-1587
DOI: 10.13344/j.microbiol.china.170800

文章历史

收稿日期: 2017-10-09
接受日期: 2018-02-01
网络首发日期(www.cnki.net): 2018-02-14
细菌的光响应及其机制研究进展
李可峰1,2,3,4 , 陈海涛1,2,4 , 吴龙飞4,5 , 宋涛1,2,4     
1. 中国科学院电工研究所生物电磁学北京市重点实验室     北京    100190;
2. 中国科学院大学    北京    100049;
3. 山东体育学院    山东 济南    250102;
4. 中-法趋磁多细胞生物进化与发育联合实验室    北京    100190;
5. Laboratorie International Associé de la Evolution and Development of Magnetotactic MultiCellular organisms (LIA-MagMC), CNRS, Marseille 13402, France
摘要:光作为一种环境信号,对细菌的生长和代谢有广泛的调节作用。对于光合细菌来讲,一方面,感光蛋白可以协助光合细菌游向最适的光环境,以利于其细胞内的光系统进行光合作用;另一方面,一些光合细菌可以感受并捕获光能为代谢提供能量。目前发现有些非光合细菌也有光响应,感光蛋白在细菌基因组内是普遍存在的,而且与细菌的一些生理功能有关。本文以非光合细菌为主介绍了目前在细菌中发现的趋光现象及其响应机制。
关键词细菌     光响应     感光蛋白     光能酶    
Behavior and mechanism of bacterial response to light illumination
LI Ke-Feng1,2,3,4, CHEN Hai-Tao1,2,4, WU Long-Fei4,5, SONG Tao1,2,4     
1. Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of;
2. Sciences, Beijing 100190, China;
3. Shandong Sport University, Jinan, Shandong 250102, China;
4. China-France Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China;
5. Laboratorie International Associé de la Evolution and Development of Magnetotactic MultiCellular Organisms (LIA-MagMC), CNRS, Marseille 13402, France
Received: October 09, 2017; Accepted: February 01, 2018; Published online (www.cnki.net): February 14, 2018
Foundation item: National Natural Science Foundation of China (31300689)
*Corresponding author: SONG Tao, Tel:86-10-82547164;E-mail:songtao@mail.iee.ac.cn.
Abstract: Light is an important and ubiquitous environmental signal that regulates bacterial metabolism and growth. On one hand photosynthetic bacteria swim to the zones with light intensity optimal for the functioning of the photon-driven carbon assimilation. On the other hand, some phototrophic bacteria also sense and capture light to derive energy for metabolisms other than photosynthesis. Beside the phototrophic bacteria, certain microbes use the light only for the purpose of communication and environmental positioning. Large variety of photosensory proteins is encoded in the bacterial genomes and responsible for these physiological functions. Here, we review the light-induced physiological and behavioral responses and the mechanism of light mediated signaling in bacteria, especially in nonphototrophic bacteria.
Key words: Bacteria     Photoresponse     Photosensory proteins     Photoenzyme    

光作为环境的重要因子,是植物、藻类和光合细菌进行光合作用的能量来源,也是生命体调节生命活动的重要信号。细菌(真细菌)按其能量代谢途径主要分为2种:光能营养(Phototrophic)型的光合细菌和化能营养(Chemotrophic)型的非光合细菌。光合细菌是一类具有原始光能合成体系的原核生物,包括不产氧光合细菌和产氧光合细菌(如蓝细菌)。一直以来,细菌对光的反应被认为是这类光能营养型细菌的专属调节,其细胞内的感光蛋白(Photosensory proteins)可以帮助光合细菌调控光合作用,产生趋光性并寻找最适的光环境以利于获得光能量。非光合细菌不以光为能量来源,而是以有机物或无机物作为能源。近些年研究发现,许多非光合细菌基因组内也普遍存在感光蛋白基因[1-3]。这些感光蛋白使得这些非光合细菌也能感光,并具有了趋光性且参与了非光合细菌一系列的生理活动。本文以非光合细菌为主介绍了近年来细菌的光响应及其机制研究进展。

1 细菌的趋光性

100多年前,细菌被发现具有趋光性[4],它们可以感知光源及(或)光强,沿着光轴线朝强度梯度增加(正向)或降低(反向)的方向游动。一些光合细菌(如AnabaenaSynechocystis)可以缓慢地向着光源随机游走,从而表现一定的趋光聚集性。Synechocystis的趋光特性表现为正向和负向2种趋光行为。比如,Synechocystis sp. PCC 6803可通过感受光的方向产生趋光行为;560、660和760 nm的可见光可引起正趋光性,而360 nm的光诱导产生明显的负趋光性[5]。Chau等[6]进一步量化了Synechocystis单细胞对不同波长和强度光的反应,发现红光和绿光主要影响细菌的运动偏差而不是速度,蓝光则可以完全抑制其运动。这种光响应行为在光合细菌中广泛存在[7-8]

对于需要阳光作为能量的光合细菌来讲,其具有趋光行为不难理解,然而研究人员发现很多非光合细菌也有趋光行为。Acinetobacter baumannii是一种在医院里广泛存在的病原菌,可对蓝光有响应[9]Escherichia coli对蓝光则表现出负趋向行为[10]。趋磁细菌是一种化能营养型细菌,属于革兰氏阴性细菌。趋磁细菌细胞体内有一种特殊的“细胞器”,即磁小体。磁小体通常是纳米级、有外膜包被的Fe3O4或Fe3S4磁性晶体颗粒,链状排列的磁小体使趋磁细菌在地磁场中能够沿着磁力线运动而到达最适合它的生活环境。研究发现一些趋磁细菌也具有光响应。比如,Frankel等发现Magnetococcus strain MC-1对蓝光和黄光具有响应,而对红光则无[11]。在自然环境中,趋磁细菌在趋化性和趋光性之间进行协调[12],而且这种光响应因光条件的不同而有差异。当面临短波长和高强度的光强时,它们会表现出避光行为[13-15]。而低强度的可见光可使Candidatus Magnetoglobus multicellularis和Magnetospirillum magneticum strain AMB-1表现出正向趋光行为[16-17]

趋光性对于细菌来讲是一种积极的选择特性,它可以使细菌游向适宜的光环境以满足生长代谢所需,也可以使细菌远离不利的光环境,如过高的光强或短波长UV辐射,以躲避光毒作用或者其他损伤。细菌对光的感知是趋光行为的首要环节,而这主要依赖于细胞内的感光蛋白[10]

2 细菌胞内的感光蛋白

一般认为,细菌具有趋光性与感光蛋白有关[10]。感光蛋白捕捉光刺激的辅助因子称为发色团(Chromophore),不同的发色团能感应特定波段的光质。表 1列出了目前在细菌中发现的7种感光蛋白及其各自的发色团。图 1显示了它们各自的结构特征。这些发色团通过共价键或非共价键与受体蛋白相连,吸收光子通过信号转导影响生物体的生命活动。7种感光蛋白中,研究较多的是细菌光敏色素(Bacteriophytochrome)、LOV (Light oxygen voltage)蛋白、核黄素蓝光受体(BLUF)和光敏黄蛋白(PYP)。另外,研究发现一些细菌的细胞内还有可直接利用光的光能酶,比如光裂解酶[64-65]和最新发现的脂肪酸光脱羧酶(Fatty acid photodecarboxylase,FAP)[66]

