生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.210599

医药生物技术。

重组靶向核糖体失活蛋白 luffin-α-NGR 的制备及抗 肿瘤活性评价

周哲越,蒋欣怡,张宏瑞,黄志广,邹瑞,楼秋雯,王玉,朱振洪

浙江中医药大学 生命科学学院,浙江 杭州 310053

周哲越, 蒋欣怡, 张宏瑞, 黄志广, 邹瑞, 楼秋雯, 王玉, 朱振洪. 重组靶向核糖体失活蛋白 luffin-α-NGR 的制备及抗肿瘤 活性评价. 生物工程学报, 2022, 38(3): 1138-1148.

ZHOU ZY, JIANG XY, ZHANG HR, HUANG ZG, ZOU R, LOU QW, WANG Y, ZHU ZH. Preparation of a recombinant tumor-targeting ribosome inactivating protein luffin- α -NGR and evaluation of its antitumor activity. Chin J Biotech, 2022, 38(3): 1138-1148.

摘 要:将丝瓜籽核糖体失活蛋白 luffin-α 与肿瘤靶向肽 NGR 融合,制备 luffin-α-NGR 重组蛋 白,并检测其对肿瘤细胞与血管生成的抑制活性。通过引物设计及 PCR 扩增获得 luffin-α-NGR 融 合基因,与 pGEX-6p-1 载体连接后获得 pGEX-6p-1/luffin-α-NGR 重组质粒,质粒转入大肠杆菌 (Escherichia coli) BL21 中表达,以 GST 亲和层析法分离纯化目的蛋白。MTT 比色法、Transwell 迁移实验以及鸡胚尿囊膜实验 (CAM) 检测其活性。结果表明,成功获得全长为 849 bp 的 luffin-α-NGR 融合基因,目标蛋白在 16 ℃、0.5 mmol/L IPTG 诱导 16 h 后获得最佳表达,经 SDS-PAGE 和 Western blotting 分析,GST 融合蛋白分子量为 56.6 kDa,与预期一致。重组蛋白经 GST 亲和层析、蛋白酶精准酶切去除标签后,利用 MTT 法验证其对 HepG2 和 MDA-MB-231 细胞 的抑制效果显著优于 luffin-α。Transwell 迁移实验和 CAM 实验证实重组蛋白 luffin-α-NGR 对肿瘤 细胞迁移和血管生成具有明显的抑制作用。本研究成功地制备了重组蛋白 luffin-α-NGR,并证实该 重组蛋白对肿瘤细胞具有良好的抑制活性,为后续重组靶向蛋白药物的开发奠定基础。

关键词:丝瓜;核糖体失活蛋白;luffin-α;抗肿瘤;靶向肽

Received: August 7, 2021; Accepted: November 12, 2021; Published online: December 27, 2021

Supported by: National Natural Science Foundation of China (81803992); Zhejiang University Student Science and Technology Innovation Activity Plan, China (2020R410025)

Corresponding author: ZHU Zhenhong. Tel: +86-571-86613713; E-mail: zhenhongzhu@aliyun.com

基金项目: 国家自然科学基金 (81803992); 浙江省大学生科技创新活动计划暨新苗人才计划 (2020R410025)

Preparation of a recombinant tumor-targeting ribosome inactivating protein luffin-α-NGR and evaluation of its antitumor activity

ZHOU Zheyue, JIANG Xinyi, ZHANG Hongrui, HUANG Zhiguang, ZOU Rui, LOU Qiuwen, WANG Yu, ZHU Zhenhong

College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China

Abstract: Loofah seeds ribosome inactivating protein luffin- α was fused with a tumor-targeting peptide NGR to create a recombinant protein, and its inhibitory activity on tumor cells and angiogenesis were assessed. *luffin-\alpha-NGR* fusion gene was obtained by PCR amplification. The fusion gene was ligated with pGEX-6p-1 vector to create a recombinant plasmid pGEX-6p-1/*luffin-\alpha-NGR*. The plasmid was transformed into *E. coli* BL21, and the target protein was isolated and purified by GST affinity chromatography. The *luffin-\alpha-NGR* fusion gene with a full length of 849 bp was successfully obtained, and the optimal soluble expression of the target protein was achieved under the conditions of 16 °C, 0.5 mmol/L IPTG after 16 h induction. SDS-PAGE and Western blotting confirmed the recombinant protein has an expected molecular weight of 56.6 kDa. Subsequently, the recombinant protein on liver tumor cells HepG2 and breast cancer cells MDA-MB-231 were significantly stronger than that of luffin- α -NGR also had a significant inhibitory effect on tumor cells migration and neovascularization. The inhibitory activity on tumor cells and angiogenesis of the recombinant luffin- α -NGR protein lays a foundation for the development of subsequent recombinant tumor-targeting drugs.

