研究报告

Actinobacillus succinogenes 抗氟乙酸突变株的选育及其 代谢流量分析

刘宇鹏¹,郑 璞¹,倪 晔¹,董晋军¹,韦 萍²,孙志浩¹

1 江南大学生物工程学院;教育部工业生物技术重点实验室,无锡 214122
 2 南京工业大学制药与生命科学学院,南京 210009

摘 要:琥珀酸是一种用于合成树脂、可降解塑料及许多化学中间体的重要绿色化工原料。为了提高琥珀酸的发酵产率,基于 Actinobacillus succinogenes 的代谢流量分布情况对其育种机制进行了研究。以 Actinobacillus succinogenes CGMCC1593 为原始菌株进行 NTG 诱变,挑选在含有 50~100 mmol/L 氟乙酸平板生长较快的菌落,经过初筛和复筛,发现 SF-9 菌株产生更多琥珀酸且积累乙酸较少。以 50 g/L 的葡萄糖为碳源,在 5 L 发酵罐上进行分批发酵,该菌株发酵 32 h 时琥珀酸产量(34.8 g/L)提高了 23.4%,琥珀酸/乙酸比率为 9:1,副产物乙酸量比原始菌株降低了约 50%。代谢流量分析(MFA)结果表明,PEP 是影响琥珀酸合成的关键节点,PYR 是影响乙酸等杂酸生成比例的关键节点,并且这两个节点均非刚性节点。通过氟乙酸抗性诱变,成功地筛选出了流向乙酸、甲酸和乳酸等杂酸的流量相对减少,而流向琥珀酸的流量明显增强的突变菌株 SF-9。

关键词:琥珀酸,育种,氟乙酸,代谢流量分析(MFA)

Breeding of Monofluoroacetate-resistant Strains of Actinobacillus succinogenes and the Mechanism Based on Metabolic Flux Analysis

Yupeng Liu¹, Pu Zheng¹, Ye Ni¹, Jinjun Dong¹, Ping Wei², and Zhihao Sun¹

1 School of Biotechnology, Jiangnan University, The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi 214122, China 2 College of Life and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China

Abstract: Succinic acid has received a great deal of attention as an important green chemical stock for the manufacture of synthetic resins, biodegradable polymers and chemical intermediates. In this paper, the breeding mechanism of *Actinobacillus succinogenes* based on metabolic flux analysis was demonstrated to improve the yield of succinic acid by fermentation. After the NTG treatment, mutants from *A. succinogenes* CGMCC 1593 which were able to grow in medium containing concentrations of about 50~100 mmol/L of sodium monofluoroacetate were obtained. Among them, a mutant SF-9 was selected for producing more succinic acid and less acetic acid. When fermentations were conducted in a 5 L bioreactors, the final succinic acid concentration of SF-9 (34.8 g/L)

Supported by: the Natural Science Foundation of Jiangsu of China (No. BK2005201), the State Key Basic Research and Development Plan of China (No. 2003CB716008) and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0532).

国家 863 项目 (No. 2006AA02Z235), 江苏省自然科学基金前期预研项目 (No. BK2005201), 长江学者和创新团队发展计划资助 (No. IRT0532) 资助。

Received: June 28, 2007; Accepted: October 17, 2007

Corresponding author: Zhihao Sun. Tel: +86-510-85918252; Fax: +86-510-85918252; E-mail: sunw@publicl.wx.js.cn

increased 23.4%, and the mass ratio of succinic acid/acetic acid increased from 3.3 to 9 compared with those of the parent strain. Based on the metabolic flux analysis of *A. succinogenes*, PEP was found to be a key node which has an important effect on the production of succinic acid, and the flux ratio of by-productions (acetic, formic, lactic acid) was influenced by PYR node. Compared with the parent strain, the flux to succinic acid of mutant (*A. succinogenes* SF-9) was significantly increased, while the flux to by-productions had an obvious decline. Therefore, PEP and PYR are not rigid nodes in the metabolic regulation of *A. succinogenes*.

Keywords: succinic acid, breed, monofluoroacetate, metabolic flux analysis

琥珀酸(succinic acid)又称丁二酸,是一种重要 的化工产品,广泛应用于医药,农药,染料,香料, 油漆,食品,塑料和照相材料工业^[1]。化学合成的琥 珀酸因依赖石化原料等原因,存在生产成本增高的 趋势,从而使微生物发酵可再生原料生产琥珀酸的方 法倍受重视。发酵法生产琥珀酸是以可再生糖源(如葡 萄糖)和二氧化碳作为主要原料,不仅摆脱了对石化原 料的依赖,而且开辟了温室气体二氧化碳利用的新途 径,使得琥珀酸发酵成为一个新兴的、很有发展潜力 的绿色工艺,成为近年来国内外的研究热点^[1,2]。

代谢工程的实质在于对细胞代谢流量及其控制 进行定量分析,并在此基础上对代谢进行合理改造, 以最大限度地提高目的代谢产物的产率^[3]。代谢流 量分析(metabolic flux analysis, MFA)是代谢工程基 础研究中最重要的计算代谢途径中各种物质流量的 手段。对于工业微生物细胞而言,在特定的生理条 件下,其代谢表型(Metabolic phenotype)可以通过胞 内代谢网络中各种代谢物的流量来进行表征。MFA 为更好地设计反应器、调节发酵培养基组分和优化 控制策略打下良好的基础;对未知途径而言,可以 鉴别是否为主要代谢途径,以及了解副产物的产生 途径,以达到提高目的产物积累、去除副产物产生 途径的目的^[4]。