表 1 细菌中感光蛋白种类、特征及其分布 Table 1 Type, characteristics and distribution of bacterial photosensory proteins
Photosensory proteins Chromophore Light sensitivity Species Function References
Bacteriophytochrome Linear tetrapyrroles Red/far-red light or near infrared; UV-A to near infrared Synechocystis sp. PCC 6803; Fremyella diplosiphon; Anabaena sp. PCC 7120; Rhodobacter sphaeroides; Rhodopseudomonas palustris; Thermosynechococcus elongatus BP-1 Regulation of photosynthetic gene expression, phycobilisome composition; phototaxis; motility/sessility; growth; cell aggregation [18-25]
Pseudomonas syringae pv. syringae B728a; Pseudomonas aeruginosa; Agrobacterium fabrum; Agrobacterium tumefaciens; Bradyrhizobium sp. strain ORS278; Xanthomonas campestris; Deinococcus radiodurans Regulation of conjugation; swimming motility; growth; virulence; infectivity [26-31]
LOV FMN Blue Synechococcus elongatus; Rhodobacter sphaeroides; Dinoroseobacter shibae; Erythrobacter litoralis Regulation of c-di-GMP level, photosynthetic gene expression, photopigments synthesis; chemotaxis; stress [32-35]
Bacillus subtilis; Listeria monocytogenes; Brucella abortus; Brucella melitensis; Pseudomonas putida KT2440; Pseudomonas syringae pv. Syringae; Methylocystis; Xanthomonas citri subsp. Citri; Xanthomonas axonopodis pv. Citri; Caulobacter crescentus; Rhizobium leguminosarum Regulation of GSR genes; cell-cell adhesion; motility; virulence; invasiveness; biofilm; EPS [36-46]
BLUF FAD Blue Synechocystis sp. PCC 6803; Oscillatoria acuminata; Rhodopseudomonas palustris; Rhodobacter sphaeroides Regulation of photosynthetic gene expression; phototaxis [47-51]
Escherichia coli; Klebsiella pneumonia; Acinetobacter baumannii; Beggiatoa sp. Motility; virulence; biofilm [9, 52-54]
PYP pCA Blue Ectothiorhodospira halophila; Rhodospirillum salexigens; Rhodocista centenaria; Chromatium salexigens Photophobic response [55-57]
Idiomarina loihiensis Biofilm [58]
Rhodopsin Retinal Green/orange Anabaena sp. PCC 7120 Regulation of phycobilisome composition [59]
Salinibacter ruber Phototaxis [60]
Cryptochrome FAD UV/blue Synechocystis sp. PCC 6803 Regulation of gene expression; DNA repair; phototaxis [61]
OCP Carotenoid Blue/green Synechocystis PCC 6803; Arthrospira maxima Quenching of excess energy in phycobilisomes [62-63]

图 1 细菌各种感光蛋白的结构(含发色团) Figure 1 The structures of chromophores and chromophore-binding domains of representative photosensory proteins 注:A:细菌光敏色素;B:LOV;C:BLUF;D:PYP;E:视紫红质;F:隐花色素;G:OCP. A−G的蛋白质数据库ID分别为3S7Q、3T50、2BYC、2QJ7、1XIO、1NP7和3MG1. Note: A: Bacteriophytochrome; B: LOV; C: BLUF; D: PYP; E: Rhodopsin; F: Cryptochrome; G: OCP; Protein databank (PDB) ID numbers for A−G structures: 3S7Q, 3T50, 2BYC, 2QJ7, 1XIO, 1NP7 and 3MG1.
2.1 细菌光敏色素

1996年,F. diplosiphon中的RcaE蛋白被发现具有与光敏色素相似的序列,其N端具有光敏色素发色团结合的结构域,C端具有双组分系统的组氨酸激酶结构域,这也是光敏色素在原核生物中首次被发现[18]。1997年,Yeh等在Synechocystis sp. PCC 6803中发现了Cph1光敏色素蛋白;Cph1在红光和远红光下可进行可逆的光转换,其N端的光感受区包括PAS (Per/Arnt/Sim)、GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA)和PHY (Phytochrome) 3个结构域,其中GAF结构域含有发色团结合位点(线性的四吡咯与GAF结构域中保守的半胱氨酸残基通过共价键相偶联,PHY结构域属于GAF结构域超家族);其C端的光调节区有一个组氨酸激酶区域(HKD),用于信号转导[19]。Cph2是在Synechocystis中发现的第2个光敏色素蛋白,与Cph1不同的是:Cph2不含有PAS域,而含有串联的GAF域,另外信号输出结构域不是组氨酸激酶,而是GGDEF和EAL域[20]Synechocystis sp. strain PCC 6803用645 nm和704 nm的红光照射时,可产生正向的趋光行为,而换作远红光(760 nm)照射时则可抑制这种行为,研究发现PCC 6803细胞内的蛋白PisJ1 (后又被称为PixJ1或TaxD1)具有2个可绑定发色团的GAF结构域,其C端具有MCP信号域,N端有2个跨膜片段可以将蛋白锚定在膜上,细胞通过CheA/CheY信号转导系统调控IV型菌毛以控制泳动方向[21, 67],因此PisJ1做为红光受体介导了Synechocystis的红光正向趋光行为。

1999年,细菌光敏色素在D. radioduransP. aeruginosa中的发现使研究者们认识到细菌中并非只有光合细菌能感光[27]。基因序列分析发现,这2种菌的基因可分别编码D. radiodurans BphP (DrBphP)和P. aeruginosa BphP (PaBphP)蛋白,其N端约500个氨基酸与光敏色素的发色团结合区域同源。但一个重要的差别是2个BphP蛋白没有保守的半胱氨酸位点。另外,蛋白的C端约250个氨基酸为组氨酸激酶区域,其功能类似于双组分系统的调节子。A. fabrum细胞内含有光敏色素Agp1和Agp2。Bai等发现A. fabrum中的光敏色素Agp1和Agp2可以调节细菌之间质粒的接合转移,这种功能对红光非常敏感。在光条件下,光敏色素系统可以抑制接合[29]。Yang等纯化了P. aeruginosa的光敏色素,并对其晶体结构进行了解析,揭示了光转换时“域与域”之间的相互作用[68]

光敏色素以线性的四吡咯为发色团,通过顺反异构感受红光/远红光区(波长600−800 nm)。光敏色素有2种不同的光化学形式,即Pr (Z型)与Pfr (E型)。Pr是生理失活型,Pfr是生理激活型。Pr的高吸收峰在690−710 nm,Pfr的高吸收峰在750−760 nm。Pr吸收红光后,可转换为Pfr,而Pfr吸收远红光后可逆转为Pr。细菌光敏色素最典型的结构特征是具有可绑定四吡咯的GAF结构域。传统的光敏色素以Pr为基态,在红光照射下,发色团围绕四吡咯C-D环的C15=C16双键发生Z/E异构化,从而带动光敏色素从Pr状态转换到Pfr状态[69]。Pfr吸收远红光后能以毫秒级的速度逆转为Pr,也可在黑暗条件下逆转为Pr,所需的时间为几分钟到几小时[70-71]。但研究发现也有少数细菌光敏色素可在黑暗条件下发生Pr到Pfr的转换,如A. tumefaciens的光敏色素Agp2[28]。Agp2与发色团结合后,首先产生短暂的类Pr中间产物(Intermediate),随后转换成有高组氨酸激酶活性的稳定的Pfr。远红光也可使Pfr转换为Pr,但Pr不稳定会迅速逆转为Pfr,由此可见Agp2似乎以Pfr为基态[72]。除Agp2外,Bradyrhizobium中的BrBphP1和P. aeruginosa中的PaBphP1以及R. palustris中的RpBphP1、RpBphP5、RpBphP6,也具有与Agp2相同的红光/远红光逆转换的特性,研究者将这类细菌光敏色素命名为“Bathy bacteriophytochromes”[73]

细菌光敏色素中有一类特殊的蛋白,即蓝细菌光敏色素(Cyanobacteriochromes,CBCRs),可仅靠GAF域实现可逆的光化学转换。CBCRs可吸收的光谱广泛,从可见光到近紫外光均有吸收光谱。比如,TePixJ属于蓝光/绿光型,其光化学形式为Pb和Pg,吸收蓝光和绿光后可完成Pb/Pg的光转换[25]。AnPixJ属于红光/绿光型CBCRs,其光化学形式为Pr和Pg,吸收红光和绿光后可完成Pr/Pg的光转换[74]。目前仅在光合细菌中发现了CBCRs,基因序列分析表明光合细菌中还存在大量未进行功能鉴定的CBCRs,这也从分子水平反映了光合细菌与光关系的复杂性。迄今为止,对于CBCRs中越来越多的不同光化学特性所知甚少,但是这些不同类型的光敏色素有一个共同点,即它们的光化学反应发起于C15=C16双键的光异构化,由此带动GAF域产生光化学事件,进而产生一系列的生物学效应[75]