Keywords: loofah; ribosome inactivating protein; luffin- α ; anti-tumor; targeting peptide

丝瓜为常见的药食同源代表,近年来其活 性成分和药用价值一直受到国内外学者的重 视。目前已从丝瓜属植物中发现了多种药用成 分,如从丝瓜籽中分离的 I 型核糖体失活蛋白 (ribosome inactivating protein, RIPs) luffin-α、 luffin-β等,该蛋白能通过与核糖体 rRNA 分子 相互作用而阻断蛋白质合成,是一种高效的细 胞毒素^[1-2]。研究表明,luffin-α 对肿瘤细胞有明 显的抑制作用^[3],可以作为一种具有发展潜力 的抗癌药物。然而 luffin-α 蛋白缺乏肿瘤靶向 性, 毒副作用较强^[4], 因此开展 luffin-α 蛋白的 肿瘤靶向性研究具有广阔的应用前景。有学者 经噬菌体展示技术发现一类可以特异性识别并 结合肿瘤细胞或肿瘤血管的肽——肿瘤靶向肽^[5], 它可以在体内靶向肿瘤,可以特异性地输送抗 癌药物等物质抵达肿瘤组织^[6],其中含有 NGR (Asn-Gly-Arg) 基序的肽是合适的肿瘤靶向肽 之一^[7]。NGR 肽可被 CD13/氨基肽酶 N(APN) 受体亚型识别^[8], 而这些亚型在肿瘤新生血管 系统中选择性过表达^[9-11]。已经有实验证明, 利 用 NGR 肽的靶向作用,可以将病毒载体、放射 性示踪剂等运输到肿瘤组织的新生血管处^[12-14]。 本实验目的就是构建重组靶向蛋白 luffin-α-NGR,并初步研究其靶向抗肿瘤生物活性。

1 材料与方法

1.1 材料与试剂

1.1.1 菌株、细胞及质粒

pGEX2T/luffin-α 质粒由本实验室构建并保存;pGEX-6p-1 质粒、BL21、人肝癌细胞 HepG2、 人乳腺癌细胞 MDA-MB-231 均由本实验室 保存。

1.1.2 主要试剂

质粒抽提试剂盒购自 Axygen 公司; GST 填 料 (谷胱甘肽琼脂糖)、氨苄青霉素 (ampicillin, Amp)、噻唑蓝 (3-(4,5-dimethyl-2-thiazolyl)-2,5diphenyl tetrazolium bromide, MTT)、异丙基β-D- 硫 代 半 乳 糖 苷 (isopropyl-β-Dthiogalactopyranoside, IPTG)、十二烷基硫酸钠 (sodium dodecyl sulfate, SDS) 和蛋白质定量 检测试剂盒购自生工生物工程 (上海) 有限公 司: 胰蛋白酶、青链霉素购自吉诺生物医药技 术有限公司; DMEM 培养液、L-15 培养液购 自 HyClone 公司;谷胱甘肽硫转移酶 (glutathione S-transferase, GST) 单克隆抗体、辣根过氧化 物酶标记山羊抗小鼠 IgG (H+L)、蛋白 marker 购自上海碧云天生物技术有限公司;8 日龄 白壳种蛋购自杭州华杰禽业有限公司; KOD 酶、限制性内切酶等购自 TaKaRa 公司, 顺 铂 (cisplatin, CDDP) 购自上海源叶生物有限 公司。

1.2 方法

1.2.1 *luffin-α-NGR* 基因的获取

根据 NGR 氨基酸序列 (Gly-Cys-Asn-Gly-Arg-Cys),依照大肠杆菌偏好密码子设计其 DNA 序列: 5'-GGCTGCAATGGTCGTTGC-3',将其设计在下游引物中 (表 1)。PCR 反应扩增融合基因,反应体系如下: 10×PCR 缓冲液 2.5 μ L, MgSO₄ 1.5 μ L, 2 mmol/L dNTPs 2.5 μ L, 引物-F 0.5 μ L, 引物-R 0.5 μ L, 含 *luffin-a* 基因的质粒 0.5 μ L,KOD 酶 1 μ L,ddH₂O 16 μ L,总计 25 μ L。反应条件如下: 94 ℃预变性 3 min; 98 ℃ 11 s, 59 ℃ 45 s, 68 ℃ 45 s, 3 个循环; 98 ℃ 11 s, 57 ℃ 34 s, 68 ℃ 45 s, 28 个循环; 68 ℃ 10 min, 4 ℃ 10 min;取 7 μ L 产物经琼脂糖凝胶电泳验 证后, -20 ℃保存。

