Feb. 25, 2020, 36(2): 267-275 ©2020 Chin J Biotech, All rights reserved

动物及兽医生物技术。

转座子引起的猪ktn1基因结构变异及其与生产性能的 关联分析

陈才,陈伟,郑尧,顾浩,王伟,王宵燕,高波,宋成义

扬州大学 动物科学与技术学院, 江苏 扬州 225009

陈才, 陈伟, 郑尧, 等. 转座子引起的猪 kml 基因结构变异及其与生产性能的关联分析. 生物工程学报, 2020, 36(2): 267-275.

Chen C, Chen W, Zheng Y, et al. Structural variations caused by transposons in porcine ktn1 gene and their association with production traits. Chin J Biotech, 2020, 36(2): 267-275.

要:为探明转座子对猪的 ktn1 基因及其侧翼区结构变异的贡献,从全基因组测序 (WGS) 数据库中获取 摘 14 个猪基因组中的 ktn1 基因序列和侧翼序列, 通过 ClustalX 多序列比对和 RepeatMasker 转座子注释, 全面解析 转座子对 km1 的影响。通过 PCR 检测到一个 SINEA1 转座子插入多态,在苏姜猪群体中与相关性状进行关联分 析。结果显示, ktn1 基因及其侧翼区中含有至少 77 个转座子片段,其中绝大部分 (98.70%) 为 SINE 类转座子, 并鉴定到 9 个小结构变异和 4 个由转座子引起的大结构变异,表明转座子是基因变异的重要来源。其中一个 SINEA1 插入多态引起的结构变异,在不同品种中呈现丰富的多态性,且无插入个体 (SINE^{-/-}) 苏姜猪的断奶窝 重 ((64.20±10.6) kg) 比纯合有插入个体 (SINE^{+/+}) ((74.14±9.0) kg) 和杂合有插入个体 (SINE^{+/-}) ((69.71±7.7) kg) 轻 (P<0.05), 表明基于转座子插入多态研发分子标记具有可行性, 提示转座子插入多态分子标记在分子辅助育种 中具有较强的应用潜力。

关键词:转座子,插入多态,结构变异,ktn1基因,关联分析

Structural variations caused by transposons in porcine ktn1 gene and their association with production traits

Cai Chen, Wei Chen, Yao Zheng, Hao Gu, Wei Wang, Xiaoyan Wang, Bo Gao, and Chengyi Song

College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China

Abstract: In order to determine the effect of transposons on the sequence and structural variations of the porcine ktn1 gene and its flanking regions, we obtained 14 ktnl sequences (including genic region, 5-kb 5' flank and 3-kb 3' flanking regions) from the WGS database in NCBI, multiple sequence alignment by ClustalX and transposon annotation by RepeatMasker. Then

Received: May 9, 2019; Accepted: July 10, 2019

Supported by: National Natural Science Foundation of China (Nos. 31572364, 31872977).

Corresponding author: Chengyi Song. Tel: +86-514-87979034; E-mail: cysong@yzu.edu.cn 国家自然科学基金 (Nos. 31572364, 31872977) 资助。

268

we analyzed the effect of transposons on *ktn1*. A SINEA1 insertion polymorphism was detected by PCR, and correlation was analyzed with related traits in the *Sujiang* pig population. The *ktn1* gene and its flanking regions contained at least 77 transposon fragments, the majority (98.70%) of which was SINE insertions. We observed 9 small structural variations and 4 large structural variations caused by transposons, indicating that transposons were an important source of genetic variations. One of the structural variations caused by SINEA1 insertion polymorphism showed rich polymorphism in different breeds, and in *Sujiang* pigs, the weaned litter weight of non-inserted individuals (SINE^{-/-}) ((64.20±10.6) kg) was lighter than homozygous insertionindividuals (SINE^{+/+}) ((74.14±9.0) kg) and heterozygous insertion individuals (SINE^{+/-}) ((69.71±7.7) kg) (*P*<0.05). It is feasible to develop molecular marker based on the transposon insertion polymorphism to provide application potential in molecular-assisted breeding.

