Apr. 25, 2023, 39(4): 1731-1746 ©2023 Chin J Biotech, All rights reserved

·动物及兽医生物技术 ·

东北林蛙 adipor1 和 adipor2 基因克隆及其在感染 中的表达分析

许冬梅,刘依铭,孙玉刚,刘玉芬*,刘鹏,赵文阁*

哈尔滨师范大学生命科学与技术学院,黑龙江 哈尔滨 150025

许冬梅, 刘依铭, 孙玉刚, 刘玉芬, 刘鹏, 赵文阁. 东北林蛙 adipor1 和 adipor2 基因克隆及其在感染中的表达分析[J]. 生物工程学报, 2023, 39(4): 1731-1746.

XU Dongmei, LIU Yiming, SUN Yugang, LIU Yufen, LIU Peng, ZHAO Wenge. Cloning of *adipor1* and *adipor2* genes in *Rana dybowskii* and its expression pattern upon infection[J]. Chinese Journal of Biotechnology, 2023, 39(4): 1731-1746.

摘 要: 脂联素受体 1 (adiponectin receptor 1, AdipoR1)和脂联素受体 2 (adiponectin receptor 2, AdipoR2)能够与脂肪组织分泌的脂联素(adiponectin, AdipoQ)相结合,参与机体的多种生理功能。为 探究 AdipoR1 和 AdipoR2 在嗜水气单胞菌(Aeromonas hydrophila, Ah)感染下两栖类炎症反应中的作 用,通过逆转录-聚合酶链式反应(reverse transcription-polymerase chain reaction, RT-PCR)技术克隆东 北林蛙(Rana dybowskii)的 adipor1 和 adipor2 基因,对 adipor1 和 adipor2 进行生物信息学分析;利 用实时荧光定量聚合酶链式反应(real-time fluorescence quantitative polymerase chain reaction, qRT-PCR)技术分析 adipor1 和 adipor2 的组织表达差异,构建 Ah 感染的东北林蛙炎症模型,通过苏 木精-伊红染色法(hematoxylin-eosin staining, HE)观察组织病理变化;再利用 qRT-PCR 和 Western blotting 对感染后不同时间点的 adipor1 和 adipor2 的表达进行动态检测。结果表明,AdipoR1 和 AdipoR2 均为具有 7 次跨膜结构域的膜蛋白;系统进化树也显示与两栖类聚为同一分支;基于 qRT-PCR 和 Western blotting 结果显示,Ah 感染下 adipor1 和 adipor2 在转录和翻译水平发生不同程度的上调表达,但应答时间和水平有所差异。综上所述,推测 AdipoR1 和 AdipoR2 参与了机体的细菌免疫应答过程,为进一步探究脂联素受体在两栖类的生物学功能提供参考。 关键词:东北林蛙; 嗜水气单胞菌; adipor1 基因; adipor2 基因; 细菌感染

资助项目:黑龙江省自然科学基金(LH2021C053)

This work was supported by the Natural Science Foundation of Heilongjiang Province (LH2021C053). *Corresponding authors. E-mail: LIU Yufen, liuyufen@hrbnu.edu.cn; ZHAO Wenge, zhaowenge@hrbnu.edu.cn

Received: 2022-09-28; Accepted: 2022-12-31; Published online: 2023-01-17

Cloning of *adipor1* and *adipor2* genes in *Rana dybowskii* and its expression pattern upon infection

XU Dongmei, LIU Yiming, SUN Yugang, LIU Yufen^{*}, LIU Peng, ZHAO Wenge^{*}

College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China

Abstract: Adiponectin receptor 1 (AdipoR1) and Adiponectin receptor 2 (AdipoR2) can bind to adiponectin (AdipoQ) secreted by adipose tissue to participate in various physiological functions of the body. In order to explore the role of AdipoR1 and AdipoR2 in amphibians infected by Aeromonas hydrophila (Ah), the genes adipor1 and adipor2 of Rana dybowskii were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed by bioinformatics. The tissue expression difference of *adipor1* and *adipor2* was analyzed by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and an inflammatory model of R. dybowskii infected by Ah was constructed. The histopathological changes were observed by hematoxylin-eosin staining (HE staining); the expression profiles of adiporl and adipor2 after infection were dynamically detected by qRT-PCR and Western blotting. The results show that AdipoR1 and AdipoR2 are cell membrane proteins with seven transmembrane domains. Phylogenetic tree also shows that AdipoR1 and AdipoR2 cluster with the amphibians in the same branch. qRT-PCR and Western blotting results show that *adipor1* and *adipor2* were up-regulated at different levels of transcription and translation upon Ah infection, but the response time and level were different. It is speculated that AdipoR1 and AdipoR2 participate in the process of bacterial immune response, providing a basis for further exploring the biological functions of AdipoR1 and AdipoR2 in amphibians.

Keywords: Rana dybowskii; Aeromonas hydrophila; adipor1 gene; adipor2 gene; bacterial infection

脂联素(adiponectin, AdipoQ)是一种由脂肪 组织分泌的具有调节能量平衡^[1]、抗动脉粥样硬 化^[2]、参与脂质代谢^[3]、繁殖^[4]以及免疫功能^[5] 的细胞因子。AdipoQ 通过与脂联素受体 (adiponectin receptor, AdipoR)结合介导生物学功 能,其中 AdipoR 主要包括 AdipoR1、AdipoR2 和功能性受体 T-钙黏蛋白(T-cadherin, T-cad)。 2003 年 Yamauchi 等^[6]首次在人体发现 AdipoR1 和 AdipoR2,其中 AdipoR1 对球状脂联素具高 度亲和性,而对全长脂联素亲和力低; AdipoR2 对球状和全长脂联素都具有中度亲和力。以往研 究^[6]证实 AdipoR1 和 AdipoR2 是具有 7 次跨膜结 构域的细胞膜蛋白质,二者拓扑结构与G蛋白偶 联受体相反,其氨基端在细胞内,羧基端在细胞 外。T-钙黏蛋白是近年来新发现是一种Ca²⁺依赖 的糖基磷脂酰肌醇(glycosylphosphatidylinositol, GPI)锚定蛋白,锚定在细胞表面,对全长脂联素 形成的多聚合体具有结合功能^[7]。AdipoQ与 AdipoR1、AdipoR2和T-cad结合后,能够靶向 定位多种免疫细胞,参与先天性免疫和获得性免 疫。AdipoR1 主要激活腺苷酸活化蛋白激酶 (AMP-activated protein kinase, AMPK)和p38 丝裂 原活化蛋白激酶(p38 mitogen activated protein kinase, p38 MAPK)通路;而AdipoR2 主要通过环 氧化物酶 2 (cyclooxygenase-2, COX-2)和过氧化物酶 体增殖物活化受体 α/γ (peroxisome proliferator-activated receptor α/γ , PPAR α/γ)通路发挥生物学功能的多效性^[8-9]。