1.2.2 pGEX-6p-1/luffin-α-NGR 质粒的构建

首先将 luffin-a-NGR 基因和载体双酶切, 反应体系如下: ddH₂O 7 µL, 10×缓冲液 K 2 µL, PCR产物 (或载体) 8 µL, BamH I 1 µL, EcoR I 1 µL,总计 20 µL。双酶切产物经电泳鉴定并割 胶回收, -20 ℃保存。接着将载体和基因连接, 连接体系如下: 高效连接酶 Ligation high Ver 2 5 µL, PCR 产物酶切液 4 µL,载体 1 µL,总计 10 µL, 16 ℃反应 30 min。连接产物转化 BL21 大肠杆菌感受态细胞,涂布在有 Amp 抗性的 LB 平板上,37 ℃倒置培养过夜。挑选少量菌 落至 10 µL ddH₂O 中,然后取 0.5 µL 菌液作为 模板进行 PCR 鉴定 (PCR 方法同 1.2.1),选取 PCR 阳性克隆进行测序验证。

表1 本研究所用引物

Table 1 Primers used in this study				
Names	Primer sequences $(5' \rightarrow 3')$			
LUF-NGR-F	CGGGATCCAAGAGATTTACAGTGCTAATTCTCGCC			
LUF-NGR-R	CGGAATTCTCAGCAACGACCATTGCAGCCGTGTTTTGCAGAAACATCCTC			

1.2.3 重组蛋白 luffin-α-NGR 可溶性表达的最 适条件摸索

为了获得大量的可溶性重组蛋白 luffin-α-NGR,利用单因素试验,通过改变 IPTG 诱导 剂的浓度、最适起始诱导 *OD*₆₀₀ 值、诱导温 度和诱导时间并进行 SDS-PAGE 分析,最后挑 选出最优的诱导表达条件组合。具体分组如表 2 所示。

1.2.4 重组蛋白的大量表达及亲和纯化

将 2 mL 种子液转接至 200 mL LB 培养液 中 (含 Amp), 37 ℃、240 r/min 培养 2 h。添加 IPTG 至终浓度为 0.5 mmol/L, 然后 16 ℃、 180 r/min 继续培养 16 h。以4℃、5 000 r/min 条件下离心 10 min 收集沉淀, 10 mL PBS 清洗后 重悬。重悬液在冰上超声破碎(功率 60%, 超声 2 s, 间歇 2 s, 共 20 min)。将超声后的菌液以 12 000 r/min 离心 10 min, 上清液通过 0.45 µm 滤膜过滤。取 400 µL GST 填料装柱, 5 mL PBS 缓冲液平衡柱子。上清与填料混合,冰浴轻轻振 荡 45 min。按 10 mg GST 标签蛋白使用 150 μL prescission protease (PP) 酶, 用 1×酶切缓冲液 稀释 PP 酶至与树脂体积相同,将稀释液加入到 纯化柱中, 于4℃柱上酶切15-16h。然后用1 倍柱体积的 1×酶切缓冲液洗涤柱子, 重复 3 次 并收集洗涤液。对洗涤液进行超滤浓缩,使用 二喹啉甲酸 (bicinchoninic acid, BCA) 蛋白质 定量试剂盒测定蛋白浓度,于-80℃冻存。

1.2.5 蛋白电泳及 Western blotting 鉴定

首先将蛋白转移至硝酸纤维素膜,然后置 入用 5%脱脂奶粉,水平摇床上封闭 2 h。加入 1:1000 稀释的抗 GST 小鼠多克隆抗体,4℃ 孵育过夜。1×TBST 缓冲液 (tris buffered saline-tween 20, TBST)洗涤 10 min,共3次, 与稀释的辣根过氧化物酶标记的山羊抗小鼠 IgG 孵育 2 h, TBST 洗膜。使用 ECL 试剂盒孵 育膜,蛋白条带使用 Tanon-2500 拍照记录。