2.2 LOV蛋白

2002年,B. subtilis中蓝光受体YtvA-LOV的发现使研究者们进一步确认了非光合细菌也能感光[36]。YtvA的N末端与LOV域高度同源,拥有相似的蓝光感应机制,具有保守的半胱氨酸活性位点和LOV光化学反应特性。Briggs对P. syringaeB. melitensis的LOV蛋白的生化特性进行了鉴定,发现它们均为LOV组氨酸蛋白,其激酶活性受蓝光调节[76]。Kraiselburd等通过基因组序列分析发现X. axonopodis pv. citri中存在一个LOV蛋白(Xac-LOV)。在大肠杆菌中获得重组Xac-LOV蛋白,纯化后进行光谱分析,发现其具有标准的LOV光化学反应[44]

目前,在光合细菌中只发现了少数LOV蛋白。SL2是在S. elongatus发现的LOV蛋白。除LOV域外,SL2还含有GGDEF和EAL域,前者具有二鸟苷酸环化酶活性,后者具有磷酸二酯酶活性,分别负责细菌特有的第二信使信号分子c-di-GMP的合成和降解,而蓝光照射SL2后可提高磷酸二酯酶的活性[32]。RsLOV是在R. sphaeroides中发现的一个短LOV蛋白,只含有1个LOV结构域。转录组和生理学研究表明RsLOV参与光合基因表达的调控,另外与碳水化合物代谢、趋化性以及细胞对光氧化胁迫的反应也有关,由此可见,RsLOV不仅影响蓝光依赖性的基因表达,同时也影响氧化还原反应依赖性的代谢调节[77]。DsLOV是D. shibae中只含有1个LOV域的LOV蛋白,突变体实验结果显示DsLOV在蓝光刺激下可以诱导光合色素的合成[34]

LOV域属于PAS结构域超级家族。LOV蛋白的核心结构域由5个反向平行的β片层(Aβ、Bβ、Gβ、Hβ和Iβ)和4个α螺旋(Cα、Dα、Eα和Fα)组成。Eα和Fα螺旋位于β片层的对面形成口袋将FMN包含在其中(图 1B)。在黑暗条件下,LOV核心区域与FMN非共价结合。在蓝光刺激下,FMN的C(4a)与Eα螺旋上一个保守的半胱氨酸(位于保守的GXNCRFLQ序列)的硫醇基团共价结合完成光激发,这个过程从初始光激发的单重态到三线态大概需要0.1−10 ns,而黑暗条件下衰变到基态最长需要数小时[78]。Endres等发现D. shibae的DsLOV的核心结构域与典型的LOV结构相同,FMN同样非共价结合在β片层、Eα和Fα螺旋形成的口袋里,其衰变的平均时间为9.6 s,是目前所知从光激发到基态所需时间最短的LOV蛋白,其简短的结构和独特的光物理特性为研究细菌LOV蛋白感光机制提供了一个很好的模型[34]

典型的LOV蛋白除具有核心的LOV区外,还包含其他一些信号元件,如HKD、GGDEF、EAL、转录因子等。RsLOV和DsLOV等是一类仅含有1个LOV域的短LOV蛋白(Short LOV,sLOV),缺失与信号转导有关的效应器元件,其LOV结构域的N端和C端仅有一些延伸出来的短片段螺旋,分别被称为N端帽子(Axα-helix)和C端Jα-helix。有的sLOV只含有其中之一(Axα-helix或Jα-helix)。多结构域LOV蛋白的N端和C端也存在这些螺旋结构。研究发现这些短片段对于维持LOV蛋白结构的完整性以及蛋白质正确的折叠非常重要[79]。这些短片段介导了LOV蛋白二聚体的形成以及方式,影响着相应的光依赖性的构象变化,对于光信号的转导具有重要的作用。基因组分析得知sLOV约占已测序的细菌LOV总数的13%[80]。尽管这种蛋白在细菌中大量存在,但只有少数被进行了鉴定,如McLOV[42]和上述的RSLOV、DsLOV。由于sLOV结构简单且便于分析鉴定,有望成为一种新的光遗传学工具。

2.3 BLUF

2002年,Gomelsky等发现R. sphaeroides中的蓝光敏感蛋白AppA含有一个FAD发色团,可以调控光合基因的表达[51]。BlsA是A. baumannii的BLUF受体蛋白,它的功能与光下病原菌的活力、生物膜的形成和致病性有关,其基因表达可能受光调控[9]。在K. pneumonia中,含有BLUF结构域的感光蛋白为BlrP1,它是一种二聚环核苷酸磷酸二酯酶,其酶活性在光下可提高4倍[53, 81]。BLUF由数个混合的β片层和2个与之平行的α螺旋组成,FAD嵌在2个α螺旋中间(图 1C)。BLUF蛋白都含有与功能密切相关的保守的酪氨酸、谷氨酰胺和蛋氨酸残基。光周期是由光刺激后产生一个电子开始,然后一个质子从保守的酪氨酸转移到黄素,产生双自由基(Bi-radical)[82]。目前,由黄素产生的信息如何通过BLUF进一步传递还没有共识,但是普遍认为在这一过程中保守的谷氨酰胺残基起了重要的作用。

2.4 PYP

细菌光敏色素、LOV和BLUF感光蛋白除了N端的光感受区外,通常C端会有信号输出结构域,如HKD、GGDEF、EAL等,而大部分PYP往往只有一个结构域。PYP的首次发现是在Ect. halophila中,它介导了蓝光的避光反应[55]。PYP属于一种胞质感光蛋白,有时也以PYP和光敏色素的杂合体形式出现,如R. centenaria的Ppr[57]。PYP发色团是对香豆酸(p-coumaric acid,pCA),去质子化的对香豆酸(pCA)通过硫酯键共价结合在Cys69残基上。在蓝光刺激下,pCA在皮秒(ps)内发生顺反异构形成中间产物pR465,然后在微秒(µs)内质子化形成pB355态,pB355去质子化重新异构化又返回基态,从而完成一个光循环[83]

2.5 光能酶

光系统是进行光吸收的功能单位,是由叶绿素、类胡萝卜素、脂和蛋白质组成的复合物。光合细菌可通过光系统利用光为能源发生化学反应。另外一种研究较多的是可利用光能的DNA光解酶(Photolyase),它能够修复生物体在紫外线照射下受损的DNA[64-65]。2017年,Sorigué等在Chlorella variabilis NC64A中发现了一种新的光能酶(Photoenzyme)——脂肪酸光脱羧酶(Fatty acid photodecarboxylase,FAP)[66]。这种酶属于葡萄糖-甲醇-胆碱氧化还原酶(Glucose-methanol-choline oxidoreductases,GMC)家族,可以吸收和利用蓝光(400−520 nm)催化游离的脂肪酸脱羧成正烷烃或烯烃。蛋白质晶体结构显示FAP中包含一个黄素腺嘌呤二核苷酸(FAD)。FAP的脂肪酸结合位点所在的疏水通道正好通向捕获光的FAD。研究者认为在FAP催化反应中,FAD会吸收蓝光变成激发态,从C12−C18脂肪酸分子的羧基攫取一个电子,然后发生脱羧反应产生烷烃或烯烃。

3 细菌的趋光机制 3.1 对光源方向的光感知

一些光合细菌,例如AnabaenaSynechocystis可以缓慢地沿着光矢量方向前进。如前所述,丝状的Synechocystis具有正向和负向的趋光行为。正向趋光行为可能是由细菌光敏色素受体TaxD1介导,但其感知光源方向的物理机制并未被深入研究。

一直以来,研究者们普遍认为极其微小的原核生物无法直接感知光源的方向[84-85]。1994年,Sineshchekov等为了解释一种单细胞藻类的趋光行为,提出细菌可以以微透镜的方式感知光源方向[86],但是未有实验验证。2015年,Kessler等提出单个藻类细胞可以充当透镜,将光源从远源(例如太阳)集中到光束中,而对于球状的多细胞藻类来讲,面对光源的外周细胞即可将入射光集中到多细胞团藻的内部[87]。基于以上启发,2016年,Schuergers等首次用实验证明单细胞Synechocystis sp. PCC 6803可以以微透镜的方式感知光源方向[88]。他们建立了一个模型来描述Synechocystis所表现的正向的向光行为。光照射细菌后,光线聚焦于细菌的光源对侧面,这个光点被细胞膜上的感光蛋白所感知(如PixJ1),然后通过CheY样的反应调节子激活相关的信号,使以光点为中心的T4P运动单元失活。因此,只有在光源侧有T4P复合体,由此菌毛可以伸长或收缩从而向光泳动。Schuergers等将Sineshchekov和Kessler的观点很好地融合,合理地阐释了单细胞球菌通过透镜的方式感知光源方向,但是这个模型无法解释其他形状的细菌,如棒状细菌的趋光行为。因此,这个观点还需要进一步的实验证明,但是这种基于感光蛋白的透镜理论对于理解细菌的光感知提供了一个新的思路。