Keywords: transposon, insertion polymorphism, structural variations, ktn1 gene, association analysis

在猪基因组中,转座子是基因组的主要组成 成分,占猪基因组的40.72%,其中反转录转座子 是主要成分,占转座子的91.49%^[1]。研究表明, 转座子是基因组大小的重要决定因素,基因组的 大小与其转座子的含量成正相关^[2]。同时转座子可 移动的特性使其成为基因组结构变异的重要贡献 者,并在多个水平上影响宿主基因的活性。已有超 过 100 例反转录转座子介导的插入导致了人类遗 传疾病的报道^[3]。同时在动物上已经观察到许多由 转座子插入引起的表型变化,例如短散在核元件 (Short interspersed nuclear elements, SINE) 插入 引起狗的体型变化和毛色变化^[4-6],以及内源性反 转录病毒 (Endogenous retroviruses transposon, ERV) 插入引起鸡的蛋壳颜色变化^[7]。在猪中也观 察到两例因L1 插入引起的性状变化^[8-9]。

驱动连接蛋白基因 (kinectin 1, ktn1) 产物是生物进化过程中保留下来的内质网膜上的一种保守性膜受体蛋白。猪 (Sus scrofa) ktn1 基因 (GeneID: 100152397) 位于 Chr1: 184 881 555–184 990 936 (+) (https://www.ncbi.nlm.nih.gov/gene/100152397), 全长 109 382 bp。ktn1 于 1992 年从鸡胚脑的 cDNA 文库中发现^[10],其后有研究表明该基因与鸡胫骨软骨病有关^[11]。同时,在人的疾病研究中,通过转录组测序鉴定了 ktn1 在皮肤鳞状细胞癌 (cSCC) 中发挥重要作用,并可作为治疗干预的新靶点^[12]。

目前对猪 ktn1 基因的研究较少,而猪的 ktn1 基因及其侧翼序列中转座子及结构变异 (Structural

variations, SV)的分布情况还未见报道。因此全面 解析 ktn1 基因中存在的结构变异,揭示转座子对其 结构变异的贡献非常必要,其研究结果将会对进一步理解转座子对功能基因的影响提供参考。

1 材料与方法

1.1 实验动物

本研究所用动物样品为大白猪 (Large White pig) 耳样 62 个,来自安徽省某种猪育种公司 (安 徽省);长白猪 (Landrace pig) 抗凝血样 30 个和 杜洛克 (Duroc pig) 抗凝血样 30 个,来自徐州六 马种猪科技有限公司 (江苏省);梅山猪 (Meishan pig) 耳样 30 个和二花脸 (Erhualian pig) 耳样 41 个,来自苏州苏太企业有限公司 (江苏省);巴 马香猪 (Bama miniature pig)耳样 20 个,来自巴 马原种香猪农牧实业有限公司 (广西省);苏姜猪 (Sujiang pig) 耳样 184 个,来自姜曲海种猪场 (江 苏省);藏猪 (Tibetan pig) 耳样 36 个,来自甘孜 市畜牧所采集自四川省康定市地区 (四川省)。野 猪 (Wild boar) 肉样 3 头,采购自安徽地区。

1.2 基因组提取

使用试剂盒 TaKaRa 的 MiniBEST Universal Genomic DNA Extraction Kit Ver.5.0 (TaKaRa,大连,中国) 从血液或耳组织中提取基因组 DNA。 提取的基因组 DNA 通过紫外分光光度计和琼脂 糖凝胶电泳进行 DNA 浓度和质量检测,然后置 于-20℃保存备用。

1.3 获取 ktn1 基因和侧翼序列

从 NCBI 数据库 (https://www.ncbi.nlm.nih. gov/gene/?term=100152397) 中定位 *ktn1* 基因的 位置,向其 5'侧翼区和 3'侧翼区分别延伸 5 kb 和 3 kb 作为参考序列。利用参考序列与 NCBI 的 WGS 数据库中的基因组序列数据进行比对,获取 到另外 13 个基因组序列中 *ktn1* 基因及侧翼区的 序列,其中部分基因组中的序列由于数据库中基 因组测序数据拼接长度不够,需要手动拼接。