MTT 法测定重组蛋白对 HepG2、 MDA-MD-231 细胞的抑制效果

将对数期生长的 HepG2 细胞、MDA-MB-231 细胞按 1×10⁴个/mL 的细胞数接种于 96 孔板中(100 µL/孔),然后置于培养箱中培养 24 h。从-80 ℃冰箱取出纯化后的重组蛋白,与 培养液混合稀释成特定浓度的药液。待细胞贴 壁后,分别按400.00、200.00、100.00、50.00、 25.00、12.50、6.25 µg/mL 的浓度对 HepG2 细 胞和 MDA-MB-231 细胞进行梯度给药,设 6 个复孔,其中对照组只加培养液。同时再设 置相同浓度的阳性抗肿瘤药物—顺铂作为对 照。将 HepG2 细胞、MDA-MB-231 细胞置于 5% CO₂、37 ℃培养箱中继续培养 48 h。终止培 养时,每孔加入 20 μL MTT (5 mg/mL) 溶液, 培养箱中再孵育4h, 然后吸除 MTT 溶液, 加入 150 μL DMSO 溶液, 避光振荡数分钟后, 490 nm 处检测吸光度,计算细胞生长抑制率。

Table 2 Different induction conditions							
Groups	Lanes						
	1	2	3	4	5	6	
(A) Temperature (°C)	10.0	16.0	20.0	25.0	37.0	16.0 (none-IPTG)	
(B) Time (h)	8.0	12.0	16.0	16.0 (none-IPTG)	/	/	
(C) <i>OD</i> ₆₀₀	0.8	0.7	0.6	0.5	0.6 (none-IPTG)	/	
(D) IPTG (mmol/L)	0.5	0.4	0.3	0.2	0.1	0	

表 2 不同诱导条件的分组

1.2.7 Transwell 迁移实验验证重组蛋白对 HepG2 细胞迁移的抑制效果

取对数生长期的 HepG2 细胞, 胰酶消化离 心,将细胞浓度调整至 5.0×10⁴ 个/mL 的密度; 取 24 孔板,向下室内分别加入 600 μL 含 10% 血清的培养液,以及用 10%血清的培养液配制 的 100、200 µg/mL 的 luffin-α-NGR 与 luffin-α 蛋白。上室加入 100 µL 细胞悬液, 保证小室膜 与培养液之间无气泡;置于37℃、CO2培养箱 培养 24 h。24 h 后将小室取出,弃去孔中培养 基, PBS 溶液漂洗 3 次, 加入 600 µL 甲醇固定 20 min; 30 min 后弃去孔中固定液, PBS 溶液 漂洗3次并吸弃干净,将小室置于已加入600 µL 结晶紫染液的培养孔中,染色 30 min; PBS 溶 液漂洗3次,尽量使背景干净;在倒置显微镜 100 倍镜下随机选择 5 个视野拍照,并用 Image Pro Plus 6.0 软件进行细胞计数,分析处理 数据。

1.2.8 鸡胚绒毛尿囊膜实验(CAM)验证重组蛋白对新生血管的抑制作用

选择 8 日龄白壳种蛋,表面消毒置于培养 箱 3 d。用 75%乙醇消毒将鸡胚随机分为 3 组: 空白对照组、luffin-α-NGR 组和 luffin-α 组。消 毒后,于气室和毛细血管稀疏区开一个小孔, 撕去内壳膜,形成假气室。无菌封口膜封贴假 气室,继续培养鸡胚,24 h 后撕开封口膜,加 入无菌硅胶环,密封假气室,稳定24 h。将重 组蛋白 luffin-α-NGR、luffin-α蛋白加入硅胶环 内。48 h 后揭开鸡胚小窗上的透明胶带,在每 一颗蛋上加入 2.5 mL 固定液 (丙酮:甲醇=1: 1) 室温固定 20 min。拍照观察:用体视显微镜 观察血管生长情况,抑制效果的计算公式如下: I=B 给药后/A 给药后-B 给药前/A 给药前。

1.2.9 统计学分析处理方法

利用 GraphPad Prism 8 软件进行统计学分析,对各活性实验结果鉴定均采用 t 检验。方

法:建立数据集,新建对应的分析,选择"列", 选择"*t* 检验(和非参数检验)",得到 *P* 值。

2 结果与分析

2.1 *luffin-a-NGR* 基因的扩增

PCR 产物经 1%琼脂糖凝胶电泳,在凝胶成 像仪下发现一条大小约为 850 bp 明亮条带 (图 1),与目的基因 (849 bp)大小基本吻合。

2.2 pGEX-6p-1/*luffin-α-NGR* 重组质粒双 酶切鉴定

将 pGEX-6p-1/luffin-α-NGR 重组质粒用 BamHI、EcoRI进行双酶切,经琼脂糖凝胶 电泳、割胶回收后,发现酶切后的基因大小正 确(图 2)。将双酶切验证正确后的菌液送至浙 江尚亚生物技术公司测序验证,结果显示序列 100%正确。