近年来,adiporl和adipor2基因已经在人^[3]、 鼠^[10]、鱼类^[11]和鸟类^[12]中得到鉴定,发现二者 在哺乳动物代谢旺盛的组织中广泛分布,例如 adiporl 在骨骼肌中大量表达, 而 adipor2 在肝 脏中大量表达。研究证明由于 AdipoR1 和 AdipoR2 在多种免疫细胞膜上表达,如嗜酸性粒 细胞^[13]、肥大细胞^[14]和巨噬细胞^[15],导致 AdipoQ 与其受体结合后,一方面刺激免疫细胞 的增殖,另一方面 AdipoR1 可以介导巨噬细胞 中核转录因子(nuclear factor-κ-gene binding, NF-κB)信号通路的激活和促炎细胞因子的表 达, AdipoR2 通过介导抗炎 M2 巨噬细胞极化参 与炎症反应^[16-17]。AdipoR1 和 AdipoR2 也能够参 与自身免疫病如类风湿性关节炎中,炎症促进 AdipoQ、AdipoR1 和 AdipoR2 的表达,发挥抗 炎作用的同时促进其他促炎介质的表达[18-19]。研 究发现,在人类的 AdipoQ-AdipoR1 轴通过促进 调节性T细胞释放白细胞介素-10 (interleukin-10, IL-10), 对炎症反应进行响应^[20]。上述研究表明 AdipoR1 和 AdipoR2 能够参与炎症反应过程, 而两栖类 AdipoR1 和 AdipoR2 是否具有相似的 生物学功能还需要进一步研究。

东北林蛙(Rana dybowskii)是能够耐受高纬 度、寒冷生存环境的无尾两栖动物,在控制虫害、 维护生态平衡方面起着积极的作用。其整体或雌 蛙输卵管的干制品可入药,故其也是重要的经济 动物之一^[21-22]。近年来,野生东北林蛙由于生存 环境恶化、大量捕捉和微生物侵害等原因数量锐 减。嗜水气单胞菌(Aeromonas hydrophila, Ah)是 一种常见人-兽-水产动物致病菌,可导致蛙类出 现"红腿病",该病的传染力强、病程短和死亡率 高,对野生和养殖东北林蛙都造成严重威胁^[23-24]。 本文拟对东北林蛙 adipor1 和 adipor2 进行克隆 以及生物信息学分析,人工建立东北林蛙 Ah 感 染模型,利用实时荧光定量聚合酶链式反应 (real-time fluorescence quantitative polymerase chain reaction, qRT-PCR)和 Western blotting 对不 同感染时间的基因 adipor1 和 adipor2 表达水平 进行检测,为 AdipoR1 和 AdipoR2 的免疫功能 研究提供理论基础。

1 材料与方法

1.1 材料

1.1.1 试验动物和菌株

东北林蛙(2-3 龄),体质量(25±5)g,实验室 人工养殖。嗜水气单胞菌株(DW1701-1909)由本 实验室分离鉴定。

1.1.2 主要试剂

Trizol 试剂盒、逆转录-聚合酶链式反应 (reverse transcription-polymerase chain reaction, RT-PCR)与 qRT-PCR 所需试验试剂依据参考文 献[25],均购于南京诺唯赞(Vazyme)生物科技有 限公司;克隆载体 pMD18-T 购于宝生物工程(大 连)有限公司;大肠杆菌(*Escherichia coli*) DH5a 感受态细胞购于上海唯地生物技术有限公司; AdipoR1 和 AdipoR2 兔源多克隆抗体和 HRP 标 记山羊抗兔抗体 IgG (H+L)购于博奥森(北京)生 物技术有限公司; RIPA 裂解液、PMSF 蛋白酶 抑制剂、BCA 蛋白浓度测定试剂盒、SDS-PAGE 凝胶快速配制试剂盒、PVDF 膜、脱脂奶粉、ECL 发光液均购于上海碧云天生物技术有限公司;福 尔马林溶液、苏木精和伊红染色液等均为常规国 产化学试剂。

1.2 方法

1.2.1 菌种活化及感染模型建立

依照文献[26]方法进行嗜水气单胞菌菌种 活化,在180 r/min、28 ℃条件下振荡培养过夜 后再转接入大体积液体培养基中,当 *OD*₆₀₀ 值为 0.9 时,收集菌液,平板计数测定菌液浓度为 1.5×10⁷ CFU/mL。随机将东北林蛙分为 2 组:试 验组和对照组各 21 只,参考文献[25]向试验组 腹腔注射 1 mL 嗜水气单胞菌悬浊液,对照组腹 腔注射等量灭菌 LB 液体培养基。在 8、16、24、 36、48、72 h 时分别取 2 组东北林蛙的心脏、肝脏、 脾脏、肺脏、肾脏、皮肤、肌肉和胃组织,用液氮 速冻后移至-80 ℃冰箱保存备用。东北林蛙的处理 严格遵照相关试验动物福利规定,本研究方案由哈 尔滨师范大学生命科学与技术学院动物实验伦理 委员会(编号: HNUARIA2021002)审核通过。

1.2.2 引物设计

根据欧洲林蛙的 adipor1 基因序列(GenBank 登录号: XM_040337832.1)和 adipor2 基因序列 (GenBank 登录号: XM_040345307.1),利用 Primer Premier 5.0 设计 adipor1 和 adipor2 两对 引物,测序后得到完整开放阅读框(open reading frame, ORF)区,再设计荧光定量引物 adipor1-q 和 adipor2-q,内参引物选用 β-actin 基因^[27],引 物均由生工生物工程(上海)股份有限公司合成, 引物详情见表 1。

1.2.3 东北林蛙 adipor1 和 adipor2 基因的克隆

取东北林蛙脾脏组织约 0.1 g, 加入液氮充 分研磨后, 依据 Trizol 试剂盒说明书提取总

表1 本研究所用引物

Table I PI	imers used in this study			
Gene	Primer sequences $(5' \rightarrow 3')$	$T_{\rm m}$ (°C)	Product size (bp)	Purpose
adipor1	F: AATAAGTGACAACCAGCAAA	49.7	1 269	RT-PCR
	R: CAGATGAGTAATAAACCAGT			
adipor2	F: GTGGGACAATCCTCAATG	53.3	1 508	RT-PCR
	R: CAAATCGGAAAGGGTAAA			
<i>adipor1-</i> q	F: CAGTGTATTGCCATTCAGA	53.3	165	qRT-PCR
	R: TTCCTAGCACGCAGACGA			
<i>adipor</i> 2-q	F: ATGTCGTTCATCGCTCCG	52.4	117	qRT-PCR
	R: GCCCTCCGAATGGCAGTA			
β -actin	F: AAGAATGAGGGCTGGAACA	52.0	176	qRT-PCR
	R: GTGCGTGACATCAAGGAGAAGC			