有研究表明一些古菌(如Halobacterium salinarumNatronobacterium pharaonis)可以通过视紫红质(Rhodopsins,SRs)感受光强的变化,从而产生趋光行为[89]。虽然在一些细菌中也发现有感光蛋白视紫红质,但是否表现出对光强的响应尚不清楚,有学者认为在自然环境下几微米范围内无法形成足够的光强差异而使细菌感知[90]

3.2 基于氧化还原电位/分子氧的光感知

一些研究表明细菌对于光的响应可能与光引起的微环境的氧化还原(Redox)状态和分子氧(Molecular oxygen)水平有关[91-92],有学者把这种光响应方式称为间接的光感知[90],而直接依赖感光蛋白的光响应则被称为直接的光感知。但是,在细菌的光感知中,这2种方式往往是难以完全分开的。黄素蛋白的辅因子FAD有4种不同的氧化还原形式:FAD (Oxidized)、FAD (Anionic semiquinone)、FADH (Neutral semiquinone)和FADH (Anionic hydroquinone)。对于光裂解酶来讲,4种形式中的FADH为其活性状态[93]。细菌处于对数增长期时,其胞质电位处于还原状态(−260到−280 mV)[94]。Purcell等纯化了C. crescentus的LovK蛋白,发现LovK处于被还原时的电位为−258 mV;当FMN处于氧化形式时,在蓝光诱导下半胱氨酰-黄素加合物才会形成,因此胞质内电位的升高或降低会影响细胞对蓝光的反应;ATPase活性测试表明胞质内氧化还原电位的降低也会使LovK的光依赖性调节作用下降;氧化的LovK ATP水解活性经光照后可上调1.6倍,这些结果表明胞质内的氧化还原状态影响着LovK的光活性[95]。PpsR/AppA系统可调控光合基因的表达。AppA是R. sphaeroides中的蓝光受体,其上有一个BLUF结构域和亚铁血红素结合域SCHIC[96]。Yin等[97]发现黑暗条件下的AppA结合亚铁血红素的能力高于光激活的AppA;另外,亚铁血红素与SCHIC的结合与氧化还原状态有关。这些结果表明PpsR/AppA系统受光和氧化还原状态的影响。L. monocytogenes中LOV蛋白除感受蓝光外,还可以感受ROS (Reactive oxygen species)[37, 98]。上述研究显示,细菌对于蓝光的感知似乎与氧感知是偶联的[99]。这可能是因为在蓝光照射下,一些内源性光敏剂(卟啉,黄素等)可高效产生单态氧(Singlet oxygen),因而生物在进化中形成了相关的机制共同感应蓝光与氧[91]

4 光响应对细菌的意义

感光蛋白可以帮助光合细菌产生趋光性,寻找最适的光环境以利于获得光能量,另外对光合作用还具有调节功能。例如,类胡萝卜素是光合细菌的光合色素之一,光可以调节光合细菌类胡萝卜素的合成,从而辅助叶绿素捕获光能[1, 34]。而非光合细菌内的感光蛋白除了使细菌具有趋光性之外,还参与非光合作用的其他光生理反应。这些光生理反应包括氧化应激、生物膜形成、游动性、致病性等[100]

为适应多变的外界环境,细菌进化发展出可以快速调节大量基因表达以适应环境变化的应激系统(Stress response systems)。Avila-Pérez等(2006)发现B. subtilis中YtvA与一个重要的应激因子σB的激活有关[101]。它是压力分子(Stressosome)的一个组成成分。压力分子是细菌细胞中的“危险指挥中心”,在细胞受到危险情况时,会将危险信号传入细胞内部,上调σB活性,进而调控大约150个基因的表达[102-104]。当B. subtilis处于盐胁迫时,施加蓝光会上调σB的活性。另外,过表达YtvA也会有上述现象。L. monocytogenes也有一个类似YtvA的感光蛋白Lmo0799,施加蓝光(455 nm)和红光(625 nm)时可以上调σB及其相关基因的表达;另外,施加蓝光可以显著抑制菌的游动性,但是红光却无此效应[37]

光可以影响细菌的表面接触和生物膜的形成,从而影响其从单细胞生活方式到多细胞生活方式的转变。研究发现光可以影响细菌表面的接触或者分离。C. crescentus细胞含有一个双组分信号系统,包括LOV组氨酸激酶(LovK)和一个反应调节子(LovR)。LovK结合一个黄素辅因子,受可见光照射后可进行自磷酸化,将磷酸根传递给反应调节子LovR,LovR活化后改变构象,继而调控基因表达,以实现特定的细胞应答。研究发现敲除LovR后,可大大降低细胞之间的附着,而少量过表达LovK和LovR则使细胞之间的附着光依赖性的升高;另外,蓝光则可大大提高细胞之间的附着[45]。很多细菌能在自然或者人为环境中形成由基质(Matrix)包被的细菌群体,即生物膜(Biofilm)。I. loihiensis为一种深海菌,研究发现其基因组内有类PYP感光蛋白,其编码蛋白有PYP光化学特性,光照可显著抑制其生物膜的形成[58, 105]。有研究表明,鞭毛的运动性与生物膜的形成有关[106]。在A. baumannii中含有一个BLUF受体蛋白,光照实验发现蓝光可以抑制细菌的游动和生物膜的形成[107]E. coli含有感光蛋白BLUF,光照却可促进生物膜的形成[108]。另外,光还可以影响细菌胞外多糖(EPS)的产生[46]

多种生物,从细菌、植物到包括人在内的动物体内都有周而复始的节律,即生物钟(Circadian clock)[109-110]。在外界环境作用下,生物钟与一些环境因子相配合。其中,光是调节生物钟的关键因素之一。比如,一些光合细菌的固氮作用即有昼夜节律性。自然条件下,符合环境光周期(24 h)的细菌比周期异常的生长更快,分裂也更成功[111]。另外,越来越多的证据表明生物钟也控制着病原菌与寄主之间的相互作用(Microbiome-host interactions)[112]。肠道菌群的位置及其代谢产物存在节律变化,这种变化影响着宿主的生物节律及器官功能[113]。此外,对于病原菌而言,光还影响其致病力,协调其在自然环境和不同寄主下的生活模式。B. abortus是一种细胞内的病原体。Swartz等[38]发现蓝光可显著增加B. abortus在哺乳动物巨噬细胞的存活率和生长。这些存活的病原菌在光下的致病力要高于在黑暗处的病原菌。这种现象是因为其细胞内的LOV-HK蛋白。蓝光照射可提高HK蛋白的自磷酸化;以插入突变的方式使蛋白失活后,发现其致病力显著降低。这种光调节现象可能是为暴露于光照下的病原体侵染下一个寄主做准备。一旦进入宿主体内,即黑暗条件,其致病力便可下降,开启宿主体内的生活模式。在有关L. monocytogenesA. baumannii的研究中也发现了相同的现象[37, 107]。感光蛋白的普遍存在预示着光在细菌的生长代谢中起着某种光调节作用。

趋磁细菌体内矿化而成的磁小体颗粒是Fe3O4或Fe3S4纳米颗粒。Chen等发现可见光可显著增强AMB-1磁小体的合成和矫顽力[17]。同样,Wang等发现经UV-B照射后,AMB-1细胞可产生更多的磁颗粒,而且磁颗粒的尺寸增大,磁小体链变长[114]。由此可见,趋磁细菌磁小体的合成受光调节,其胞内的感光蛋白有待研究。另外,磁小体具有过氧化酶活性,加光后可增强其活性,继而降低趋磁细菌胞内的活性氧水平,以利于细菌适应光环境[115-116]

