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Abstract: High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists
to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine
useful information from high-throughput data. The emergence of network biology provides deeper insights into complex
bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in
bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly
correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis,
pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA.
Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we
indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to
promote the application of WGCNA in biomedicine research.

Keywords: weighted gene co-expression network analysis, high-throughput technology, disease, physiology, drug, evolution,
genome annatation
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Fig. 1 The workflow for weighted gene co-expression network analysis (WGCNA). Kinds of matrix data even clinical
data can be used as input for WGCNA. Then, pairwise correlation for each data point is calculated, which can be
represented as a network of interest. Cluster analysis is used to identify modules within the network. The higher order
organization of the modules can be identified. Module based analysis, such as hub gene discovery, gene ontology
enrichment, transcription factor binding site enrichment, differential module expression, and gene function prediction
using guilt-by-association can be performed. Finaly, additional data such as GWAS data, SNP information, patient
survival, and treatment response can be integrated to find biologically meaningful signals.
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Tablel Application of WGCNA in disease research

Studies

Samples Methods

Research results

Gene networks and
microRNAs implicated
in aggressive prostate
cancer

Transcriptomic analysis
of autistic brain reveals
convergent molecular
pathol ogy

Network organization
of the huntingtin
proteomic interactome
in mammalian brain

WGCNA of multiorgan
dysfunction syndrome
after mechanical
circulatory support

therapy

Two gene co-expression
modules differentiate
psychotics and controls

Lymphoblastoid cell
lines derived from
62 aggressive and 63
nonaggressive
prostate cancer
patients

DNA microarray

Superior temporal
gyrus, prefrontal
cortex, and
cerebellar vermis of
brain tissue from 19
autism and 17
controls

DNA microarray and

RNA-Seq

Brain tissue protein
from BACHD mice
and wild-type mice

Affinity purification
and LC-MS/IMS

Peripheral blood
mononuclear cells
from 29 patients

DNA microarray

Brain samples from DNA microarray
50 schizophrenia, 50

bipolar disorder and

50 unaffected

control subjects

miR-145 and miR-331-3p may target hub
genes (cdcab and kif23) and subsequently
resulted in cell growth inhibition and
apoptosis.

Two modules associated with autism were
identified: a neuronal module enriched for
known autism susceptibility genes and a
module enriched for immune genes and
glial markers. Only neuronal module is
enrichned for autism GWAS signals,
indicating non-genetic aetiology for
immune modulée".

WGCNA was firstly applied to
affinity-purification derived Huntingtin
proteomic interactome. Htt-containing
module is highly enriched with proteins
involved in 14-3-3 signaling,
mi crotubul e-based transport, and
proteostasis’®.

WGCNA showed Sequential Organ
Failure Assessment score was correlated
with the black module whose hub genes
includes defal, defa3 and defad, which
are multifunctional mediators of innate
and adaptive immunity. These results
suggest potential biomarkers for immune
response triggered by MCSD
implantation!”..

Both modules M1A enriched with neuron
differentiation and neuron development
genes and M3A enriched with genes
related to metallothioneins changed in
schizophrenia and bipolar disorder subjects,
suggesting the common etiologies. Only
M1A showed significant enrichment of
GWAS signals, indicating aberrant M3A
may be environmentally induced™®.
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WGCNA of glioma

Protein expression
based multimarker
analysis of breast
cancer

Quantitative

el ectroencephal ographic

biomarkers for major
depressive disorder

Cross-species WGCNA

of breast cancer

metastatic susceptibility

Genetics of gene

276 tumor samples
of different glioma
subtypes and
grading

Formalin-fixed,
paraffin embedded
breast tissue donor
blocks

121 subjects aged
21-70 with major
depressive disorder
and 37 normal
patients

Microarray datasets
of 2 human breast
cancer and 3 mouse
metastasis model

1002 blood tissues

expression and its effect and 673 adipose

on disease

tissues

DNA microarray

Tissue microarray

Quantitative

el ectroencephal ographic

DNA microarray

DNA microarray

A novel prognostic 185-gene signature
linked to a proastrocytic pattern of tumor
cell differentiation is associated with long
survival. The correlation between kinase
module and EGFR gene amplification
suggested that EGF signaling in glioma may
be regulated by Sprouty family proteing™.

Three markers (P53, Na-KATPase-p1, and
Tgf B receptor Il) can identify three
groups of patients with low, moderate and
high mortality rates. The three tumor
markers can be used for predicting breast
cancer survival outcomes™.

Results suggests a loss of selectivity in
resting functional connectivity in
depressed patients. Differences in frontal
apha power and synchrony can be
potential biomarker for the disease!™?.