Table 1 Primers used in this study

RNA。再反转录合成 cDNA 第一链,依照 Taq DNA 聚合酶说明书进行 PCR 反应体系的配制, 反应条件为:94℃预变性 5 min;94℃变性 30 s, 53℃退火 30 s,72℃延伸 30 s,32个循环;72℃ 终延伸 10 min。RT-PCR 扩增得到 adipor1 和 adipor2,片段回收纯化后与pMD18-T载体连接, 再转人大肠杆菌 DH5α 感受态细胞中,经菌液 PCR 鉴定后送至哈尔滨睿博科兴公司进行测序。 1.2.4 东北林蛙 adipor1 和 adipor2 基因生物信 息学分析

对获得的 adipor1 和 adipor2 基因序列,利 用 DNAMAN 进行拼接,然后使用 MEGA 7、 NCBI Conserved Domain SearchSMART (http:// smart.embl.de)、SOPMA (https://npsa-prabi.ibcp. fr/cgi-bin/secpredsopma.pl)、SWISS-MODEL (http:// www.expasy.ch/swissmod/SWISS-MODEL.html)、 TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/ TMHMM/)等软件进行氨基酸和核苷酸序列分 析;采用 PROSITE (https://www.expasy.org/ resources/prosite)、ProtParam (https://web. expasy. org/protparam/)以及 ProtScale (https://web. expasy. org/protscale/)等程序预测蛋白质的结构域及理 化性质,用 Clustal Omega 软件对 AdipoR1 和 AdipoR2 氨基酸序列进行同源性比对,各物种 AdipoR1 和 AdipoR2 蛋白相关信息见表 2。

http://journals.im.ac.cn/cjbcn

1735

Species	Accession No. of	Accession No. of amino	Accession No. of	Accession No. of amino
	nucleotide (AdipoR1)	acid (AdipoR1)	nucleotide (AdipoR2)	acid (AdipoR2)
Rana temporaria	XM_040337833.1	XP_040193767.1	XM_040345309.1	XP_040201243.1
Nanorana parkeri	XM_018556911.1	XP_018412413.1	XM_018576458.1	XP_018431960.1
Bufo gargarizans	XM_044287284.1	XP_044143219.1	XM_044281378.1	XP_044137313.1
Xenopus laevis	XM_041581097.1	XP_041437031.1	NM_001094102.1	NP_001087571.1
Xenopus tropicalis	NM_001007927.1	NP_001007928.1	XM_031898612.1	XP_031754472.1
Geotrypetes seraphini	XM_033918017.1	XP_033773908.1	XM_033952467.1	XP_033808358.1
Gallus gallus	NM_001031027.2	NP_001026198.2	NM_001007854.2	NP_001007855.1
Mus musculus	NM_001306069.1	NP_001292998.1	NM_001355692.1	NP_001342621.1
Oryctolagus cuniculus	XM_002717585.3	XP_002717631.1	XM_017343436.1	XP_017198925.1
Bos taurus	NM_001034055.1	NP_001029227.1	NM_001040499.2	NP_001035589.1
Sus scrofa	NM_001007193.1	NP_001007194.1	NM_001007192.1	NP_001007193.1
Pan troglodytes	XM_009440922.3	XP_009439197.1	XM_016922724.2	XP_016778213.1
Homo sapiens	NM_001290629.1	NP_001277558.1	NM_001375365.1	NP_001362294.1
Danio rerio (AdipoR1a)	NM_001327754.1	NP_001314683.1	BC164853.1	AAI64853.1
Danio rerio (AdipoR1b)	NM_213500.1	NP_998665.1		

表 2 参考物种信息

Table 2 List of reference species

1.2.5 东北林蛙 *adipor1* 和 *adipor2* 基因表达差 异分析

采用 SYBR Green I 嵌合荧光法检测 adipor1和 adipor2在东北林蛙不同组织和器官 中的转录水平, β -actin 作为内参基因,使用 2^{-△ΔCt} 法计算相对表达量^[28]。反应体系为(20 µL): 2×ChamQ SYBR qPCR Master Mix 10 µL, primer 1 (10 µmol/L) 0.4 µL, primer 2 (10 µmol/L) 0.4 µL, 50×ROX Reference Dye2 0.4 µL, ddH₂O 7.8 µL, cDNA 模板 1 µL。反应程序: 94 ℃ 10 min; 94 ℃ 30 s, 60 ℃ 30 s, 72 ℃ 30 s, 循环数 为 40 个; 72 ℃ 10 min, 每次试验设置 3 次重复。

1.2.6 苏木精-伊红染色 (hematoxylin-eosin staining, HE)分析

取东北林蛙对照组和试验组各时间点的组 织,经 10%福尔马林溶液固定后采用石蜡包埋 法,制作病理组织切片(6 μm)。HE 染色方法参 考文献[28],常规脱蜡复水后苏木精染色,1% 的盐酸乙醇溶液进行分化,1%的氨水返蓝,蒸 馏水冲洗,后进行 0.5%伊红染液染色。染色完 成后进行不同浓度酒精脱水和二甲苯透明,最后 用中性树胶封片。

1.2.7 Western blotting 检测

配制 RIPA 裂解混合液(RIPA:PMSF=100:1) 在冰上提取总蛋白质。利用 BCA 法对蛋白进行 定量, SDS-PAGE 电泳后转印至 PVDF 膜上, 5% 脱脂奶粉室温封闭 1 h; 一抗 4 ℃过夜孵育, TBST 漂洗 3 次; 二抗室温孵育 2 h, TBST 漂洗 3 次; 配制 ECL 发光液化学发光仪曝光显影, 使用 Image J 软件分析条带灰度值。

2 结果与分析

2.1 东北林蛙 adipor1 和 adipor2 克隆及鉴定

提取东北林蛙脾脏 RNA 后经电泳检测,有 清晰的 28S rRNA 和 18S rRNA 的条带(图 1A); *OD*₂₆₀/*OD*₂₈₀均在 1.8–2.0 之间,总 RNA 具有完 整性。RT-PCR 扩增后得到与预计相符条带。目 的基因与 pMD18-T 分别连接转化入大肠杆菌 DH5α,通过菌液 PCR 鉴定后,与预期相符合(图 1B、1C)。

图 1 东北林蛙 adipor1 和 adipor2 基因的克隆

Figure 1 Cloning of *adipor1* and *adipor2* genes of *Rana dybowskii*. A: RNA extraction from the spleen of *Rana dybowskii*. B: M: DL2000 DNA marker; Lane 1, 2, 3: *adipor1* gene. C: M: DL2000 DNA marker; Lane 2: *adipor2* gene.