另外,有研究发现,一些感光蛋白可以将细菌的趋光性和趋化性相偶联。R. centenaria既有趋光性也有趋化性,其细胞内具有一个长的融合蛋白Ppr。Ppr含有3个结构域,即Pyp、胆汁三烯(Bbd)和组氨酸激酶结构域(Pph)。Kreutel等发现Ppr的激酶域(Pph)可与趋化蛋白CheW相互作用,而且Pph、CheW和趋化激酶CheAY可以形成一个复合体,这暗示Ppr也参与到趋化反应的信号调控通路中[117]。BlsA是A. baumannii中的一个BLUF感光蛋白,可调控菌的运动性、生物膜的形成和毒性大小[9],这种光调节作用与温度有关;在24 ℃时,光调节会起作用,而37 ℃时则无此效应。由此可见,光调控可以受其他因素的影响,比如温度。PhyB从活跃的Pfr状态到不活跃的Pr状态依赖对温度的感知,PhyB既是一个感光蛋白,也是一个温度受体。这些研究暗示细菌的光响应可能不仅仅局限于光,而是细菌根据自身所处环境做出的一个综合调控——细菌的光调控通路可能和其他通路交集于某个点以形成信号网,通过调控同一目标蛋白,整合光照和其他信号转导通路。

5 感光蛋白作为遗传工具的应用

随着感光蛋白在生物体内的作用被逐一发现,研究者逐渐意识到感光蛋白可以作为新的遗传工具[118-120]。近几年,利用感光蛋白控制细胞行为的光遗传学(Optogenetics)引起了研究者们的广泛关注。光合细菌中的感光系统可以有效地调节光合作用,并逃避强光或短波长光引起的光抑制[121]Synechocystis sp. PCC 6803细胞内拥有一套绿光感光系统。藻胆蛋白体的链接蛋白基因cpcG2可受CcaS/CcaR系统色调节。CcaS为绿光受体,在绿光下可使CcaR磷酸化并诱导cpcG2表达[122-123]目前这套系统已经作为光调控系统成功应用在光合菌中[124-125]。Tabor等首次将这套系统应用于E. coli,因为发色团Phycocyanobilin (PCB)在E. coli中不是内源表达,因此实验中需将PCB合成基因盒与CcaS/CcaR共表达[126-127]。Antigen43 (Ag43)是大肠杆菌表达的一种表面抗原蛋白分子。Nakajima等将Ag43插入到cpcG2启动子下游,共表达CcaS/CcaR系统及其发色团,发现转化菌株在绿光下可以自聚合形成生物膜,而缺失绿光诱导系统的却没有这个现象[121]。Tabor研究团队还对这个系统进行了遗传改造,以期实现多色光基因调控。由此可见,感光蛋白可以作为光敏开关调控靶基因在原核生物中的表达。

6 展望

对一些细菌来讲,光不但可以为其提供能量,还能帮助细菌做出应对内外部刺激的决策[100]。光响应就是其中最直接和有效的方式之一。鉴于生物和环境相互作用的复杂性,这种响应似乎只是复杂的生物效应的一部分[128]。对特定的生物来讲,光响应有其特殊的意义。由于光信号具有光强、波长、光周期等多个维度变量的复杂性,不同种类的细菌在进化过程中形成了各自独特的光反应特征。综上所述,感光蛋白参与了细菌一系列的生理活动,如趋光性、基因表达、游动性、生物膜形成、致病性等。作者认为在今后的研究工作中,尚有以下问题需要深入探讨:

(1) 光合细菌需要光作为能量来源,其光响应的生物学意义不难理解。但是对于非光合细菌来讲,光响应的生物学意义还有待进一步挖掘。

(2) 细菌光响应的详细信号传导机制尚需进一步阐明。比如,细菌中越来越多的感光蛋白被发现,这些感光蛋白捕获光信号后,如何将信号传递到鞭毛马达控制菌体泳动?有些细菌的基因组存在2种以上的感光蛋白,当多种光信号同时传入时,细菌如何选择或整合这些光信号?间接的光感知依赖于活性氧分子等信号,这些信号如何参与到信号通路控制鞭毛马达?越来越多的CBCRs被发现,它们的光化学特性及反应机制是什么?

(3) 有的细菌感光蛋白与植物感光蛋白同源,如细菌光敏色素、LOV等。这些同源的感光蛋白分布在不同的生物类群中各自有什么特点及不同之处?从生物进化角度看,生物对于光的感知是如何演变的?这些问题还有待深入研究。

另外,鉴于感光蛋白特殊的光化学特性,可以在以下几个方面展开应用:

(1) 光遗传学的“光控开关”。光遗传学是整合了光学、基因操作技术、电生理等多学科交叉的生物工程技术,其应用越来越广泛,如可以借助光遗传技术对活体组织的特定细胞进行调控,开启或关闭某个基因的表达从而研究其功能。目前光遗传技术在神经领域的应用已经得到了迅速发展[129-132],对于神经系统疾病的治疗将有广阔的应用前景。在光遗传学中,调控开关是感光蛋白。不同的感光蛋白具有不同的光化学特性,从而可为光遗传学提供多样的光调控开关。另外,一些简短的感光蛋白(如sLOV)的发现也为光遗传学领域提供了更为简易的“光控开关”。

(2) 人造酶的开发。除光合作用的光系统和光解酶外,新型光能酶FAP的发现为人们对于微生物光能的利用打开了一个新的视角。人们可以以FAP光能酶做为新型光催化剂的蓝本,设计出能够直接利用光能高效催化短链脂肪酸脱羧的人造酶。

光作为与其他环境刺激,如化学梯度、温度、氧、pH等不同的环境因子,最大的特点是不需要沿浓度梯度扩散,因而传播速度快。生物体应该能够进化出一套完整的可利用如此快捷的调控开关的系统。现有研究所展示的可能仅是微生物光响应的极小一部分,更多的光响应机制有待进一步探索。