Gene membership of the networks is
highly conserved within and between
species. TPX2 module can predict distant
metastasis-free survival in ER" tumors.
These results suggest that susceptibility to
metastatic disease is cell-autonomous in
ER tumors and associated with the
mitotic  spindle  checkpoint.  While
nontumor  genetics and  pathway
activities-associated stromal biology are
significant modifiers of the rate of
metastatic spread of ER” tumors!®.

Module MEMN, which enriched with
immune response and macrophage-activating
genes, is conserved in human and mouse.
The module aso is enriched for genes
associated with obesity and obesity
associated gene variants. Results provide
functional support for disease eSNP*¥,

miRNA: microRNA; Cdcab: cell division cycle associated 5; Kif23: kinesin family member 23; EGFR: epidermal
growth factor receptor; ER: estrogen receptor; Tpx2: targeting protein for Xk1p2; GWAS:. genome-wide association
study; BACHD: bacterial artificial chromosome expressing Huntington’s disease protein; LC-MS/MS: liquid
chromatography-mass spectrometry/mass spectrometry; Htt: Huntingtin; WGCNA: weighted gene co-expression
network analysis; Defa: defensin o; ATP1B1: ATPase, Na'/K" transporting betal; Tgfbr2: transforming growth factor
receptor type2.
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Table2 Application of WGCNA in physiological research

Studies Samples Methods Research results

Functional Different brain DNA WGCNA identified modules of coexpressed genes

organization of human regions from 160 microarray that correspond to neurons, oligodendrocytes,

brain transcriptome subjects astrocytes and microgliaa.  Other  modules
corresponded to additional cell types, organelles,
synaptic function, gender differences and the
subventricular neurogenic niche. Subventricular zone
astrocytes may have a distinct gene expression
pattern relative to protoplasmic astrocytes™,

Sex-specific Hypothalamus from DNA Sex has the strongest effect on the expression of genes

modulation of gene 89 mice microarray on the X and Y chromosomes. Genes associated with

expression networksin the endocrine system and neuropeptide signaling also

murine hypothalamus differ significantly. In males the Y-linked gene, uty, is
a hub gene in a module that regulates chromatin
modification and gene transcription. In females, the X
chromosome paralog, kdm6a, takes the place of uty in
the same network!™.

Aging effects on DNA Whole blood, DNA WGCNA of 2442 DNA methylation arrays identified

methylation modules  leukocytes, and methylation an agerelated co-methylation module, which is

in human brain and different brain microarray involved in nervous system development and

blood tissue regions, including neurogenesis. Blood is a promising surrogate for brain

cortex, pons, and tissue when studying the effects of age on DNA
cerebellum methylation profiles*®.

WGCNA of Murine embryonic  DNA Two modules of pluripotency and differentiation were

transcriptional stem cellsfrom two microarray identified. The pluripotency module is enriched with

regulationin murine  studies genes related to DNA damage repair, mitochondrial

embryonic stem cells function and transcriptional regulation. Mrpl15, msh6,
nrfl, nupl33, ppif, rbpj, sh3gl2, and zfp39 may have
important roles in maintaining ES cell pluripotency
and sdf-renewal. And found the significant
relationships between module membership and
epigenetic modifications (histone modifications and
promoter CpG methylation status)™".

Genetic programs in Human and mouse  RNA-Seq Developmental stages can be delineated concisely by

human and mouse
early embryos

early embryos

co-expressed modules, indicating a sequential order of
transcriptional changes in pathways of cell cycle, gene
regulation, trandation and metabolism. Cross species
comparison revealed most modules conserved between
human and mouse. Conserved hub genes may be driver
in mammalian pre-implantation devel opment™.
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Systems genetic
analysis of
osteablast-lineage

cells

WGCNA
identifies

of CHO cells

transcriptional
modul es associated
with growth and
productivity

Tomato metabolome

WGCNA

Bone tissues from 96 DNA
HMDP inbred strains microarray,

GWAS and
eQTL
CHO céll linesfrom DNA
295 conditions microarray
Two varieties of NM R-based
tomato with six metabol omics

genotypes

Module M9 is associated with BMD. M9 hub genes,
magedl and pard6g, are novel regulators of
osteoblast activity™.

Six modules were identified, two of which is
associated with productivity!®®.

WGCNA firstly applied to tomato metabolome,
three modules associated with ripening traits were
identified!®!.