1.4 猪 ktnl 基因在不同物种间的保守性分析

为了分析 ktn1 (基因和侧翼区) 序列的保守 性,将猪 ktn1 (基因和侧翼区) 序列定位于 ENSEMBL数据库 (http://www.ensembl.org/index. html) 中的猪参考基因组上,同时进行区域比对 (Region Comparison),获取牛、绵羊、马、人、 小鼠、狗参考基因组中相对应的序列,然后使用 mVISTA (http://genome.lbl.gov/vista/index.shtml) 进行保守分析。

1.5 转座子注解

通过使用 RepeatMasker (version: 4.0.7, -cutoff 250, -nolow)结合本实验室构建的猪转座子数据库^[1]对杜洛克参考基因组的 *ktn1* (基因和 侧翼区)序列进行转座子注释,仅保留比对得分超过1000 且标记长度超过100 bp 的位点进行后 续分析。

1.6 ktn1 基因多序列比对及结构突变分析

将 14 条 *ktn1* (基因和侧翼区)序列使用 ClustalX (version: 2.0) 软件进行多序列比对以鉴 定结构突变。我们定义 2–10 bp 的变异为小型结 构变异,且仅当有 3 个及以上品种基因组数据中 出现一致变异才被认定为确定存在的变异,少于 3 个品种发生的结构变异被认为可能由测序或拼 接不准造成的不确定变异,未被统计。大于 50 bp 的变异被定为大结构变异,且仅当 2 个及以上品 种基因组数据中出现时才被统计,但由测序不确 定 (如超过 500 bp 的 gap 或超过 100 bp 的 N)造 成的大结构变异未被统计。同时将大结构变异与 1.5 中转座子注释位点进行相互对应,超过 60% 长度的结构变异对应转座子标记位点的被认定为 是由转座子引起的结构变异。

1.7 ktn1 中 SINE 转座子插入多态检测

选择一个 ktn1 中年轻 SINE 转座子插入位点 两侧的序列使用 Oligo7 设计常规 PCR 引物,引 物名称及序列信息见表 1。同时选取杜洛克猪、 长白猪、大白猪、野猪、梅山猪、藏猪、二花脸 猪、巴马香猪 8 个品种,每个品种 3 个个体进行 插入多态性检测。

1.8 ktn1 中 SINE 插入多态位点群体检测

对 1.7 中 SINE 插入位点在不同品种的群体中 (大白猪 62 头、长白猪 48 头、杜洛克 44 头、苏 姜猪 184 头、巴马香猪 36 头)插入多态性及其频 率进行检测。计算基因型频率、等位基因频率。 对基因型分布进行 Hardy-Weiberg 平衡的卡方适 合性检验 (chi-square test):

$$\chi^2 = \sum \frac{\left(O - E\right)^2}{E}$$

O(Observed)代表每个基因型的观测数目,E (Expected)代表每一个基因型在哈代-温伯格平 衡定律成立的假定下的期望数目。同时在苏姜猪 中与相关生长繁殖性状进行关联分析,使用 SPSS 通过 Duncan 测验进行差异显著性分析 (P<0.05)。

表 1	猪	ktn1	基因中	P SI	NE 转座子插入位	立点检测引	物
Table	1	Pr	imers	for	polymorphism	detection	of
SINE	ins	ertio	n sites	in <i>kt</i>	<i>n1</i> gene		

Primer	Primer sequences (5'–3')	Length of product (bp)
<i>ktn1-</i> STIP-F	CATGGTGTTTGTCAGGAGGA	676/291
<i>ktn1-</i> STIP-R	GGAAAGAAAGTGCAATCCAGA	070/381

2 结果与分析

2.1 获取到 14 条 ktn1 基因的序列

经过与 NCBI 的 WGS 数据库中不同品种的猪 基因组测序数据比对,获取到 14 个测序基因组中 ktn1 (基因及上游 5 kb 和下游 3 kb 侧翼区)的序列, ktn1 序列的来源及在各基因组中的长度见表 2。从 不同品种的测序基因组中获取到的 ktn1 (基因及侧 翼区)长度存在一定的差异,八眉猪 (Bamei pig)、 长白猪 (Landrace pig)和大白猪 (Large White pig) 中获取的序列长度与杜洛克猪 (Duroc pig)参考序 列长度相近 (117 382 bp),在杂交猪 (Cross-bred pig)、哥根廷猪 (Gottingen pig)、金华猪 (Jinhua pig) 和荣昌猪 (Rongchang pig)中,序列长度略小于参 考序列,但在五指山猪 (Wuzhishan pig)和巴克夏 猪 (Berkshire pig)的基因组中获取的序列明显短 于参考序列,分别只有 115 708 bp 和 114 968 bp, 提示在 ktn1 基因或其侧翼区中存在结构变异。