2.2 东北林蛙 *adipor1* 和 *adipor2* 生物信息 学分析

2.2.1 氨基酸序列同源性分析

经测序得到东北林蛙 adipor1 基因编码区 1134 bp,编码 377 个氨基酸; adipor2 基因编码 区 1164 bp,编码 387 个氨基酸。将 adipor1 和 adipor2 基因上传至 GenBank,获得基因登录号 分别为 ON652851 和 ON652853。经序列比对, 东北林蛙 AdipoR1 和 AdipoR2 氨基酸与欧洲林蛙 的同源性分别为 99.73%和 98.19%,与非洲爪蟾 同源性分别 90.70%和 88.37%,与人类同源性分 别为 87.40%和 79.33%,以上结果表明,AdipoR1 和 AdipoR2 在不同物种中保守程度较高。

2.2.2 东北林蛙 AdipoR1 和 AdipoR2 的理化性 质及结构域预测

东北林蛙 AdipoR1 理论分子量为 42.84 kDa, 亲水性总平均值为 0.180,蛋白质不稳定系数为 46.51; AdipoR2 理论分子量 43.49 kDa,亲水性 总平均值为 0.237,蛋白质不稳定系数为 50.29,说 明 AdipoR1 和 AdipoR2 均为亲水不稳定蛋白质。

跨膜结构域预测显示, AdipoR1 和 AdipoR2 均为具有 7 次跨膜结构域的跨膜蛋白(图 2A、 2B), 二者都存在 DNDYLL 和 FRACFGSIF 两段 保守基序。结构域预测表明 AdipoR1 和 AdipoR2

http://journals.im.ac.cn/cjbcn

分别在 131-354 aa、141-364 aa 处存在一个溶血 素超家族(haemolysin-III superfamily, Hly III)结 构域(图 2C、2D)。AdipoR1 蛋白在第 48 位点处 有一个潜在糖基化位点, AdipoR2 分别在第 58 和 172 位点处各有一个潜在糖基化位点。AdipoR1 蛋白中存在 28 个磷酸化潜在位点, AdipoR2 蛋 白中存在 27 个磷酸化潜在位点。

2.2.3 东北林蛙 AdipoR1 和 AdipoR2 三级结构 及互作蛋白预测

经 SOPMA 软件分析, 东北林蛙 AdipoR1 蛋白 中,可能形成α螺旋占 51.19% (193 个氨基酸), 延 伸链占 12.47% (47 个氨基酸), β 转角占 4.24% (16 个氨基酸)和无规卷曲占 32.10% (121 个氨基酸) 等几种结构; AdipoR2 蛋白中,可能形成α螺旋占 50.39% (195 个氨基酸), 延伸链占 15.25% (59 个氨 基酸), β 转角占 3.62% (14 个氨基酸)和无规卷曲占 30.75% (119 个氨基酸)等几种结构。

利用 SWISS-MODEL 在线预测软件获得东 北林蛙 AdipoR1 和 AdipoR2 蛋白质三级结构(图 3A、3B),与二级结构预测结构分析相符。蛋白 互作网络预测表明两种受体可能与脂联素 (adiponectin)、瘦素(leptin)、胰岛素(insulin)、磷 酸酪氨酸衔接蛋白(APPL1、蛋白激酶催化亚单 位(PRKAA)等蛋白存在互作关系(图 3C、3D)。

图 2 东北林蛙 AdipoR1 和 AdipoR2 的跨膜结构及结构域

Figure 2 The transmembrane structure and domain of AdipoR1 and AdipoR2 in *Rana dybowskii*. Prediction of transmembrane region of AdipoR1 (A) and AdipoR2 (B) proteins. Prediction of the functional domain of AdipoR1 (C) and AdipoR2 (D).

图 3 东北林蛙 AdipoR1 和 AdipoR2 蛋白质三级结构及互作蛋白预测

Figure 3 Prediction of the tertiary structure of AdipoR1 (A) and AdipoR2 (B) proteins of *Rana dybowskii* and prediction of proteins interactive with AdipoR1 (C) and AdipoR2 (D) of *Rana dybowskii*.

2.2.4 东北林蛙 *adipor1* 和 *adipor2* 基因同源性 比对及进化树的构建

应用 MegAlign 分析软件将东北林蛙 adipor1、adipor2核苷酸序列与参考物种(表2所 示)进行多序列比对,结果显示东北林蛙 adipor1 和 adipor2 与欧洲林蛙的同源性最高,分别为 98.8%和 98.0%;东北林蛙 adipor1 与高山倭蛙、 大蟾蜍和非洲爪蟾的同源性分别为 91.5%、 83.7%和 82.0%; 东北林蛙 adipor2 与高山倭蛙、 大蟾蜍和非洲爪蟾同源性为 90.8%、82.2%和 79.8%, 表明与两栖动物同源性最高。依据氨基 酸序列构建系统进化树,结果显示 AdipoR1 和 AdipoR2 与两栖动物之间聚为同一分支,与哺乳 类、禽类等亲缘关系较远,与鱼类 AdipoR1 和 AdipoR2 亲缘关系更远(图 4),同源性和进化关 系表明 adipor1 和 adipor2 基因的保守性很强。

图 4 东北林蛙 AdipoR1 和 AdipoR2 氨基酸进化树构建

Figure 4 Phylogenetic tree based on amino acid residues of AdipoR1 and AdipoR2 in *Rana dybowskii*. The phylogenetic tree was constructed using the neighbor-joining (N-J) method. Numbers on the branches represent bootstrap values for 500 replications.

2.3 Ah 感染东北林蛙病理组织学鉴定

将对照组和试验组东北林蛙的组织和脏器制作病理切片,进行 HE 染色,结果显示,与对照组相比,肝细胞产生空泡化病变随感染时间延长而加重,肝脏血窦发生扩张并且细胞边界变模糊,细胞核发生固缩和偏移并且细胞质变少(图

5A1-A4);与对照组皮肤结构相比,感染后皮肤 表皮层与真皮层分离,36-72h表皮层出现破损, 真皮层变薄,黑色素细胞增多(图 5B1-B4);感 染后肌肉组织纤维纹理发生紊乱变化,肌纤维间 距明显变宽并且断裂、扭曲和变形(图 5C1-C4), 表明 *Ah* 感染东北林蛙的炎症模型成功建立。

图 5 Ah 感染东北林蛙后病理组织变化

Figure 5 Pathological changes of *Rana dybowskii* after infection with *Ah*. A–C: Representative results of HE staining in the normal tissue of *R. dybowskii* and different time points after *Ah* infected. Scale bar=100 μ m. A: Liver. B: Skin. C: Muscle. 1: 0 h; 2: 16 h; 3: 36 h; 4: 72 h. Arrows indicate obvious pathological changes.