2.3 重组蛋白诱导表达条件摸索

电泳结果如图 3, A 可见第二泳道温度为 16 ℃时诱导的可溶性重组蛋白量较多; B 可见 第三泳道诱导时间为 16 h 时,诱导的重组蛋白 量较理想; C 可见第三泳道 *OD*₆₀₀=0.6 时诱导的 重组蛋白量较多; D 可见第一泳道 IPTG 浓度为 0.5 mmol/L 时诱导的重组蛋白量最多。因此较 优的表达条件为: 16 ℃、0.5 mmol/L IPTG、起 始诱导 *OD*₆₀₀ 为 0.6,诱导时间为 16 h。

图 1 PCR 扩增 *luffin-a-NGR* 基因

Figure 1 Amplification of the *luffin-a-NGR* gene. M: DNA marker; 1: PCR amplified products of *luffin-a-NGR*.

图 2 pGEX-6p-1/luffin-a-NGR 质粒双酶切

Figure 2 Double digestion of the *luffin-\alpha-NGR* plasmid. M₁: DNA marker (1 kb); M₂: DNA marker (2 000 bp); 1: double digests of recombinant plasmid.

重组蛋白 luffin-α-NGR 的 SDS-PAGE 电泳及 Western blotting 鉴定

SDS-PAGE 后, 一抗采用抗 GST 小鼠多克 隆抗体, 二抗采用 HRP-羊抗鼠 IgG, ECL 试剂 反应并显色。结果表明在 56.6 kDa 位置处有一 条明显的条带 (图 4)。

2.5 MTT 法测定重组蛋白 luffin-α-NGR 对肿瘤细胞生长的抑制效果

将重组的 luffin-α、luffin-α-NGR 两种蛋白 与抗肿瘤阳性对照药物 CDDP 分别作用 HepG2 和 MDA-MD-231 两种细胞后,对细胞生长抑制 率如图 5 所示。实验表明,重组蛋白 luffin-α-NGR 组对 HepG2 和 MDA-MB-231 两种细胞抑 制作用效果整体明显优于 luffin-α 蛋白组和

Figure 3 Expression of recombinant protein under different induction conditions. (A) Optimization of the induction temperature; M: protein marker; 1–5: the inductions temperatures were 10 °C, 16 °C, 20 °C, 25 °C, 37 °C respectively. 6: uninduced control. (B) Optimization of the induction time; M: protein marker; 1–3: the inductions of duration were 8, 12, 16 hours respectively; 4: uninduced control. (C) Optimization of the initial optical density; M: protein marker; 1–4: the OD_{600} values were 0.8, 0.7, 0.6, 0.5 respectively; 5: uninduced control. (D) Optimization of the inducer concentrations. M: protein marker; 1–6: IPTG concentrations were 0.5, 0.4, 0.3, 0.2, 0.1, 0 mmol/L.

图 4 重组蛋白 SDS-PAGE 电泳 (A) 及 Western blotting 鉴定 (B)

Figure 4 SDS-PAGE electrophoresis and Western blotting identification of recombinant protein. (A) M: protein marker; 1: supernatant of recombinant expression strain. (B) Identification of recombinant protein luffin- α -NGR by Western blotting.

图 5 重组蛋白和顺铂对 HepG2、MDA-MD-231 细胞生长的抑制作用

Figure 5 Inhibition of the two recombinant proteins and CDDP on the growth of both HepG2 cells and MDA-MB-231 cells. (A) Inhibition line chart of HepG2. (B) The control group of HepG2 cells (×100). (C) HepG2 cells after treatment (×100) (luffin- α -NGR/24 h). (D) Inhibition line chart of MDA-MB-231. (E) The control group of MDA-MB-231 cells (×100). (F) MDA-MB-231 cells after treatment (×100) (luffin- α -NGR/24 h). *: *P*<0.05; **: *P*<0.01.

顺铂组。随着蛋白浓度的增加,细胞存活率显 著下降,呈现一定的浓度-依赖趋势。

HepG2 组 luffin-α-NGR 的 *IC*₅₀ 为 64.48 µg/mL, 比重组 luffin-α 提高了 1.87 倍; MDA-MB-231 组 *IC*₅₀ 显示,重组 luffin-α-NGR 为 99.60 µg/mL, 比 luffin-α 组约提高了 1.71 倍 (表 3)。说明 luffin-α 融合靶向肽后,对肿瘤细胞的抑制作用明显提高。