2.2 ktn1 基因在不同物种中相对比较保守

根据 NCBI 对猪 ktn1 基因的注解, ktn1 基因的 长度为 109 382 bp, 共有 54 个外显子, 但前 6 个外显 子只是起始位置不同, 结束位置相同, 而最后 4 个外 显子的起始位置相同, 终止位置不同。这些外显子 通过不同的拼接组合形成 15 个转录本 (图 1)。

通过 mVISTA 将猪 ktn1 (基因和侧翼)与牛、 绵羊、马、狗、人、小鼠中相应区域的序列进行 保守性分析。结果如图 1 所示,猪的 ktn1 基因与 牛、绵羊、狗和马的保守性较高,其次是人,与 小鼠的保守性最差。但在上述 7 个物种中外显子 区尤其 CDS 区 (浅紫色)均非常保守,而第一内含 子区保守性相对较弱。

2.3 杜洛克参考基因组中转座子对 ktn1 基因的贡献

由于杜洛克参考基因组中 ktn1 基因序列最为 完整,因此以杜洛克中 ktn1 基因的转座子注解信 息进行统计分析,在 ktn1 基因及其侧翼区中鉴定 到 77 个转座子标记位点,其中 76 个为反转录转 座子 (98.70%),其中 SINE 最多,有 54 个位点, 最年轻的家族 SINEA 有 49 个位点。对标记长度 进行统计分析发现,117 382 bp 的 ktn1 (基因和侧 翼)序列中共有 26 364 bp (22.46%) 被转座子标 记,其中最多是 SINE (13 638/11.62%),其次是 LINE (11 328/9.65%),其中最年轻 SINE 家族 SINEA 标记了 12 588 bp 占 10.72%。ktn1 基因中 转座子数量及序列贡献信息见表 3。

表 2 不同猪种的基因组中 ktn1 (基因及上游 5 kb 和下游 3 kb 侧翼区)序列来源和长度 Table 2 Candidate and length of the pig ktn1 (genic region, 5-kb 5' and 3-kb 3' flanking regions) in the genome of the different porcine breeds

	F	<i>ktn1</i> gene and its flanks
Breed	Length (bp)	Candidate
Duroc	117 382	Sscrofa11.1 chr1:184876555-184993936
Bamei	117 090	LUXV01064060.1 2073403-2190492
Berkshire	114 968	LUXW01084868.1 678706–793673
Cross-bred	116 678	NPJO01000001.1 97934762-98051439
Landrace	117 513	LUXT01022056.1 93089-210601
LargeWhite	117 310	LUXX01064257.1 446207-563516
Wuzhishan	115 708	AJKK01162022.1 7850-46400; AJKK01162023.1; AJKK01162024.1; AJKK01162025.1;
		AJKK01162026.1; AJKK01162027.1 1-5135
Gottingen	116 317	LIDP01000001.1 205407929-205524245
Jinhua	116 753	LUXY01023594.1 677735-794487
Rongchang	116 594	LUXR01025216.1 677232–793825
Meishan	117 274	LUXQ01132148.1:44173-111886; LUXQ01092367.1:31135-80699
Tibetan	121 664	AORO02060094.1:1107224-1228894
Hampshire	117 432	LUXS01014866.1:36154–153585
Pietrain	117 378	LUXU01042406.1:30907-148284

http://journals.im.ac.cn/cjbcn

图 1 ktn1 基因保守性分析及转录本示意图

Fig. 1 Schematic diagram of the ktn1 gene conservation analysis and its transcripts. The upper part is the result of conservative analysis. The light blue area represents the UTR area of the porcine ktn1, and the light purple represents the CDS area of the porcine ktn1. The following is a schematic diagram of 15 transcripts of the porcine ktn1 gene, green squares represent exons and thin lines represent introns. Red arrow represents the SINEA1 retrotransposon.