2.4 东北林蛙 *adipor1* 和 *adipor2* 基因的组 织和器官表达差异

采用 qRT-PCR 检测东北林蛙生理状态下不 同组织和器官 adiporl 和 adipor2 的转录水平, 以心脏表达量作为对照,结果表明, adiporl 和 adipor2 基因在 8 种组织和器官中均有表达,其 中 adipor1 在肾脏表达量最高(P<0.05),在皮肤、 肝脏和肌肉表达量也显著高于心脏(P<0.05)(图 6A); adipor2 在皮肤表达量最高(P<0.05),在肝 脏、肾脏和肌肉表达量也显著高于心脏(P<0.05) (图 6B), adipor1 和 adipor2 基因表达的组织特 异性预示着它们在不同组织和器官中功能可能 有差别。

2.5 *Ah* 感染后 *adipor1* 和 *adipor2* mRNA转 录水平变化

qRT-PCR 结果显示,在 *Ah* 感染后,肝脏 *adipor1* mRNA 表达量在 48 h 达到峰值,是对照 组的 1.21 倍(*P*>0.05),而脾脏在 72 h 时达到峰 值,是对照组 5.66 倍(*P*<0.01),*adipor1* mRNA 在肌肉和胃中均在感染 8 h 达到峰值,分别为对

照组的 1.41 倍(P<0.01)和 6.50 倍(P<0.01)(图 7A-7D)。肝脏 adiporl mRNA 表达量在感染 8-36 h 过程呈现波动变化,48 h 达峰值后又出现下调; 脾脏 adiporl mRNA 表达量在 8-16 h 表达量显著 上调,24-48 h 出现下调与对照组差异不显著 (P>0.05),之后重新上调;肌肉 adiporl mRNA 表达量在 16-72 h 有所下降,但与对照组表达量 差异显著(P<0.01);胃中 adiporl mRNA 表达量 除感染 24-36 h 与对照组差异不显著(P>0.05), 其余时间点均显著高于对照组(P<0.01)。

在 *Ah* 感染后, 肝脏、脾脏、肌肉和胃中 *adipor2* mRNA 表达量 8 h 开始上调表达并在 72 h 达到峰值, 分别为对照组的 0.68、1.80、0.87 和 5.69 倍(*P*<0.01)(图 8A-8D)。肝脏和肌肉 *adipor2* mRNA 均低于对照组表达量; 而脾脏在 8-36 h 低于对照组(*P*<0.01), 48-72 h 表达量上 调表达高于对照组; 胃中仅在 72 h 与对照组相 比显著增加,其余时间点无显著变化(*P*>0.05)。 表明 *adipor1* 和 *adipor2* 基因在不同组织对炎症 反应的应答时间和响应水平不同。

图 6 adipor1 和 adipor2 在东北林蛙不同组织和器官中的相对表达量

Figure 6 Relative expression of *adipor1* and *adipor2* in different tissues and organs of *Rana dybowskii*. Graphical presentation of qRT-PCR analysis shows changes in *adipor1* and *adipor2* genes expression in healthy *R. dybowskii*. Take the expression level of the heart as the control. The Duncan method was used to indicate the significance of the difference, and different letters indicate P<0.05.

Figure 8 Changes of *adipor2* expression in different tissues and organs of *Rana dybowskii* infected by *Ah*. A: Liver. B: Spleen. C: Muscle. D: Stomach. The samples were collected at different time points (8 h, 16 h, 24 h, 36 h, 48 h and 72 h) after *Ah* infection. The control group was injected with sterile trypsin liquid medium. β -actin was used as an internal control. Values are the $\bar{x} \pm s$ of three determinations from separate experiments. *: *P*<0.05; **: *P*<0.01.

2.6 Ah 感染后 AdipoR1 和 AdipoR2 的 Western blotting 分析

对 Ah 感染后东北林蛙肝脏与脾脏中 AdipoR1和AdipoR2进行Western blotting检测, 结果显示,肝脏在感染36h和72h时AdipoR1 表达量均与对照组相比显著下调,AdipoR2表达 量在感染72h时显著上调,为对照组的1.23倍 (P<0.05); 而脾脏中 AdipoR1 和 AdipoR2 均在 72 h 表达量达到峰值,分别为对照组的 1.25 倍 (P<0.01)和 1.45 倍(P<0.05), 脾脏中 AdipoR1 和 AdipoR2 表达量在感染后变化趋势为先下调后 上调(图 9A-9D)。这与 qRT-PCR 检测结果基本 相符,上述结果提示 AdipoR1 和 AdipoR2 可能 参与了细菌感染引起的免疫应答。

图 9 Ah 感染东北林蛙肝脏和脾脏中的 AdipoR1 和 AdipoR2 表达变化

Figure 9 Expression of AdipoR1 and AdipoR2 in liver and spleen of *Ah* infected *Rana dybowskii*. A: Western blotting for AdipoR1 and AdipoR2 in *R. dybowskii* in the liver of control group, 36 h and 72 h after *Ah* infection. B: Relative gray value of AdipoR1 and AdipoR2 at different infection times. C: Western blotting for AdipoR1 and AdipoR2 in *R. dybowskii* in the spleen of control group, 36 h and 72 h after *Ah* infection. β -actin was used as a loading control. D: Relative gray value of AdipoR1 and AdipoR2 at different infection times. LB: The control group of this study was injected with liquid LB medium. Data present $\overline{x} \pm s$ of three determinations from separate experiments. *: P < 0.05; **: P < 0.01; n≥3 biological replicates above two organs.

3 讨论与结论

本研究成功克隆东北林蛙 adiporl 和 adipor2基因序列,获得两种基因完整的ORF区。 AdipoR1 和 AdipoR2 亚细胞定位显示二者均具 有7次跨膜结构域,这与人^[6]、鼠^[7]、猪^[29]、鸡^[12] 和鲤鱼^[30]的 AdipoRs 蛋白跨膜结构一致,与G 蛋白偶联受体不同的是 AdipoR1 和 AdipoR2 蛋 白质的C 端位于膜外而N 端位于膜内。根据结 构域分析,在 AdipoR1 和 AdipoR2 中还发现了 一个 Hly III结构域(编码 7 个跨膜螺旋束),该结构可能通过形成特殊的拓扑结构对 AdipoRs 的 生物学功能发挥关键作用^[31-32]。从同源性和系统 发育树可看出, AdipoR1 和 AdipoR2 在进化上 是保守的。

已知在哺乳动物中, adiporl 和 adipor2 几 乎分布于所有组织中, adiporl 在骨骼肌中高表 达,而 adipor2 在肝脏中表达最丰富,二者在不 同组织的分布差异很大。本研究显示东北林蛙多 个器官和组织中都能检测到 adiporl 和 adipor2 mRNA 的存在,但转录水平有差异。以往在小 鼠中检测到 adiporl mRNA 在心脏、肾脏、肺、 骨骼肌和脾中大量表达^[6]。禽类 adipor1 mRNA 在骨骼肌、脂肪组织和间脑中的表达较高,其次 是肾、卵巢、肝脏、脑下垂体前叶和脾,而 adipor2 mRNA 在脂肪组织中的表达最高,其次是骨骼 肌、肝、卵巢、间脑、脑垂体腺前叶、肾和脾^[9]。 青鱼 adiporl 在肝脏、眼、血、脑、脂肪组织和 心脏中的表达水平较高,在脾脏、皮肤和鳃中的 表达水平较低; adipor2 在肝脏中的表达水平高 于其他器官和组织, adipor2 在健康青鱼肾脏中 的表达水平最低^[33]。上述物种的 adiporl 和 adipor2 不同组织转录水平特性与东北林蛙基本 一致。adiporl 的高表达促进脂肪酸向这些组织 线粒体的运输,从而介导脂联素增加脂肪酸氧化 的功能^[34]。此外研究还发现在草鱼体内, adipor1 存在 adiporla 和 adiporlb 两种亚型,这两种亚 型在心脏表达量最高,其次是脑和垂体;而 adipor2 在脂肪组织和心脏中表达水平较高^[35]。 与本研究中东北林蛙 adipor1 和 adipor2 的组织 表达特性有所差别,表明 adiporl 和 adipor2 基 因在不同物种间表达存在种属差异。斑马鱼[36]、 石斑鱼^[31]、罗非鱼^[37]的脑、肝脏、脂肪和肾脏 中 adipor1 和 adipor2 表达水平较高,在肌肉中 的表达水平较低,与东北林蛙的组织表达特性相 似。可以推测两栖类 adiporl 和 adipor2 的器官 与组织表达具有物种特异性。