Mrpl15: mitochondrial ribosomal protein L15; Msh6: mutS homolog 6; Nrfl: nuclear respiratory factor 1; Nupl133:
nucleoporin 133 kDa; Ppif: peptidylprolyl Isomerase F; RbpJ: recombination signal binding protein for
immunoglobulin kappa J region; Sh3gl2: SH3-domain GRB2-like 2; Zfp39: zinc finger protein 39; HMDP: hybrid
mouse diversity panel; GWAS: genome-wide association study; eQTL: expression quantitative trait loci; CHO:
Chinese hamster ovary; MAGED1: melanoma antigen family D, 1, Wnt: wingless-type MMTYV integration site family;
Sfrpl: secreted frizzled-related protein 1; uty: ubiquitously transcribed tetratricopeptide repeat gene, Y-linked;
Kdmeéa: lysine (K)-specific demethylase 6A; NMR: nuclear magnetic resonance.

2.3 WGCNA 5545

Fortney

[23]

[22

WGCNA

WGCNA 70%

15%

(Drug repositioning)

o-

http://journals.im.ac.cn/cjbcn

Delahaye-Duriez 24 WGCNA
M30
Connectivity Map
M30

24 WGCNA S5i# iz

Miller [ WGCNA 1066



X FMNEREHRERMESTEEMEF TN 1799

Oldham [

Filteau %

WGCNA

(Hsp70) (33 \WGCNA

Buckberry ~ [%®

[12]

WGCNA

25 WGCNA 5EAINEEER -
(Gene module association

study GMAS) GWAS (34
GMAS
[29] Stanley [30]
1043 15
10 GWAS SNPs
Childs [ GMAS
1 lancu
WGCNA RNA-Seq Shirasaki @
Yepes [
Waley B4 WGCNA mMiRNA
2 [37]
mRNA WGCNA
[38]
X PM2.5 [39]
3
k2 WGCNA

GWAS

® 010-64807509 2 cjb@im.ac.cn



1800 ISSN 1000-3061 CN 11-1998/Q Chin JBiotech November 25, 2017 Vol.33 No.11

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

(10]

(11]

Zhang B, Horvath S. A general framework for
weighted gene co-expression network analysis.
Stat Appl Genet Mol Biol, 2005, 4(1): 17.

Horvath S. Weighted Network Analysis: Applications
in Genomics and Systems Biology. New York:
Springer, 2011.

Wang L, Tang H, Thayanithy V, et al. Gene
networks and microRNAs implicated in aggressive

prostate cancer. Cancer Res, 2009, 69(24):
9490-9497.

Ivliev AE, 't Hoen PAC, Sergeeva MG.
Coexpression  network  analysis identifies

transcriptional modules related to proastrocytic
differentiation and sprouty signaling in glioma
Cancer Res, 2010, 70(24): 10060-10070.

Hu Y, Wu G, Rusch M, et a. Integrated
cross-species transcriptional network analysis of
metastatic susceptibility. Proc Natl Acad Sci USA,
2012, 109(8): 3184—-31809.

Giotti B, Joshi A, Freeman TC. Meta-analysis
reveals conserved cell cycle transcriptional
network across multiple human cell types. BMC
Genomics, 2017, 18: 30.

Voineagu |, Wang XC, Johnston P, et al.
Transcriptomic analysis of autistic brain reveals
convergent molecular pathology. Nature, 2011,
474(7351): 380-384.

Shirasaki DI, Greiner ER, Al-Ramahi I, et al.
Network organization of the huntingtin proteomic
interactome in mammalian brain. Neuron, 2012,
75(1): 41-57.

Wisniewski N, Cadeiras M, Bondar G, et al.
Weighted gene coexpression network analysis
(WGCNA) modeling of multiorgan dysfunction
syndrome after mechanical circulatory support
therapy. JHeart Lung Transpl, 2013, 32(4): S223.
Chen C, Cheng L, Grennan K, et al. Two gene
co-expression modules differentiate psychotics
and controls. Mol Psych, 2013, 18(12): 1308-1314.
Presson AP, Yoon NK, Bagryanova L, et al.

http://journals.im.ac.cn/cjbcn

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Protein expression based multimarker analysis of
breast cancer samples. BMC Cancer, 2011, 11: 230.
Leuchter AF, Cook IA, Hunter AM, et al.
Resting-state quantitative electroencephal ography
reveals increased neurophysiologic connectivity in
depression. PLoS ONE, 2012, 7(2): e32508.

Emilsson V, Thorleifsson G, Zhang B, et al.
Genetics of gene expression and its effect on
disease. Nature, 2008, 452(7186): 423—-428.

Oldham MC, Konopka G, lwamoto K, et al.
Functional organization of the transcriptome in

human brain. Nat Neurosci, 2008, 11(11):
1271-1282.
Mozhui K, Lu L, Armstrong WE, et al.

Sex-specific  modulation of gene expression
networks in murine hypothalamus. Front Neurosci,
2012, 6: 63.

Horvath S, Zhang YF, Langfelder P, et al. Aging
effects on DNA methylation modules in human
brain and blood tissue. Genome Biol, 2012, 13(10):
R97.