表3 杜洛克参考基因组中 ktn1 基因中转座子数量及序 列贡献信息

Table	3	Number	of	transposons	and	sequence
contril	butior	ı informat	ion	in the Duroc A	ktn1 g	ene

TE tuno	TEsite	Percentage	TE length	Percentage
I E type	I E site	of TE site (%)	(bp)	of TE (%)
DNA	1	1.30	334	0.28
hAT_Charlie	1	1.30	334	0.28
LINE	19	24.68	11 328	9.65
L1A	8	10.39	4 463	3.80
L1B	2	2.60	1 110	0.95
L1D	1	1.30	294	0.25
Llother	6	7.79	3 604	3.07
L2	2	2.60	1 857	1.58
LTR	3	3.90	1 064	0.91
ERV1	1	1.30	508	0.43
ERVIII	2	2.60	556	0.47
SINE	54	70.13	13 638	11.62
SINEA	49	63.64	12 588	10.72
SINEB	5	6.49	1 050	0.89
总计	77	100.00	26 364	22.46

2.4 ktn1 基因中存在多个结构突变

将 14 条 ktn1 (基因和侧翼区) 序列进行多序 列比对,统计结构突变位点。外显子区未发现结 构变异。在 5'侧翼区和 3'侧翼区各找到 1 个小结 构突变,在内含子区找到 7 个小结构变异。而在 ktn1 基因的内含子区,只发现 4 个超过 50 bp 的大结构 变异。具体数据及统计条件见表 4,其中较大的 4 个结构突变全部对应转座子注释位点。

2.5 ktn1-STIP 转座子插入多态性验证

在 8 个不同猪品种(杜洛克、长白猪、大白猪、野猪、梅山猪、藏猪、二花脸、巴马香猪)的 24 个个体中对 *ktn1* 基因上的一个 SINEA1 转座子插入位点(表 4 中的 B 位点)的多态性进行检测,该位点在 8 个品种的 24 个个体中呈现出良好的多态现象,且检测结果清晰易判断(图 2)。此

ЪŢ		Mutation	In refe sequence	erence (Duroc)	Sequence or TE corresponding	Gene	Insertion
No.	Breed or Strain	type	Begin	End	to structural variation site	structure	orientation
1	Tibetan, Wuzhishan, Jinhua, Meishan,	Deletion	755	756	TT	5'Flank	Sense
2	Rongchang, Cross-bred Bamei, Landrace, Hampshire, Berkshire, Pietrain, Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Deletion	23 150	23 151	СА	Intron	Sense
3	Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Insertion	46 898	46 899	СТ	Intron	Sense
4	Bamei, Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang, Cross-bred, Goettingen	Deletion	54 931	54 936	CTGTGG	Intron	Sense
5	Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Insertion	80 024	80 025	AGAA	Intron	Sense
6	Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang, Cross-bred	Deletion	87 485	87 487	GAG	Intron	Sense
7	Bamei, Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Insertion	88 134	88 135	AGCCCTAG	Intron	Sense
8	Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Deletion	90 199	90 201	CAG	Intron	Sense
9	Landrace, Hampshire, Berkshire, Pietrain, Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang	Insertion	116 920	116 921	СТ	3'Flank	Sense
А	Tibetan, Wuzhishan, Meishan	Insertion	16 032	16 033	ERV16/LTR	Intron	Antisense
В	Bamei, Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang, Cross-bred	Deletion	50 974	51 268	SINEA1/SINE	Intron	Sense
С	Tibetan, Wuzhishan	Deletion	65 417	65 541	SINEA1/SINE	Intron	Antisense
D	Tibetan, Wuzhishan, Jinhua, Meishan, Rongchang, Cross-bred	Deletion	68 188	68 474	L1D1/LINE	Intron	Sense

表 4 ktn1 基因及其侧翼区 (5 kb 5'和 3 kb 3'侧翼区) 结构突变信息 Table 4 Structural variations of the ktn1 gene and its flanking regions (5-kb 5' and 3-kb 3' flanking regions)

图 2 ktn1-STIP 位点在 8 个品种中多态检测结果

Fig. 2 Polymorphic detection results of the *ktn1*-STIP loci in 8 porcine breeds.