Holland 等^[38]通过实验证明, AdipoO 通过与 其两个受体结合,有效地刺激神经酰胺酶的活 性,调节细胞神经酰胺水平,并发现肝脏中 AdipoR1 和 AdipoR2 的过度表达会抑制饱和脂 肪酸诱导的神经酰胺水平,从而减轻炎症^[39]。 肿瘤坏死因子 α (tumor necrosis factor-α, TNF-α) 是一种由巨噬细胞和 T 细胞产生,参与启动并 调节炎症反应的重要促炎细胞因子,通常被认为 是炎症反应的标志^[40]。有研究把 TNF-α、炎症、 AdipoQ 及其受体进行了联系分析,发现 AdipoQ 及其受体与 TNF-α 相似,也可以参与调节炎症 反应^[41-42]。Żelechowska 等研究也发现 AdipoR1 和 AdipoR2 和瘦素受体在肥大细胞内均有表达, 而 AdipoQ 可以通过增加抗炎细胞因子如转化生 长因子-β (transforming growth factor β, TGF-β) 和 IL-10 的表达使肥大细胞发生迁移^[14];此外 AdipoR1-AdipoR2 轴信号通路可以抑制过敏反 应,也可能调节非 IgE 依赖型或假性过敏 途径[43]。

东北林蛙在感染 Ah 后, adiporl 和 adipor2 在所检测组织中存在显著不同程度上调的表达 趋势,这提示脂联素受体介导了生物学过程,推 测脂联素受体可通过调节代谢直接或间接参与 免疫应答。在虹鳟鱼研究中,注射细菌脂多糖后, 肌肉组织中 adiporl mRNA 的表达也略有下降, 但 adipor2 mRNA 基本没有变化^[44],这与本研究 东北林蛙肌肉 adiporl 变化趋势相类似,而 adipor2 变化趋势略有不同;草鱼注射细菌脂多 糖后,肌肉在感染不同时间点 adiporla 和 adipor2 表达量变化趋势与东北林蛙相类似^[35]。 东北林蛙 adiporl 和 adipor2 基因在肝脏、脾脏、 肾脏、皮肤中高度表达,提示该分子可能参与蛙 类免疫系统功能的实现。尤其是两栖动物的皮肤

暴露在外部环境中,可以接触到大量的病原体, 因此皮肤中 adiporl 和 adipor2 基因的高表达水 平可以推测与感染相关。

本研究成功获得东北林蛙 adiporl 和 adipor2 基因,与其他动物之间有很高的同源性, AdipoR1 和 AdipoR2 属于亲水不稳定跨膜蛋白。 经鉴定 adiporl 和 adipor2 基因在东北林蛙的多 种器官和组织中存在。Ah 感染后, adiporl 和 adipor2 的表达存在不同程度地上调。这揭示了 东北林蛙 AdipoR1 和 AdipoR2 可能参与了机体 与细菌感染相关的免疫应答。

REFERENCES

- [1] ZHAO WS, ADJEI M, WANG HM, YANGLIU YL, ZHU JJ, WU HJ. ADIPOR1 regulates genes involved in milk fat metabolism in goat mammary epithelial cells[J]. Research in Veterinary Science, 2021, 137: 194-200.
- [2] 李响, 蒲连美, 阮杨, 李红, 金泽宁. 汉族人群 ADIPOR1 rs7539542 与冠状动脉粥样硬化性心脏病和 2 型糖尿病的关联分析[J]. 首都医科大学学报, 2020, 41(6): 935-942.

LI X, PU LM, RUAN Y, LI H, JIN ZN. The relationship between ADIPOR1 rs7539542 and the susceptibility of coronary artery disease and type 2 diabetes in Han population[J]. Journal of Capital Medical University, 2020, 41(6): 935-942 (in Chinese).

- [3] RUIZ M, STÅHLMAN M, BORÉN J, PILON M. AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin[J]. Journal of Lipid Research, 2019, 60(5): 995-1004.
- [4] 刘丹丹. AdipoQ 对蛋鸡下丘脑-垂体-卵巢轴生殖激素 表达及卵泡生长发育的影响[D]. 郑州: 河南农业大学 硕士学位论文, 2021. LIU DD. Effects of AdipoQ on reproductive hormone secretion and follicular growth and development of hypothalamic-pituitary-ovarian axis in laying hens[D]. Zhengzhou: Master's Thesis of Henan Agricultural University, 2021 (in Chinese).
- [5] 徐嘉宝, 吴卫东. 有氧运动通过脂联素/p38MAPK 延缓 高脂膳食大鼠肝脏炎症[J]. 河南师范大学学报(自然科 学版), 2022, 50(1): 139-143.

XU JB, WU WD. Aerobic exercise retarded liver inflammation by adiponectin/p38MAPK in rats with high

fat diet[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50(1): 139-143 (in Chinese).