参考文献
[1]
van der Horst MA, Key J, Hellingwerf KJ. Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too[J]. Trends in Microbiology, 2007, 15(12): 554-562. DOI:10.1016/j.tim.2007.09.009
[2]
Elías-Arnanz M, Padmanabhan S, Murillo FJ. Light-dependent gene regulation in nonphototrophic bacteria[J]. Current Opinion in Microbiology, 2011, 14(2): 128-135. DOI:10.1016/j.mib.2010.12.009
[3]
Otero LH, Klinke S, Rinaldi J, et al. Structure of the full-length bacteriophytochrome from the plant pathogen Xanthomonas campestris provides clues to its long-range signaling mechanism[J]. Journal of Molecular Biology, 2016, 428(19): 3702-3720. DOI:10.1016/j.jmb.2016.04.012
[4]
Engelmann TW. Bacterium photometricum: an article on the comparative physiology of the sense for light and colour[J]. Arch Ges Physiol Bonn, 1881, 30: 95-124.
[5]
Choi JS, Chung YH, Moon YJ, et al. Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803[J]. Photochemistry and Photobiology, 1999, 70(1): 95-102. DOI:10.1111/php.1999.70.issue-1
[6]
Chau RMW, Bhaya D, Huang KC. Emergent phototactic responses of cyanobacteria under complex light regimes[J]. mBio, 2017, 8(2): e02330-16.
[7]
Campbell EL, Hagen KD, Chen R, et al. Genetic analysis reveals the identity of the photoreceptor for phototaxis in hormogonium filaments of Nostoc punctiforme[J]. Journal of Bacteriology, 2015, 197(4): 782-791. DOI:10.1128/JB.02374-14
[8]
Shelswell KJ, Beatty JT. Coordinated, long-range, solid substrate movement of the purple photosynthetic bacterium Rhodobacter capsulatus[J]. PLoS One, 2011, 6(5): e19646. DOI:10.1371/journal.pone.0019646
[9]
Abatedaga I, Valle L, Golic AE, et al. Integration of temperature and blue-light sensing in Acinetobacter baumannii through the BlsA sensor[J]. Photochemistry and Photobiology, 2017, 93(3): 805-814. DOI:10.1111/php.2017.93.issue-3
[10]
Braatsch S, Klug G. Blue light perception in bacteria[J]. Photosynthesis Research, 2004, 79(1): 45-57. DOI:10.1023/B:PRES.0000011924.89742.f9
[11]
Frankel RB, Bazylinski DA, Johnson MS, et al. Magneto-aerotaxis in marine coccoid bacteria[J]. Biophysical Journal, 1997, 73(2): 994-1000. DOI:10.1016/S0006-3495(97)78132-3
[12]
Shapiro OH, Hatzenpichler R, Buckley DH, et al. Multicellular photo-magnetotactic bacteria[J]. Environmental Microbiology Reports, 2011, 3(2): 233-238. DOI:10.1111/emi4.2011.3.issue-2
[13]
Zhu KL, Pan HM, Li JH, et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea[J]. Research in Microbiology, 2010, 161(4): 276-283. DOI:10.1016/j.resmic.2010.02.003
[14]
Zhou K, Zhang WY, Yu-Zhang K, et al. A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea[J]. Environmental Microbiology, 2012, 14(2): 405-413. DOI:10.1111/j.1462-2920.2011.02590.x
[15]
Almeida FP, Viana NB, Lins U, et al. Swimming behaviour of the multicellular magnetotactic prokaryote 'Candidatus Magnetoglobus multicellularis' under applied magnetic fields and ultraviolet light[J]. Antonie Van Leeuwenhoek, 2013, 103(4): 845-857. DOI:10.1007/s10482-012-9866-0
[16]
de Azevedo LV, de Barros HL, Keim CN, et al. Effect of light wavelength on motility and magnetic sensibility of the magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'[J]. Antonie Van Leeuwenhoek, 2013, 104(3): 405-412. DOI:10.1007/s10482-013-9964-7
[17]
Chen CF, Ma QF, Jiang W, et al. Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields[J]. Applied Microbiology and Biotechnology, 2011, 90(1): 269-275. DOI:10.1007/s00253-010-3017-1
[18]
Kehoe DM, Grossman AR. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors[J]. Science, 1996, 273(5280): 1409-1412. DOI:10.1126/science.273.5280.1409
[19]
Yeh KC, Wu SH, Murphy JT, et al. A cyanobacterial phytochrome two-component light sensory system[J]. Science, 1997, 277(5331): 1505-1508. DOI:10.1126/science.277.5331.1505
[20]
Park CM, Kim JI, Yang SS, et al. A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light[J]. Biochemistry, 2000, 39(35): 10840-10847. DOI:10.1021/bi992831r
[21]
Yoshihara S, Suzuki F, Fujita H, et al. Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803[J]. Plant & Cell Physiology, 2000, 41(12): 1299-1304.
[22]
Okamoto S, Kasahara M, Kamiya A, et al. A phytochrome-like protein AphC triggers the cAMP signaling induced by far-red light in the cyanobacterium Anabaena sp. strain PCC7120[J]. Photochemistry and Photobiology, 2004, 80(3): 429-433. DOI:10.1562/0031-8655(2004)080<0429:APPATT>2.0.CO;2
[23]
Tarutina M, Ryjenkov DA, Gomelsky M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP[J]. Journal of Biological Chemistry, 2006, 281(46): 34751-34758. DOI:10.1074/jbc.M604819200
[24]
Giraud E, Zappa S, Vuillet L, et al. A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris[J]. Journal of Biological Chemistry, 2005, 280(37): 32389-32397. DOI:10.1074/jbc.M506890200
[25]
Ishizuka T, Kamiya A, Suzuki H, et al. The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin[J]. Biochemistry, 2011, 50(6): 953-961. DOI:10.1021/bi101626t
[26]
McGrane R, Beattie GA. Pseudomonas syringae pv. syringae B728a regulates multiple stages of plant colonization via the Bacteriophytochrome BphP1[J]. mBio, 2017, 8(5): e01178-17.
[27]
Davis SJ, Vener AV, Vierstra RD, et al. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria[J]. Science, 1999, 286(5449): 2517-2520. DOI:10.1126/science.286.5449.2517
[28]
Lamparter T, Michael N, Mittmann F, et al. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11628-11633. DOI:10.1073/pnas.152263999
[29]
Bai YN, Rottwinkel G, Feng J, et al. Bacteriophytochromes control conjugation in Agrobacterium fabrum[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 192-199. DOI:10.1016/j.jphotobiol.2016.05.014
[30]
Tasler R, Moises T, Frankenberg-Dinkel N. Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa[J]. FEBS Journal, 2005, 272(8): 1927-1936. DOI:10.1111/ejb.2005.272.issue-8
[31]
Bonomi HR, Toum L, Sycz G, et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor[J]. EMBO Reports, 2016, 17(11): 1565-1577. DOI:10.15252/embr.201541691
[32]
Cao Z, Livoti E, Losi A, et al. A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus[J]. Photochemistry and Photobiology, 2010, 86(3): 606-611. DOI:10.1111/php.2010.86.issue-3
[33]
Hendrischk AK, Moldt J, Frühwirth SW, et al. Characterization of an unusual LOV domain protein in the α-proteobacterium Rhodobacter sphaeroides[J]. Photochemistry and Photobiology, 2009, 85(5): 1254-1259. DOI:10.1111/php.2009.85.issue-5
[34]
Endres S, Granzin J, Circolone F, et al. Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae[J]. BMC Microbiology, 2015, 15: 30. DOI:10.1186/s12866-015-0365-0
[35]
Rivera-Cancel G, Motta-Mena LB, Gardner KH. Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222[J]. Biochemistry, 2012, 51(50): 10024-10034. DOI:10.1021/bi301306t
[36]
Losi A, Polverini E, Quest B, et al. First evidence for phototropin-related blue-light receptors in prokaryotes[J]. Biophysical Journal, 2002, 82(5): 2627-2634. DOI:10.1016/S0006-3495(02)75604-X
[37]
Ondrusch N, Kreft J. Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes[J]. PLoS One, 2011, 6(1): e16151. DOI:10.1371/journal.pone.0016151
[38]
Swartz TE, Tseng TS, Frederickson MA, et al. Blue-light-activated histidine kinases: two-component sensors in bacteria[J]. Science, 2007, 317(5841): 1090-1093. DOI:10.1126/science.1144306
[39]
Gourley CR, Petersen E, Harms J, et al. Decreased in vivo virulence and altered gene expression by a Brucella melitensis light-sensing histidine kinase mutant[J]. Pathogens and Disease, 2015, 73(2): 1-8.
[40]
Krauss U, Losi A, G rtner W, et al. Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct[J]. Physical Chemistry Chemical Physics, 2005, 7(14): 2804-2811. DOI:10.1039/b504554a
[41]
Wu L, McGrane RS, Beattie GA. Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein[J]. mBio, 2013, 4(3): e00334-13.
[42]
El-Arab KK, Pudasaini A, Zoltowski BD. Short LOV proteins in Methylocystis reveal insight into LOV domain photocycle mechanisms[J]. PLoS One, 2015, 10(5): e0124874. DOI:10.1371/journal.pone.0124874
[43]
Kraiselburd I, Daurelio LD, Tondo ML, et al. The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker[J]. PLoS One, 2013, 8(11): e80930. DOI:10.1371/journal.pone.0080930