Mason MJ, Fan GP, Plath K, et a. Signed
weighted gene co-expression network analysis of
transcriptional regulation in murine embryonic
stem cells. BMC Genomics, 2009, 10: 327.

Xue ZG, Huang K, Cai CC, et a. Genetic
programs in human and mouse early embryos
revealed by single-cell RNA sequencing. Nature,
2013, 500(7464): 593-597.

Calabrese G, Bennett BJ, Orozco L, et al. Systems
genetic analysis of osteoblast-lineage cells. PLoS
Genet, 2012, 8(12): €1003150.

Clarke C, Doolan P, Barron N, et al. Large scale
microarray profiling and coexpression network
analysis of CHO cells identifies transcriptional
modules associated with growth and productivity.
J Biotechnol, 2011, 155(3): 350-359.

DiLeo MV, Strahan GD, den Bakker M, et al.
Weighted correlation network analysis (WGCNA)
applied to the tomato fruit metabolome. PLo0S
ONE, 2011, 6(10): e26683.

Fortney K, Xie W, Kotlyar M, et a. NetwoRx:



X FMNEREHRERMESTEEMEF TN 1801

(23]

[24]

[29]

[26]

[27]

(28]

[29]

connecting drugs to networks and phenotypes in
Saccharomyces cerevisiae. Nucleic Acids Res,
2013, 41(D1): D720-D727.

Iskar M, Zeler G, Blattmann P, et al.
Characterization of drug-induced transcriptional
modules: towards drug repositioning and
functional understanding. Mol Syst Biol, 2013,
9(1): 662.

Delahaye-Duriez A, Srivastava P, Shkura K, et al.
Rare and common epilepsies converge on a shared
gene regulatory network providing opportunities
for novel antiepileptic drug discovery. Genome
Biol, 2016, 17: 245.

Miller JA, Horvath S, Geschwind DH. Divergence
of human and mouse brain transcriptome
highlights Alzheimer disease pathways. Proc Natl
Acad Sci USA, 2010, 107(28): 12698-12703.
Oldham MC, Horvath S, Geschwind DH.
Conservation and evolution of gene coexpression
networks in human and chimpanzee brains. Proc
Natl Acad Sci USA, 2006, 103(47): 17973-17978.
Filteau M, Pavey SA, St-Cyr J, et a. Gene
coexpression networks reveal key drivers of
phenotypic divergence in lake whitefish. Mol Biol
Evol, 2013, 30(6): 1384-1396.

Hu GJ, Hovav R, Grover CE, et a. Evolutionary
conservation and divergence of gene coexpression
networks in gossypium (cotton) seeds. Genome
Biol Evol, 2016, 8(12): 3765-3783.

Lépez-Kleine L, Lea L, Lopez C. Biostatistical
approaches for the reconstruction of gene
co-expression networks based on transcriptomic
data. Brief Funct Genomics, 2013, 12(5): 457-467.

® 010-64807509

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Stanley D, Watson-Haigh NS, Cowled CJ, et al.
Genetic architecture of gene expression in the
chicken. BMC Genomics, 2013, 14: 13.

Childs KL, Davidson RM, Buell CR. Gene
coexpression network analysis as a source of
functional annotation for rice genes. PLoS ONE,
2011, 6(7): €22196.

Walley JW, Sartor RC, Shen ZX, et al. Integration
of omic networks in a developmental atlas of
maize. Science, 2016, 353(6301): 814-818.
Schadt EE, Bjorkegren JL. NEW: network-enabled
wisdom in biology, medicine, and health care. Sci
Transl Med, 2012, 4(115): 115rv1.

Weiss N, Karma A, MacLellan WR, et a. “Good
enough solutions” and the genetics of complex
diseases. Circul Res, 2012, 111(4): 493-504.
lancu OD, Kawane S, Bottomly D, et a. Utilizing
RNA-Seq data for de novo coexpression network
inference. Bioinformatics, 2012, 28(12): 1592-1597.
Yepes S, LOpez R, Andrade RE, et a. Co-expressed
miRNASs in gastric adenocarcinoma. Genomics,
2016, 108(2): 93-101.

LiuWw, Li L, Li WD. Gene co-expression analysis
identifies common modules related to prognosis
and drug resistance in cancer cell lines. Int J
Cancer, 2014, 135(12): 2795-2803.

Poulin JF, Tasic B, Hjerling-Leffler J, et al.
Disentangling neural cell diversity using single-cell
transcriptomics. Nat Neurosci, 2016, 19(9):
1131-1141.

Yan SM, Wu G Network anaysis of fine
particulate matter (PM2.5) emissions in China. Sci
Rep, 2016, 6: 33227.

(AX5e9  MEETT)

2L cjb@im.ac.cn