Transwell 迁移实验验证重组蛋白 luffin-α-NGR 对肿瘤细胞迁移的抑制效果

如图 6A 所示,重组蛋白 luffin-α-NGR 组 细胞迁移透过小室膜的数量要明显少于 luffin-α蛋白组和 control 组(不给药组),且不同 浓度之间 luffin-α-NGR 组与 luffin-α 组存在差 异。高浓度 (200 μg/mL) 组与低浓度 (100 μg/mL) 组相比,高浓度组细胞穿过小孔的数目显著减 少,说明随着浓度的升高,细胞穿过小孔的数 目也随之减少,有浓度-依赖趋势。这些结果表 明重组蛋白 luffin-α-NGR 有抑制肝癌细胞 HepG2迁移穿过小室薄膜的能力。

2.7 鸡胚尿囊膜实验 (CAM) 验证重组蛋 白 luffin-α-NGR 对新生血管的抑制作用

使用 CAM 模型研究了重组蛋白 luffin-α-NGR 对新血管形成的抑制作用,结果 如图 7A 所示。Control组 (不给药组) CAM 中 的一级、二级血管和微血管各级分支层次分明, 脉络清晰,呈叶脉状均匀分布,形成放射状密 集血管网。luffin-α组与 luffin-α-NGR 组血管密 度均有降低,血管结构模糊,排列稍显紊乱, 未见明显的微血管分支及毛细血管。Image Pro Plus 6.0 软件分析结果如图 7B 所示,与对照组相

表 3 重组 luffin- α -NGR 和 luffin- α 以及顺铂对两种肿瘤细胞抑制作用的 IC_{50} 值

Table 3 The IC_{50} value of inhibition on two tumor cells by recombinant luffin- α -NGR and luffin- α as well as CDDP

Cells	Luffin- α (µg/mL)	Luffin- α -NGR (μ g/mL)	CDDP (µg/mL)
HepG2	120.80	64.48	56.67
MDA-MB-231	170.80	99.60	135.30

图 6 重组蛋白 luffin-α-NGR 对 HepG2 细胞迁移的抑制作用

Figure 6 Inhibition of recombinant protein luffin- α -NGR on the migration of HepG2 cells. (A) Transwell method detects the effect of two proteins on the migration of HepG2 cells (×100). (B) Analysis of the inhibition rate of luffin- α -NGR on the migration of HepG2 cells. *: *P*<0.05; **: *P*<0.01.

图 7 重组蛋白 luffin-α-NGR 对鸡胚绒毛尿囊膜血管新生的抑制作用 Figure 7 Inhibition of recombinant protein luffin-α-NGR on angiogenesis of chick chorioallantoic membrane. (A) Intuitive pictures. (B) Analysis of the inhibition rate of luffin-α and luffin-α-NGR on angiogenesis. *: *P*<0.05; **: *P*<0.01.

比, luffin-α组与 luffin-α-NGR 组均对血管生成 有抑制作用。与 luffin-α 组相比,重组蛋白 luffin-α-NGR 对血管生成的抑制作用更加显著, 实验结果表明重组蛋白 luffin-α-NGR 在抑制新 血管形成方面更为有效。

3 讨论

目前恶性肿瘤已经成为威胁人民生命健康 的"头号杀手"。众多研究者们致力开发更有效 的靶向药物来抑制肿瘤的发生发展。RIPs 是目 前颇有前景的抗肿瘤药物,例如蓖麻毒素^[15]、 天花粉蛋白、苦瓜籽 MAP30 蛋白等^[16],但这 类植物蛋白对肿瘤细胞的靶向性不强,毒副作 用大。如何提高其抗肿瘤的靶向性,减少毒副 作用,是限制其进入临床应用的关键。肿瘤靶 向肽作为一种新的肿瘤靶向载体,具有相对分 子质量小、特异性高、制备简单、低免疫源性 的优势^[17], NGR (Asn-Gly-Arg) 是通过噬菌体 展示文库中筛选出来的能够和肿瘤新生血管特 异结合的三肽 motif, 它可以与肿瘤血管表面高 表达的氨肽酶 N(APN)/CD13 分子特异地结合^[18]。 NGR多肽可以将多种药物分子和病毒载体靶向 运输到肿瘤^[19]或者进行血管再生的组织中。目

前,针对 NGR 肽的结构和功能以及其在肿瘤靶 向治疗中的相关研究已经取得不错的进展^[20]。 大量实验证明,靶向性药物对其所针对的各个 靶点所产生的抑瘤效果有协同效应,并且可以 将针对不同靶点的不同的多肽序列与抗肿瘤蛋 白基因相结合^[21-22],将显著提高抗肿瘤蛋白抑 瘤活性进而来减少和修复对正常组织细胞产生 的不良效果,能体现出更高的选择性、更好的 抗肿瘤效果以及对正常组织细胞更低的毒副作 用^[23]。