[44]
Kraiselburd I, Alet AI, Tondo ML, et al. A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization[J]. PLoS One, 2012, 7(6): e38226. DOI:10.1371/journal.pone.0038226
[45]
Purcell EB, Siegal-Gaskins D, Rawling DC, et al. A photosensory two-component system regulates bacterial cell attachment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(46): 18241-18246. DOI:10.1073/pnas.0705887104
[46]
Bonomi HR, Posadas DM, Paris G, et al. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 12135-12140. DOI:10.1073/pnas.1121292109
[47]
Masuda S, Hasegawa K, Ishii A, et al. Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC 6803[J]. Biochemistry, 2004, 43(18): 5304-5313. DOI:10.1021/bi049836v
[48]
Ohki M, Sato-Tomita A, Matsunaga S, et al. Molecular mechanism of photoactivation of a light-regulated adenylate cyclase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): 8562-8567. DOI:10.1073/pnas.1704391114
[49]
Fujisawa T, Takeuchi S, Masuda S, et al. Signaling-state formation mechanism of a BLUF Protein PapB from the purple bacterium Rhodopseudomonas palustris studied by femtosecond time-resolved absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2014, 118(51): 14761-14773. DOI:10.1021/jp5076252
[50]
Gomelsky M, Kaplan S. AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein: Identification of a novel FAD binding domain[J]. The Journal Biological Chemistry, 1998, 273(52): 35319-35325. DOI:10.1074/jbc.273.52.35319
[51]
Gomelsky M, Klug G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms[J]. Trends in Biochemical Sciences, 2002, 27(10): 497-500. DOI:10.1016/S0968-0004(02)02181-3
[52]
Rajagopal S, Key JM, Purcell EB, et al. Purification and initial characterization of a putative blue light-regulated phosphodiesterase from Escherichia coli[J]. Photochemistry and Photobiology, 2004, 80(3): 542-547. DOI:10.1562/0031-8655(2004)080<0542:PAICOA>2.0.CO;2
[53]
Barends TRM, Hartmann E, Griese JJ, et al. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase[J]. Nature, 2009, 459(7249): 1015-1018. DOI:10.1038/nature07966
[54]
Stierl M, Penzkofer A, Kennis JTM, et al. Key residues for the light regulation of the blue light-activated adenylyl cyclase from Beggiatoa sp[J]. Biochemistry, 2014, 53(31): 5121-5130. DOI:10.1021/bi500479v
[55]
Sprenger WW, Hoff WD, Armitage JP, et al. The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein[J]. Journal of Bacteriology, 1993, 175(10): 3096-3104. DOI:10.1128/jb.175.10.3096-3104.1993
[56]
Koh M, van Driessche G, Samyn B, et al. Sequence evidence for strong conservation of the photoactive yellow proteins from the halophilic phototrophic bacteria Chromatium salexigens and Rhodospirillum salexigens[J]. Biochemistry, 1996, 35(8): 2526-2534. DOI:10.1021/bi951494t
[57]
Jiang ZY, Swem LR, Rushing BG, et al. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes[J]. Science, 1999, 285(5426): 406-409. DOI:10.1126/science.285.5426.406
[58]
van der Horst MA, Stalcup TP, Kaledhonkar S, et al. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis[J]. Journal of the American Chemical Society, 2009, 131(47): 17443-17451. DOI:10.1021/ja9057103
[59]
Vogeley L, Sineshchekov OA, Trivedi VD, et al. Anabaena sensory rhodopsin: A photochromic color sensor at 2.0 A˚[J]. Science, 2004, 306(5700): 1390-1393. DOI:10.1126/science.1103943
[60]
Kitajima-Ihara T, Furutani Y, Suzuki D, et al. Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium[J]. Journal of Biological Chemistry, 2008, 283(35): 23533-23541. DOI:10.1074/jbc.M802990200
[61]
Brudler R, Hitomi K, Daiyasu H, et al. Identification of a new cryptochrome class: structure, function, and evolution[J]. Molecular Cell, 2003, 11(1): 59-67. DOI:10.1016/S1097-2765(03)00008-X
[62]
Wu YP, Krogmann DW. The orange carotenoid protein of Synechocystis PCC 6803[J]. Biochimica et Biophysica Acta, 1997, 1322(1): 1-7.
[63]
Kerfeld CA, Sawaya MR, Brahmandam V, et al. The crystal structure of a cyanobacterial water-soluble carotenoid binding protein[J]. Structure, 2003, 11(1): 55-65. DOI:10.1016/S0969-2126(02)00936-X
[64]
Marmur J, Grossman L. Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 1961, 47(6): 778-787. DOI:10.1073/pnas.47.6.778
[65]
Zhang M, Wang LJ, Zhong DP. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair[J]. Archives of Biochemistry and Biophysics, 2017, 632: 158-174. DOI:10.1016/j.abb.2017.08.007
[66]
Sorigué D, Légeret B, Cuiné S, et al. An algal photoenzyme converts fatty acids to hydrocarbons[J]. Science, 2017, 357(6354): 903-907. DOI:10.1126/science.aan6349
[67]
Bhaya D. Light matters: phototaxis and signal transduction in unicellular cyanobacteria[J]. Molecular Microbiology, 2004, 53(3): 745-754. DOI:10.1111/j.1365-2958.2004.04160.x
[68]
Yang X, Kuk J, Moffat K. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14715-14720. DOI:10.1073/pnas.0806718105
[69]
Anders K, Daminelli-Widany G, Mroginski MA, et al. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling[J]. Journal of Biological Chemistry, 2013, 288(50): 35714-35725. DOI:10.1074/jbc.M113.510461
[70]
Borucki B, von Stetten D, Seibeck S, et al. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore[J]. Journal of Biological Chemistry, 2005, 280(40): 34358-34364. DOI:10.1074/jbc.M505493200
[71]
Burgie ES, Wang T, Bussell AN, et al. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion[J]. Journal of Biological Chemistry, 2014, 289(35): 24573-24587. DOI:10.1074/jbc.M114.571661
[72]
Karniol B, Vierstra RD. The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2807-2812. DOI:10.1073/pnas.0437914100
[73]
Rottwinkel G, Oberpichler I, Lamparter T. Bathy phytochromes in rhizobial soil bacteria[J]. Journal of Bacteriology, 2010, 192(19): 5124-5133. DOI:10.1128/JB.00672-10
[74]
Narikawa R, Fukushima Y, Ishizuka T, et al. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion[J]. Journal of Molecular Biology, 2008, 380(5): 844-855. DOI:10.1016/j.jmb.2008.05.035
[75]
Rockwell NC, Lagarias JC. A brief history of phytochromes[J]. ChemPhysChem, 2010, 11(6): 1172-1180. DOI:10.1002/cphc.v11:6
[76]
Briggs WR. The LOV domain: a chromophore module servicing multiple photoreceptors[J]. Journal of Biomedical Science, 2007, 14(4): 499-504. DOI:10.1007/s11373-007-9162-6
[77]
Metz S, J ger A, Klug G. Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides[J]. Microbiology, 2012, 158(Pt 2): 368-379.
[78]
Herrou J, Crosson S. Function, structure and mechanism of bacterial photosensory LOV proteins[J]. Nature Reviews Microbiology, 2011, 9(10): 713-723. DOI:10.1038/nrmicro2622
[79]
Rani R, Jentzsch K, Lecher J, et al. Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae "short" light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools[J]. Biochemistry, 2013, 52(26): 4460-4473. DOI:10.1021/bi400311r
[80]
Losi A, Gärtner W. Bacterial bilin- and flavin-binding photoreceptors[J]. Photochemical & Photobiological Sciences, 2008, 7(10): 1168-1178.
[81]
Tyagi A, Penzkofer A, Griese J, et al. Photodynamics of blue-light-regulated phosphodiesterase BlrP1 protein from Klebsiella pneumoniae and its photoreceptor BLUF domain[J]. Chemical Physics, 2008, 354(1/3): 130-141.
[82]
Park SY, Tame JRH. Seeing the light with BLUF proteins[J]. Biophysical Reviews, 2017, 9(2): 169-176. DOI:10.1007/s12551-017-0258-6
[83]
Andersen LH, Bochenkova AV, Houm ller J, et al. A PYP chromophore acts as a 'photoacid' in an isolated hydrogen bonded complex[J]. Physical Chemistry Chemical Physics, 2016, 18(15): 9909-9913. DOI:10.1039/C6CP00433D
[84]
Jékely G. Evolution of phototaxis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1531): 2795-2808. DOI:10.1098/rstb.2009.0072
[85]
Dieckmann C, Mittelmeier T. Phototaxis: Life in focus[J]. eLife, 2016, 5: e14169.
[86]
Sineshchekov OA, Govorunova EG, Dér A, et al. Photoinduced electric currents in carotenoid-deficient Chlamydomonas mutants reconstituted with retinal and its analogs[J]. Biophysical Journal, 1994, 66(6): 2073-2084. DOI:10.1016/S0006-3495(94)81002-1
[87]
Kessler J, Nedelcu A, Solari C, et al. Cells acting as lenses: a possible role for light in the evolution of morphological asymmetry in multicellular Volvocine algae[A]//Ruiz-Trillo I, Nedelcu A. Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol. 2. Dordrecht: Springer, 2015: 225-243