位点在 ktn1 基因上的位置以红色箭头标注在图 1 中,其插入方向与 ktn1 基因相反,位于 ktn1 基因 的内含子区域 (图 1),未影响 ktn1 基因的编码区。 由电泳图 (图 2)可以看出,该分子标记在猪群体 中有 3 种基因型,SINE 插入纯合基因型 (SINE^{+/+}),为单条大带 676 bp,SINE 无插入纯合 基因型 (SINE^{-/-}),为单条小带 381 bp,SINE 插 入杂合基因型 (SINE^{+/-}),为两条带 676 bp 和 381 bp。

2.6 ktn1-STIP 与断奶窝重呈显著性相关

将 ktn1-STIP 在 62 个大白个体、48 个长白猪 个体、44 个杜洛克个体、36 个巴马香猪个体和 184 个苏姜猪个体中进行多态检测。由图 3 可以 看出,该位点的 SINE 在本研究群体中均呈现出 插入多态现象。对插入基因型进行统计,结果见 表 5,大白猪和长白猪的基因型 SINE^{+/+}的频率高 于杜洛克猪、苏姜猪和巴马猪。而杜洛克猪和巴马 香猪中 SINE^{-/-}的个体明显多于另外两种基因型。 选取 ktn1-STIP 在苏姜猪猪群体中 (184) 进行多态性检测,并将每个个体的生长繁殖性状与 ktn1-STIP 位点的多态性进行关联分析,结果显示,在苏姜猪中断奶窝重与 ktn1 基因中是否有 SINE 插入显著相关 (P<0.05),无插入个体

(SINE^{-/-}) 断奶窝重 ((64.20±10.6) kg) 比纯合有 插入个体 (SINE^{+/+}) ((74.14±9.0) kg) 和杂合有插 入个体 (SINE^{+/-}) ((69.71±7.7) kg) 轻。产活仔数、 断奶仔猪数和初生窝重与 *ktn1* 基因中 *ktn1*-STIP 位点是否有 SINE 插入无显著相关性 (表 6)。

图 3 ktn1-STIP 位点大白猪、苏姜猪、长白猪、巴马香猪和杜洛克猪群体中多态性检测代表电泳图。 Fig. 3 Representative electrophoresis figure of ktn1-STIP polymorphism in Large White, Sujiang, Landrace, Bama and Duroc pigs.

表 5 猪	皆 ktn1	基因型多态	性分析	
Table 5	Ana	lysis of the p	olymorphism of the porcine ktn1 genoty	ре
Pig b	reed	Number	Genotype frequency (%)	Allele frequenc
F 12 D	IEEU	INUITIDEL		

Pig breed	Number	Genotype frequency (%)			Allele frequency (%)		Hardy Wainbarg/w ²
	Number	SINE ^{+/+}	SINE ^{+/-}	SINE ^{-/-}	$SINE^+$	SINE ⁻	- Hardy-weinderg/χ
LargeWhite	48	91.30	6.52	2.17	94.57	5.43	6.15
Landrace	48	77.08	16.67	6.25	85.42	14.58	5.26
Duroc	44	9.09	22.73	68.18	20.46	79.54	4.00
Sujiang	184	11.41	59.78	28.80	41.30	58.70	9.98
Bama	36	5.56	16.67	77.78	13.90	86.10	3.31

Note: $\chi^2_{0.05}(df=1)=3.84$, $\chi^2_{0.01}(df=1)=6.63$.

表 6 ktn1-STIP 插入多态与生长繁殖性状关联分析

 Table 6
 Association analysis of ktn1-STIP insertion polymorphism and growth and reproduction traits

Genotype	Number	Number of born alive	Number of weaned piglets	Primary litter weight	Waning litter weight
SINE ^{+/+}	25	$10.45{\pm}1.6^{a}$	$10.60{\pm}1.0^{a}$	$14.25{\pm}1.5^{a}$	74.14 ± 9.0^{a}
SINE ^{+/-}	106	$10.64{\pm}2.0^{a}$	$9.59{\pm}2.1^{a}$	13.96±2.6 ^a	69.71 ± 7.7^{a}
SINE ^{-/-}	53	10.65 ± 2.0^{a}	$9.50{\pm}1.6^{a}$	14.11 ± 2.3^{a}	$64.20{\pm}10.6^{b}$

Note: identical letters in the same column indicates no significant difference; different letters indicate significant differences (P<0.05).