本实验通过基因工程技术获得重组融合蛋 白 luffin-α-NGR,同时摸索其可溶性表达的最 佳条件为:起始诱导 OD_{600} 为 0.6、IPTG 为 0.5 mmol/L、16 °C和共诱导 16 h。本实验以人 肝癌细胞 HepG2、人乳腺癌细胞 MDA-MB-231 作为实验对象,是由于其细胞表面生物标志物 CD13 过表达^[9-11],从而使 NGR 肽可轻易地与 其特异性结合。观察重组 luffin-α-NGR 对这两 种肿瘤细胞的抑制作用。在 MTT 实验中,重组 蛋白 luffin-α-NGR 较 luffin-α 和 CDDP 表现出 更强的抑制效果,且呈浓度剂量依赖性。 Transwell 实验验证了重组蛋白 luffin-α-NGR 和 luffin-α 可以抑制 HepG2 细胞的纵向迁移能力,

重组蛋白 luffin-α-NGR 的抑制效果明显强于 luffin-α。鸡胚尿囊膜实验 (CAM) 表明同样表 明重组蛋白 Luffin-α-NGR 在对新生血管抑制作 用方面更为显著。

另外刘洋等^[24]将细胞穿膜肽与 RIPs 连接 后,能有效引导重组蛋白穿膜而进入细胞内, 大大提高了对肿瘤细胞的抑制作用,但穿膜肽 无导向性^[25]。与穿膜肽相比,肿瘤导向肽只是 作为"生物导弹"将 RIPs 导向肿瘤细胞部位,但 并不能穿过细胞膜,所以抑制作用不如穿膜肽 明显。后期实验可以将这两种肽结合起来,达 到既能导向肿瘤靶部位,又能引导 RIPs 穿过细 胞膜,这样将大大提高对肿瘤细胞的杀伤作用, 为未来开发靶向强、毒副作用小的抗肿瘤药物 提供思路。

REFERENCES

- Barkhordari F, Raigani M, Garoosi YT, et al. Optimization of EnBase fed-batch cultivation to improve soluble fraction ratio of α-luffin ribosome inactivating protein. Iran J Biotechnol, 2018, 16(1): e1482.
- [2] Tinglu L, Guangbo K, Tingyue W, et al. Tumor angiogenesis and antiangiogenic gene therapy for cancer (review). Oncol Lett, 2018, 16(1): 687-702.
- [3] 朱峰, 冯建国, 钱坤, 等. 核糖体失活蛋白生物信息 学分析. 扬州大学学报(农业与生命科学版), 2016, 37(1): 113-118.
 Zhu F, Feng JG, Qian K, et al. Bioinformatic analysis of ribosome-inactivating proteins. J Yangzhou Univ Agric Life (Sci Ed), 2016, 37(1): 113-118 (in Chinese).
- [4] Asrorov M, Gu ZY, Min K, et al. Advances on tumor-targeting delivery of cytotoxic proteins. ACS Pharmacol Transl Sci, 2019, 3(1): 107-118.
- [5] Yoo JD, Bae SM, Seo J, et al. Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy. Sci Rep, 2020, 10(1): 19997.
- [6] Jiang W, Jin G, Ma D, et al. Modification of cyclic NGR tumor neovasculature-homing motif sequence to human plasminogen Kringle 5 improves inhibition of tumor growth. PLoS ONE, 2012, 7(5): e37132.