- [6] YAMAUCHI T, KAMON J, ITO Y, TSUCHIDA A, YOKOMIZO T, KITA S, SUGIYAMA T, MIYAGISHI M, HARA K, TSUNODA M, MURAKAMI K, OHTEKI T, UCHIDA S, TAKEKAWA S, WAKI H, TSUNO NH, SHIBATA Y, TERAUCHI Y, FROGUEL P, TOBE K, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J]. Nature, 2003, 423(6941): 762-769.
- [7] TSUGAWA-SHIMIZU Y, FUJISHIMA Y, KITA S, MINAMI S, SAKAUE TA, NAKAMURA Y, OKITA T, KAWACHI Y, FUKADA S, NAMBA-HAMANO T, TAKABATAKE Y, ISAKA Y, NISHIZAWA H, RANSCHT B, MAEDA N, SHIMOMURA I. Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin[J]. American Journal of Physiology Endocrinology and Metabolism, 2021, 320(2): E179-E190.
- [8] XU NB, LI XF, WENG J, WEI CH, HE ZY, DOYCHEVA DM, LENAHAN C, TANG WH, ZHOU J, LIU YC, XU Q, LIU YH, HE XY, TANG JP, ZHANG JH, DUAN CZ. Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 AdipoR1/APPL1/AMPK/PPARy polarization via signaling pathway in neonatal rats[J]. Frontiers in Immunology, 2022, 13: 873382.
- [9] TAN PH, TYRRELL HEJ, GAO LQ, XU DM, QUAN JC, GILL D, RAI L, DING YC, PLANT G, CHEN Y, XUE JZ, HANDA AI, GREENALL MJ, WALSH K, XUE SA. Adiponectin receptor signaling on dendritic cells blunts antitumor immunity[J]. Cancer Research, 2014, 74(20): 5711-5722.
- [10] IWABU M, OKADA-IWABU M, TANABE H, OHUCHI N, MIYATA K, KOBORI T, ODAWARA S, KADOWAKI Y, YOKOYAMA S, YAMAUCHI T, KADOWAKI T. AdipoR agonist increases insulin sensitivity and exercise endurance AdipoR-humanized in mice[J]. Communications Biology, 2021, 4: 45.
- [11] 韩冬冬, 苗淑彦, 聂琴, 苗惠君, 魏泽宏, 张文兵, 麦 康森. 大菱鲆脂联素受体基因的克隆及饲料糖脂比对 其表达的影响[J]. 水生生物学报, 2017, 41(3): 565-572. HAN DD, MIAO SY, NIE Q, MIAO HJ, WEI ZH, ZHANG WB, MAI KS. Molecular cloning of adiponectin receptors in turbot Scophthalmus maximus and its expression response to dietary ratios of carbohydrate to lipid[J]. Acta Hydrobiologica Sinica, 2017, 41(3): 565-572 (in Chinese).
- [12] RAMACHANDRAN OM OCÓN-GROVE, R, METZGER S L. Molecular cloning and tissue expression

of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids[J]. Domestic Animal Endocrinology, 2007, 33(1): 19-31.

- [13] YAMAMOTO R, UEKI S, MORITOKI Y, KOBAYASHI Y, OYAMADA H, KONNO Y, TAMAKI M, ITOGA M, TAKEDA M, ITO W, CHIHARA J. Adiponectin attenuates human eosinophil adhesion and chemotaxis: implications in allergic inflammation[J]. Journal of Asthma, 2013, 50(8): 828-835.
- [14] ŻELECHOWSKA P, BRZEZIŃSKA-BŁASZCZYK E, WIKTORSKA M, RÓŻALSKA S, WAWROCKI S, KOZŁOWSKA E, AGIER J. Adipocytokines leptin and adiponectin function as mast cell activity modulators[J]. Immunology, 2019, 158(1): 3-18.
- [15] LUO NL, CHUNG BH, WANG XD, KLEIN RL, TANG CK, GARVEY WT, FU YC. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages[J]. Atherosclerosis, 2013, 228(1): 124-135.
- [16] MANDAL P, PRATT BT, BARNES M, MCMULLEN MR, NAGY LE. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin[J]. The Journal of Biological Chemistry, 2011, 286(15): 13460-13469.
- [17] OHASHI K, PARKER JL, OUCHI N, HIGUCHI A, VITA JA, GOKCE N, PEDERSEN AA, KALTHOFF C, TULLIN S, SAMS A, SUMMER R, WALSH K. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype[J]. The Journal of Biological Chemistry, 2010, 285(9): 6153-6160.
- [18] ŁĄCZNA M, KOPYTKO P, TKACZ M, ZGUTKA K, CZEREWATY M, TARNOWSKI M, LARYSZ D, TKACZ R, KOTRYCH D, PIOTROWSKA K, SAFRANOW K, ŁUCZKOWSKA K, MACHALIŃSKI B, PAWLIK A. Adiponectin is a component of the inflammatory cascade in rheumatoid arthritis[J]. Journal of Clinical Medicine, 2022, 11(10): 2740.
- [19] WANG YN, LIU R, ZHAO PF, ZHANG Q, HUANG YH, WANG L, LV CY, CHE N, TAN WF, ZHANG MJ. Blockade of adiponectin receptor 1 signaling inhibits synovial inflammation and alleviates joint damage in collagen-induced arthritis[J]. Clinical Rheumatology, 2022, 41(1): 255-264.
- [20] RAMOS-RAMÍREZ P, MALMHÄLL C, TLIBA O, RÅDINGER M, BOSSIOS A. Adiponectin/AdipoR1 axis promotes IL-10 release by human regulatory T cells[J]. Frontiers in Immunology, 2021, 12: 677550.
- [21] 赵文阁, 刘鹏, 陈辉. 黑龙江省两栖爬行动物志[M].

北京:科学出版社,2008.

ZHAO WG, LIU P, CHEN H. Amphibians and Reptiles in Heilongjiang Province[M]. Beijing: Science Press, 2008 (in Chinese).

- [22] 张傲. 东北林蛙油中糖和脂类及其代谢相关因子表达的研究[D]. 北京: 北京林业大学硕士学位论文, 2020. ZHANG A. Study on the expression of carbohydrate and lipid and their metabolic related factors in *Rana* oil[D]. Beijing: Master's Thesis of Beijing Forestry University, 2020 (in Chinese).
- [23] 孟欣,孙大庆,张冬星,单晓枫,钱爱东.中草药提取物对东北林蛙源嗜水气单胞菌体内外抑菌试验及其抗炎免疫活性研究[J].黑龙江畜牧兽医,2022(14):112-118,123.
 MENG X, SUN DQ, ZHANG DX, SHAN XF, QIAN AD. Antibacterial activity anti-inflammatory and immune activity of Chinese herbal extracts against *Aeromonas hydrophila* from northeastern forest frogs *in vivo* and *in vitro*[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(14): 112-118, 123 (in Chinese).
- [24] 赵颖, 杜孟泽, 黄亚东, 张迪, 林德贵. 耐药性嗜水气 单胞菌感染致四眼斑龟死亡的病例报告[J]. 中国兽医 杂志, 2022, 58(3): 91-95.
 ZHAO Y, DU MZ, HUANG YD, ZHANG D, LIN DG. Case report of *Sacalia quadriocelllata* died from an antibiotic-resistant *Aeromonas hydrophila* infection[J]. Chinese Journal of Veterinary Medicine, 2022, 58(3): 91-95 (in Chinese).
 [25] 异影 刘旗旗, 刘旗旗, 刘旗旗, 赵雲湾, 刘玉花, 刘鹏, 赵文
- [25] 吴彤,刘婷婷,刘依铭,赵雪滢,刘玉芬,刘鹏,赵文阁.东北林蛙瘦素受体叠加转录蛋白基因的克隆及组织表达分析[J]. 生物工程学报,2022,38(5):1859-1873.
 WU T, LIU TT, LIU YM, ZHAO XY, LIU YF, LIU P, ZHAO WG. Cloning and tissue expression analysis of the *LepROT* gene of *Rana dybowskii*[J]. Chinese Journal of Biotechnology, 2022, 38(5):1859-1873 (in Chinese).
- [26] 许晴. 嗜水气单胞菌胁迫对东北林蛙血细胞及白介素 IL-1β和 IL-10 表达的影响[D]. 哈尔滨: 东北林业大学 硕士学位论文, 2021.
 XU Q. Effects of *Aeromonas hydrophila* on the hemocyte and the interleukin IL-1β and IL-10 expression of *Rana dybowskii*[D]. Harbin: Master's Thesis of Northeast Forestry University, 2021 (in Chinese).
- [27] 史雪灿,柴龙会,牛曙东,肖向红. 嗜水气单胞菌胁迫 下东北林蛙皮肤 MyD88 和 TRAF6 基因表达的动态变 化[J]. 动物医学进展, 2015, 36(6): 59-63.
 SHI XC, CHAI LH, NIU SD, XIAO XH. Expression dynamics of *MyD88* and *TRAF6* genes in *Rana dybowskii* infected with *Aeromonas hydrophila*[J]. Progress in Veterinary Medicine, 2015, 36(6): 59-63 (in Chinese).