3 讨论

尽管 SINE 仅占猪基因组的 8% 左右, 但它们 广泛分布在整个基因组中[13-14],已经有研究证明 一些 SINE 插入与猪生长、繁殖和胴体性状显著 相关^[15-16]。SINE 可以在多个水平上影响基因活性 或功能 (基因结构、转录和翻译等)。在某些情况 下 SINE 可作为顺式调控元件参与基因表达调控, 如多腺苷酸化和选择性剪接的过程[17-18]。此外, SINE RNA 还可以作为反式调控因子调节基因的 转录和翻译^[17,19]。本研究通过对 ktn1 (基因和侧翼 区) 序列进行转座子注释,发现仅在杜洛克参考 基因组中的 ktnl 基因及其侧翼区中就含有 77 个 转座子片段,绝大部分为 SINE 类反转录转座子, 有 49 个插入, 这说明, 转座子对 ktn1 的结构和序 列组成具有重要的影响,值得进一步探究。进一步 对 14 个不同猪品种/品系的基因组中的 ktn1 (基因 和侧翼区) 序列进行比对,发现了9个小结构变异 及4个大结构变异,且大结构变异全部由转座子插 入引起, 其中2个为 SINEA1 插入引起。这也进一 步验证了之前的研究,反转录转座子是基因组的主 要组成成分,是基因变异的重要来源^[1,20-22]。

年轻转座子在不同品种中,存在丰富的插入 多态性^[1],因此通过使用不同品种和个体样本对 每个转座子位点引起的结构变异进行多态检测, 将会全面揭示转座子对猪 ktn1 基因结构突变的影 响。本研究中,我们在 ktn1 基因的内含子区检测 到 2 个 SINEA1 插入引起的结构变异,对其中 一个进行插入多态性检测,结果表明,此位点在 多个品种中存在插入多态性 (图 2),且在大白猪、 长白猪中 SINEA1 的插入频率 (SINE⁺) 高于无插 入频率 (SINE⁻),而杜洛克、苏姜猪和巴马香猪 中呈现相反的现象。并且引入猪种大白猪、长白 猪和杜洛克猪和培育猪种苏姜猪偏离哈代温伯格 平衡,巴马香猪等中国地方猪种符合哈代温伯格 平衡 (表 5),说明被检测的巴马香猪群体符合群 体基因遗传平衡,而杜洛克、大白猪、长白猪是 经过人工选育的西方商品猪,培育猪种苏姜猪的 亲本为杜洛克、姜曲海和枫泾,在世代选育过程 中造成群体偏离遗传平衡。

仔猪在哺乳期体重的增加依赖于自身生长发 育潜力和母猪的哺乳能力及营养、环境因素等。 目前研究表明 SINE 转座子对基因具有多种调控 功能。将 184 个苏姜猪个体的生长繁殖性状与 SINE-ktn1 位点的转座子插入多态性进行关联分 析,显示 SINE 转座子的插入可以显著增加仔猪 断奶窝重,提示猪 ktn1 基因中 SINE 的插入可能 影响了 ktn1 基因的表达,通过一定信号通路,进 而影响仔猪生长发育,或者通过影响母猪泌乳生 理机能,间接影响仔猪生长发育,其具体分子机 制值得深入探究。

4 结论

本研究通过对 14 条 *ktn1* (基因及其侧翼区) 序列的多序列比对和转座子注释,全面解析转座 子对 *ktn1* 的影响。最终在参考基因组的 *ktn1* 基因 及其侧翼区中鉴定到 77 个转座子片段,其中绝大 部分 (98.70%)为 SINE 类反转录转座子,与基因 组中大多数转座子的分布情况一致。并鉴定到 9 个小结构变异和 4 个由转座子引起的大结构变 异,证明了转座子是基因变异的重要来源。进一 步检测了其中一个 SINEA1 转座子的插入多态 性,并在苏姜猪群体中与相关性状进行关联分析, 结果表明,无插入个体 (SINE^{-/-})的断奶窝重较纯 合插入个体 (SINE^{+/+})和杂合插入个体 (SINE^{+/-}) 轻 (*P*<0.05)。本研究表明基于转座子插入多态研 发分子标记具有可行性,同时此分子标记在分子 辅助育种中具有很强的应用潜力。

REFERENCES

- Chen C, Wang W, Wang XY, et al. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mobile DNA, 2019, 10: 19.
- [2] Gao, B, Shen D, Xue SL, et al. The contribution of

transposable elements to size variations between four teleost genomes. Mobile DNA, 2016, 7: 4.