- [7] Kokorin A, Weise C, Sama S, et al. A new type 1 ribosome-inactivating protein from the seeds of *Gypsophila elegans* M. Bieb. Phytochemistry, 2019, 157: 121-127.
- [8] Kis A, Dénes N, Szabó JP, et al. *In vivo* molecular imaging of the efficacy of aminopeptidase N (APN/CD13) receptor inhibitor treatment on experimental tumors using 68Ga-NODAGA-c(NGR) peptide. Biomed Res Int, 2021, 2021: 6642973.
- [9] Tripodi AAP, Ranđelović I, Biri-Kovács B, et al. In vivo tumor growth inhibition and antiangiogenic effect of cyclic NGR peptide-daunorubicin conjugates developed for targeted drug delivery. Pathol Oncol Res, 2020, 26(3): 1879-1892.
- [10] Weng A. A novel adenine-releasing assay for ribosome-inactivating proteins. J Chromatogr B, 2018, 1072: 300-304.
- [11] Evandro Fei Fang, Chris Zhi, Yi Zhang, et al. The MAP30 protein from bitter gourd (*Momordica charantia*) seeds promotes apoptosis in liver cancer cells *in vitro* and *in vivo*. Cancer Lett, 2012, 324(1).
- [12] 朱天翼,施薇文,王婧,等.肿瘤抗血管靶向治疗相 关标志物研究进展及其在骨与软组织肉瘤中的潜在 应用.中国骨与关节杂志,2021,10(5):348-358.
 Zhu TY, Shi WW, Wang J, et al. Single nucleotide polymorphisms (SNPs) associated with antiangiogenesis in tumor targeted treatment and potential application in osteosarcoma and soft tissue sarcoma. Chin J Bone Joint, 2021, 10(5): 348-358 (in Chinese).
- [13] 韩翠艳,周建文,刘畅,等. AEYLR 小肽修饰的紫杉 醇纳米结构脂质载体的制备及抗肿瘤效果评价.中 国药房, 2019, 30(6): 770-775.
 Han CY, Zhou JW, Liu C, et al. Preparation of small peptide AEYLR modified paclitaxel nanostructured lipid carriers and evaluation of its anti-tumor effects. China Pharm, 2019, 30(6): 770-775 (in Chinese).
- [14] Habault J, Poyet JL. Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, 2019, 24(5): E927.
- [15] 徐雅楠,孙立杰,于丽丽,等. 蓖麻毒蛋白在细胞内的转运过程研究进展.山东农业大学学报(自然科学版),2018,49(6):916-920.
 Xu YN, Sun LJ, Yu LL, et al. Research progress in the transport process of ricin in cells. J Shandong Agric Univ (Nat Sci Ed), 2018, 49(06): 916-920 (in Chinese).
- [16] 刘巾玮, 魏敏杰. 肿瘤靶向肽偶联药物的研究进展.

☎: 010-64807509

中国新药与临床杂志, 2020, 39(3): 129-134. Liu JW, Wei MJ. Research progress of tumor targeting peptide-drug conjugates. Chin J New Drugs Clin Remedies, 2020, 39(3): 129-134 (in Chinese).

- [17] Coutelle O, Schiffmann LM, Liwschitz M, et al. Dual targeting of angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer, 2015, 112(3): 495-503.
- [18] Araste F, Abnous K, Hashemi M, et al. Peptide-based targeted therapeutics: focus on cancer treatment. J Control Release, 2018, 292: 141-162.
- [19] 曾慧琳,邓艾平,王奕,等. NGR 肽修饰的紫杉醇固体脂质纳米粒的制备及评价. 沈阳药科大学学报,2019,36(4):275-281,347.
 Zeng HL, Deng AP, Wang Y, et al. Preparation and evaluation of NGR peptide modified paclitaxel solid lipid nanoparticles. J Shenyang Pharmaceutical Univ, 2019, 36(4):275-281,347 (in Chinese).
- [20] 黄梦琦,周娴,李婧姝,等. 植物核糖体失活蛋白研 究进展.四川农业科技, 2018(8): 44-46.
 Huang MQ, Zhou X, Li JS, et al. Research progress of plant ribosome inactivating protein. Sichuan Agric Sci Technol, 2018(8): 44-46 (in Chinese).

- [21] Zhu L, Ding Z, Li X, et al. Research progress of radiolabeled asn-gly-arg (NGR) peptides for imaging and therapy. Mol Imaging, 2020, 19: 1536012120934957.
- [22] Tripodi AAP, Tóth S, Enyedi KN, et al. Development of novel cyclic NGR peptide-daunomycin conjugates with dual targeting property. Beilstein J Org Chem, 2018, 14: 911-918.
- [23] Chen YJ, Zhu JQ, Fu XQ, et al. Ribosome-inactivating protein α-momorcharin derived from edible plant Momordica charantia induces inflammatory responses by activating the NF-kappaB and JNK pathways. Toxins, 2019, 11(12): 694.
- [24] 刘洋,曹雪玮,卢美雅,等.通过细胞穿膜肽和皂苷 增强一种核糖体失活蛋白抗肿瘤活性.生物技术通 报,2019,35(8):146-154.
 Liu Y, Cao XW, Lu MY, et al. Enhancement of anti-tumor effect of a ribosome-inactivating protein by cell penetrating peptides and saponin. Biotechnol Bull, 2019, 35(8): 146-154 (in Chinese).
- [25] 岳瀚勋, 余娴. 细胞穿膜肽药物载体研究进展. 新乡 医学院学报, 2019, 36(4): 397-401.
 Yue HX, Yu X. Research progress of cell penetrating peptide drug carrier. J Xinxiang Med College, 2019, 36(4): 397-401 (in Chinese).

(本文责编 陈宏宇)