- [28] 边若菲,徐笑,刘玉芬,刘鹏,赵文阁. 嗜水气单胞菌 胁迫下东北林蛙 MHC I 基因在不同组织的表达[J]. 生物工程学报,2020,36(7):1323-1333.
 BIAN RF, XU X, LIU YF, LIU P, ZHAO WG. Expression of MHC I genes in different tissues of Rana dybowskii under the stress of Aeromonas hydrophila[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1323-1333 (in Chinese).
- [29] DING ST, LIU BH, KO YH. Cloning and expression of porcine adiponectin and adiponectin *receptor 1* and 2 genes in pigs[J]. Journal of Animal Science, 2004, 82(11): 3162-3174.
- [30] YU MH, CHANG SH, XU J, ZHANG HY, JIANG YL. Genome-wide identification of endosialin family of C-type lectins in common carp (*Cyprinus carpio*) and their response following *Aeromonas hydrophila* infection[J]. Developmental & Comparative Immunology, 2022, 129: 104338.
- [31] QIN CB, WANG B, SUN CY, JIA JR, LI WS. Orange-spotted grouper (*Epinephelus coioides*) adiponectin receptors: molecular characterization, mRNA expression, and subcellular location[J]. General and Comparative Endocrinology, 2014, 198: 47-58.
- [32] KIM AR, ALAM MJ, YOON TH, LEE SR, PARK H, KIM DN, AN DH, LEE JB, LEE CI, KIM HW. Molecular characterization of an adiponectin receptor homolog in the white leg shrimp, *Litopenaeus vannamei*[J]. PeerJ, 2016, 4: e2221.
- [33] WU CL, GAO JE, CHEN L, SHAO XP, YE JY. Identification, characterization, and expression analysis of adiponectin receptors in black carp *Mylopharyngodon piceus* in response to dietary carbohydrate[J]. Fish Physiology and Biochemistry, 2018, 44(4): 1127-1141.
- [34] YAMAUCHI T, KAMON J, MINOKOSHI Y, ITO Y, WAKI H, UCHIDA S, YAMASHITA S, NODA M, KITA S, UEKI K, ETO K, AKANUMA Y, FROGUEL P, FOUFELLE F, FERRE P, CARLING D, KIMURA S, NAGAI R, KAHN BB, KADOWAKI T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Nature Medicine, 2002, 8(11): 1288-1295.
- [35] 赵文丽. 草鱼脂联素及其受体的克隆、表达及在肝脏 糖代谢中的调控作用[D]. 新乡: 河南师范大学硕士学 位论文, 2021.
 ZHAO WL. Cloning, expression and regulation of adiponectin and its receptor in liver glucose metabolism of grass carp (*Ctenopharyngodon idella*)[D]. Xinxiang:
- Master's Thesis of Henan Normal University, 2021 (in Chinese).[36] NISHIO SI, GIBERT Y, BERNARD L, BRUNET F,
- [36] NISHIO SI, GIBERT Y, BERNARD L, BRUNET F, TRIQUENEAUX G, LAUDET V. Adiponectin and

adiponectin receptor genes are coexpressed during zebrafish embryogenesis and regulated by food deprivation[J]. Developmental Dynamics: an Official Publication of the American Association of Anatomists, 2008, 237(6): 1682-1690.

- [37] YANG GK, SONG QQ, SUN CY, QIN JK, JIA JR, YUAN X, ZHANG YZ, LI WS. Ctrp9 and adiponectin receptors in Nile tilapia (*Oreochromis niloticus*): molecular cloning, tissue distribution and effects on reproductive genes[J]. General and Comparative Endocrinology, 2018, 265: 160-173.
- [38] HOLLAND WL, MILLER RA, WANG ZV, SUN K, BARTH BM, BUI HH, DAVIS KE, BIKMAN BT, HALBERG N, RUTKOWSKI JM, WADE MR, TENORIO VM, KUO MS, BROZINICK JT, ZHANG BB, BIRNBAUM MJ, SUMMERS SA, SCHERER PE. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin[J]. Nature Medicine, 2011, 17(1): 55-63.
- [39] HOLLAND WL, SCHERER PE. PAQRs: a counteracting force to ceramides?[J]. Molecular Pharmacology, 2009, 75(4): 740-743.
- [40] AL-RASHED F, AHMAD Z, SNIDER AJ, THOMAS R, KOCHUMON S, MELHEM M, SINDHU S, OBEID LM, AL-MULLA F, HANNUN YA, AHMAD R. Ceramide kinase regulates TNF-α-induced immune responses in human monocytic cells[J]. Scientific Reports, 2021, 11: 8259.
- [41] JORTAY J, SENOU M, ABOU-SAMRA M, NOEL L, ROBERT A, MANY MC, BRICHARD SM. Adiponectin and skeletal muscle: pathophysiological implications in metabolic stress[J]. The American Journal of Pathology, 2012, 181(1): 245-256.
- [42] WANG YJ, WANG XL, LAU WB, YUAN YX, BOOTH D, LI JJ, SCALIA R, PRESTON K, GAO EH, KOCH W, MA XL. Adiponectin inhibits tumor necrosis factor-αinduced vascular inflammatory response via caveolinmediated ceramidase recruitment and activation[J]. Circulation Research, 2014, 114(5): 792-805.
- [43] PATHAK MP, PATOWARY P, das A, GOYARY D, KARMAKAR S, BHUTIA YD, ROY PK, das S, CHATTOPADHYAY P. Crosstalk between AdipoR1/ AdipoR2 and Nrf2/HO-1 signal pathways activated by β-caryophyllene suppressed the compound 48/80 induced pseudo-allergic reactions[J]. Clinical and Experimental Pharmacology & Physiology, 2021, 48(11): 1523-1536.
- [44] SÁNCHEZ-GURMACHES J, CRUZ-GARCIA L, GUTIÉRREZ J, NAVARRO I. Adiponectin effects and gene expression in rainbow trout: an *in vivo* and *in vitro* approach[J]. The Journal of Experimental Biology, 2012, 215(Pt 8): 1373-1383.