- [3] Hancks DC, Kazazian HH JR. Roles for retrotransposon insertions in human disease. Mobile DNA, 2016, 7: 9.
- [4] Gray MM, Sutter NB, Ostrander EA, et al. The *IGF1* small dog haplotype is derived from Middle Eastern grey wolves. BMC Biol, 2010, 8: 16.
- [5] Clark LA, Wahl JM, Rees CA, et al. Retrotransposon insertion in *SILV* is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci USA, 2006, 103(5): 1376–1381.
- [6] Murphy SC, Evans JM, Tsai KL, et al. Length variations within the *Merle* retrotransposon of canine *PMEL*: Correlating genotype with phenotype. Mobile DNA, 2018, 9: 26.
- [7] Wang ZP, Qu LJ, Yao JF, et al. An *EAV-HP* insertion in 5' flanking region of *SLCO1B3* causes blue eggshell in the chicken. PLoS Genet, 2013, 9(1): e1003183.
- [8] Giuffra E, Törnsten A, Marklund S, et al. A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome, 2002, 13(10): 569–577.
- [9] Sironen A, Uimari P, Iso-Touru T, et al. L1 insertion within SPEF2 gene is associated with increased litter size in the Finnish Yorkshire population. J Anim Breed Genet, 2012, 129(2): 92–97.
- [10] Toyoshima I, Yu H, Steuer ER, et al. Kinectin, a major kinesin-binding protein on ER. J Cell Biol, 1992, 118(5): 1121–1131.
- [11] Tian WX, Li JK, Qin P, et al. Differentially expressed genes in broiler tibia cartilage by gene chip // Chinese Association of Animal Science and Veterinary Medicine 2010 Annual Conference. Chang Chun, 2010 (in Chinese).
 田文霞,李家奎, 覃平, 等. 基因芯片筛选肉鸡胫

骨软骨发育不良差异表达基因//中国畜牧兽医学会 2010 学术年会暨第二届中国兽医临床大会论文集. 长春:中国畜牧兽医学会,2010.

[12] Zhang Y, Gao L, Ma SD, et al. *MALAT1-KTN1-EGFR* regulatory axis promotes the development of cutaneous squamous cell carcinoma. Cell Death Differ, 2019, 25: 1

- [13] Groenen MAM, Archibald AL, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398.
- [14] Zhang XY, Wang DX, Han Y, et al. Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J Assist Reprod Genet, 2014, 31(11): 1511–1517.
- [15] Han SH, Shin KY, Lee SS, et al. Porcine *SPP1* gene polymorphism association with phenotypic traits in the Landrace \times Jeju (Korea) black pig F₂ population. Mol Biol Rep, 2012, 39(7): 7705–7709.
- [16] Magotra A, Naskar S, Das B, et al. A comparative study of SINE insertion together with a mutation in the first intron of follicle stimulating hormone beta gene in indigenous pigs of India. Mol Biol Rep, 2015, 42(2): 465–470.
- [17] Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity, 2011, 107(6): 487–495.
- [18] Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III–Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol, 2011, 89(5): 495–504.
- [19] Longo MS, Brown JD, Zhang C, et al. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol, 2015, 7(3): 775–788.
- [20] Callinan PA, Wang JX, Herke SW, et al. Alu retrotransposition-mediated deletion. J Mol Biol, 2005, 348(4): 791–800.
- [21] Han KD, Sen SK, Wang JX, et al. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res, 2005, 33(13): 4040–4052.
- [22] Salem AH, Kilroy GE, Watkins WS, et al. Recently integrated Alu elements and human genomic diversity. Mol Biol Evol, 2003, 20(8): 1349–1361.

(本文责编 陈宏宇)