[88]
Schuergers N, Lenn T, Kampmann R, et al. Cyanobacteria use micro-optics to sense light direction[J]. eLife, 2016, 5: e12620.
[89]
Scharf B, Wolff EK. Phototactic behaviour of the archaebacterial Natronobacterium pharaonis[J]. FEBS Letters, 1994, 340(1/2): 114-116.
[90]
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception[J]. FEMS Microbiology Reviews, 2017, 41(6): 900-922. DOI:10.1093/femsre/fux045
[91]
Losi A, Mandalari C, G rtner W. The evolution and functional role of Flavin-based prokaryotic photoreceptors[J]. Photochemistry and Photobiology, 2015, 91(5): 1021-1031. DOI:10.1111/php.12489
[92]
Yang H, Inokuchi H, Adler J. Phototaxis away from blue light by an Escherichia coli mutant accumulating protoporphyrin Ⅸ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(16): 7332-7336. DOI:10.1073/pnas.92.16.7332
[93]
Liu Z, Zhang M, Guo X, et al. Dynamic determination of the functional state in photolyase and the implication for cryptochrome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(32): 12972-12977. DOI:10.1073/pnas.1311077110
[94]
Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum[J]. Science, 1992, 257(5076): 1496-1502. DOI:10.1126/science.1523409
[95]
Purcell EB, McDonald CA, Palfey BA, et al. An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals[J]. Biochemistry, 2010, 49(31): 6761-6770. DOI:10.1021/bi1006404
[96]
Moskvin OV, Gilles-Gonzalez MA, Gomelsky M. The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains[J]. Journal of Bacteriology, 2010, 192(19): 5253-5256. DOI:10.1128/JB.00736-10
[97]
Yin L, Dragnea V, Feldman G, et al. Redox and light control the heme-sensing activity of AppA[J]. mBio, 2013, 4(5): e00563-13.
[98]
Tiensuu T, Andersson C, Rydén P, et al. Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes[J]. Molecular Microbiology, 2013, 87(4): 909-924. DOI:10.1111/mmi.2013.87.issue-4
[99]
Niederman RA. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension[J]. Photosynthesis Research, 2013, 116(2/3): 333-348.
[100]
Gomelsky M, Hoff WD. Light helps bacteria make important lifestyle decisions[J]. Trends in Microbiology, 2011, 19(9): 441-448. DOI:10.1016/j.tim.2011.05.002
[101]
Avila-Pérez M, Hellingwerf KJ, Kort R. Blue light activates the σB-dependent stress response of Bacillus subtilis via YtvA[J]. Journal of Bacteriology, 2006, 188(17): 6411-6414. DOI:10.1128/JB.00716-06
[102]
Akbar S, Gaidenko TA, Kang CM, et al. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor ςB of Bacillus subtilis[J]. Journal of Bacteriology, 2001, 183(4): 1329-1338. DOI:10.1128/JB.183.4.1329-1338.2001
[103]
Jurk M, Schramm P, Schmieder P. The blue-light receptor YtvA from Bacillus subtilis is permanently incorporated into the stressosome independent of the illumination state[J]. Biochemical and Biophysical Research Communications, 2013, 432(3): 499-503. DOI:10.1016/j.bbrc.2013.02.025
[104]
Marles-Wright J, Lewis RJ. The Bacillus subtilis stressosome: a signal integration and transduction hub[J]. Communicative & Integrative Biology, 2008, 1(2): 182-184.
[105]
Hou S, Saw JH, Lee KS, et al. Genome sequence of the deep-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(52): 18036-18041. DOI:10.1073/pnas.0407638102
[106]
Shrout JD, Chopp DL, Just CL, et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional[J]. Molecular Microbiology, 2006, 62(5): 1264-1277. DOI:10.1111/mmi.2006.62.issue-5
[107]
Mussi MA, Gaddy JA, Cabruja M, et al. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light[J]. Journal of Bacteriology, 2010, 192(24): 6336-6345. DOI:10.1128/JB.00917-10
[108]
Clarke DJ. The Rcs phosphorelay: more than just a two-component pathway[J]. Future Microbiology, 2010, 5(8): 1173-1184. DOI:10.2217/fmb.10.83
[109]
Wijnen H, Young MW. Interplay of circadian clocks and metabolic rhythms[J]. Annual Review of Genetics, 2006, 40(1): 409-448. DOI:10.1146/annurev.genet.40.110405.090603
[110]
Ma PJ, Mori T, Zhao C, et al. Evolution of KaiC-dependent timekeepers: A proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris[J]. PLoS Genetics, 2016, 12(3): e1005922. DOI:10.1371/journal.pgen.1005922
[111]
Johnson CH, Stewart PL, Egli M. The cyanobacterial circadian system: from biophysics to bioevolution[J]. Annual Review of Biophysics, 2011, 40(1): 143-167. DOI:10.1146/annurev-biophys-042910-155317
[112]
Johnson CH, Zhao C, Xu Y, et al. Timing the day: what makes bacterial clocks tick[J]. ? Nature Reviews Microbiology, 2017, 15(4): 232-242. DOI:10.1038/nrmicro.2016.196
[113]
Paulose JK, Cassone VM. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes[J]. Gut Microbes, 2016, 7(5): 424-427. DOI:10.1080/19490976.2016.1208892
[114]
Wang YZ, Lin W, Li JH, et al. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation[J]. Frontiers in Microbiology, 2013, 4: 397.
[115]
Li KF, Wang PP, Chen CF, et al. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species[J]. Environmental Microbiology, 2017, 19(9): 3638-3648. DOI:10.1111/emi.2017.19.issue-9
[116]
Li KF, Chen CF, Chen CY, et al. Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation[J]. Enzyme and Microbial Technology, 2015, 72: 72-78. DOI:10.1016/j.enzmictec.2015.02.009
[117]
Kreutel S, Kuhn A, Kiefer D. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway[J]. BMC Microbiology, 2010, 10: 281. DOI:10.1186/1471-2180-10-281
[118]
Galvan A, Stauffer WR, Acker L, et al. Nonhuman primate optogenetics: recent advances and future directions[J]. The Journal of Neuroscience, 2017, 37(45): 10894-10903. DOI:10.1523/JNEUROSCI.1839-17.2017
[119]
Masuda S, Nakatani Y, Ren SK, et al. Blue light-mediated manipulation of transcription factor activity in vivo[J]. ACS Chemical Biology, 2013, 8(12): 2649-2653. DOI:10.1021/cb400174d
[120]
Schierling B, Pingoud A. Controlling the DNA cleavage activity of light-inducible chimeric endonucleases by bidirectional photoactivation[J]. Bioconjugate Chemistry, 2012, 23(6): 1105-1109. DOI:10.1021/bc3001326
[121]
Nakajima M, Abe K, Ferri S, et al. Development of a light-regulated cell-recovery system for non-photosynthetic bacteria[J]. Microbial Cell Factories, 2016, 15: 31. DOI:10.1186/s12934-016-0426-6
[122]
Hirose Y, Shimada T, Narikawa R, et al. Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9528-9533. DOI:10.1073/pnas.0801826105
[123]
Abe K, Miyake K, Nakamura M, et al. Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC 6803[J]. Microbial Biotechnology, 2014, 7(2): 177-183. DOI:10.1111/mbt2.2014.7.issue-2
[124]
Badary A, Abe K, Ferri S, et al. The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria[J]. Marine Biotechnology, 2015, 17(3): 245-251. DOI:10.1007/s10126-015-9616-1
[125]
Miyake K, Abe K, Ferri S, et al. A green-light inducible lytic system for cyanobacterial cells[J]. Biotechnology for Biofuels, 2014, 7: 56. DOI:10.1186/1754-6834-7-56
[126]
Tabor JJ, Levskaya A, Voigt CA. Multichromatic control of gene expression in Escherichia coli[J]. Journal of Molecular Biology, 2011, 405(2): 315-324. DOI:10.1016/j.jmb.2010.10.038
[127]
Gambetta GA, Lagarias JC. Genetic engineering of phytochrome biosynthesis in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10566-10571. DOI:10.1073/pnas.191375198
[128]
Lu AH, Li Y, Jin S, et al. Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis[J]. Nature Communications, 2012, 3: 768. DOI:10.1038/ncomms1768
[129]
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience[J]. Nature Neuroscience, 2015, 18(9): 1213-1225. DOI:10.1038/nn.4091
[130]
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nature Reviews Neuroscience, 2017, 18(4): 222-235. DOI:10.1038/nrn.2017.15
[131]
Pomeroy JE, Nguyen HX, Hoffman BD, et al. Genetically encoded photoactuators and photosensors for characterization and manipulation of pluripotent stem cells[J]. Theranostics, 2017, 7(14): 3539-3558. DOI:10.7150/thno.20593
[132]
Marton TF, Sohal VS. Of mice, men, and microbial opsins: How optogenetics can help hone mouse models of mental illness[J]. Biological Psychiatry, 2016, 79(1): 47-52. DOI:10.1016/j.biopsych.2015.04.012