在利用微生物发酵产生有机酸的代谢过程中, 经常容易发生副产物乙酸的积累,不仅造成碳源的 浪费,而且会抑制菌体生长,降低细胞得率和微生 物的产酸能力^[5]。在本文中,通过亚硝基胍(NTG)诱 变筛选到一株氟乙酸抗性突变株,并首次根据代谢 流量分析模型对诱变育种前后菌种的流量进行了比 较,以研究基于代谢流量分布的育种机制。

1 材料与方法

- 1.1 材料
- 1.1.1 菌株

琥珀酸放线杆菌(A. succinogenes)CGMCC 1593,

由本实验室从牛的瘤胃中分离获得^[6]。

1.1.2 试剂和气体

亚硝基胍(NTG)为 Sigma 公司产品,氟乙酸钠 为 Fluka 公司产品,TSB(大豆胨胰酪胨蛋白)为宜兴 永信生物工程公司产品,CSL(玉米浆,55%固型物) 购自华北制药康鑫有限公司,其余试剂购自国药集 团化学试剂有限公司。CO₂ 气体购自无锡市新南气 体公司,实验用水为去离子水。

1.1.3 培养基和培养条件

 (1) 氟乙酸(钠)筛选平板培养基: TSB 25 g, Na₂HPO₄·12H₂O 8 g, NaH₂PO₄·2H₂O 3 g, 琼脂 20 g, 定容至1 L。在此培养基中加 10~100 mmol/L 氟乙酸 钠,并将培养基的 pH 调至 7.0~7.2, 即为相应的筛选 平板培养基。

以上平板培养基经涂布接种后,置于 100%CO₂ 环境中 37℃厌氧培养 3~7 d。

(2) 诱变育种中间培养基: TSB 20 g, 酵母膏
5 g, CSL 5 g, Na₂HPO₄· 12H₂O 8 g, NaH₂PO₄· 2H₂O 3 g, pH 调至 7.2, 定容至 1 L。

(3) 培养瓶厌氧发酵条件:种子培养基:葡萄糖 10g,酵母膏 5g,CSL 5g,NaH₂PO₄·2H₂O 9.6g,K₂HPO₄·3H₂O 20.3g,NaHCO₃ 10g,定容至1L,pH 自然,115℃灭菌 15 min。发酵培养基:葡萄糖 50g,酵母膏 10g,CSL 6g,Na₂HPO₄·12H₂O 1.5g,NaH₂PO₄·2H₂O 1.5g,NaCl 1g,MgCl₂ 0.2g,CaCl₂ 0.2g;另加混合维生素溶液 3 mL,其组分为(/L):叶酸 20 mg,硫胺素 20 mg,烟酸 20 mg, 硫辛酸 20 mg,核黄素 20 mg,VB₁₂ 20 mg,VB₆ 20 mg,泛酸 50 mg。将培养基定容至1L,pH 调 6.5,115℃灭菌 20 min。

将菌种先接种到液体种子培养基进行活化培养 16 h 后,按 5%接种量接种于装有 50 mL 发酵培养基 的厌氧瓶(培养瓶容积 150 mL)中进行发酵,充入 100% CO₂,并在接种前加入膜滤过的无菌 Na₂S·9H₂O (终浓度 0.02%),以保证绝对的厌氧环 境。置于 100% CO₂环境中 37 ℃厌氧培养 48~60 h。 (4) 搅拌罐厌氧发酵条件:在 5 L 搅拌发酵罐 (BIOFLO 110, New Brunswick Scientific, Edison, NJ, USA) 中进行厌氧发酵,装液量 3.5 L,培养基成份 和厌氧瓶发酵培养基相同。接种量 5%,发酵温度 37℃,使用两组圆盘六平直叶涡轮搅拌桨,搅拌转 速 200 r/min,通气为 100% CO₂。

1.2 方法

1.2.1 诱变育种

将处于对数生长期的细胞离心(8000×g, 20 min),用0.1 mol/L的磷酸缓冲液(pH 7.0)洗涤两次,将打散的细胞悬浮于含有一定浓度亚硝基胍 (NTG)的0.1 mol/L磷酸缓冲液(pH 7.0)中,使得 NTG最终浓度为0.2 mg/mL,在37℃的摇床上振荡 处理20 min。取10 mL处理后的菌悬液用0.16 mol/L 硫代硫酸钠溶液稀释10倍中止反应,离心收集细胞, 用无菌生理盐水洗涤后将其接入中间培养基中培养 24 h,而后稀释涂布于氟乙酸筛选平板,置于100% CO₂环境中37℃厌氧培养3~7 d,挑取在氟乙酸平 板上生长较快的菌落。

1.2.2 发酵产物分析

采用离子排斥 HPLC 法分析葡萄糖、琥珀酸、 乙酸、乳酸、甲酸等发酵产物^[7]。美国 Waters1512 二元泵, Waters 2414 RI 检测器, Breeze 色谱工作站; BioRad 公司 Aminex HPX-87H 离子色谱柱(300 mm ×7.8 mm, 9 µm); 流动相10 mmol/L硫酸; 柱温55 ℃; 流速 0.5 mL/min; 进样量 10 µL。

生物量以 660 nm 处的吸光度来表示(*OD*₆₆₀),每 1.0 个 *OD* 值单位相对应的菌体干重为(510±18) mg。

琥珀酸的产率(yield)定义为每消耗 1 克葡萄糖 所产生琥珀酸的克数^[8]。

1.2.3 A. succinogenes 菌株发酵合成琥珀酸过程的 代谢网络构建

根据相关文献[8,9],该菌株以葡萄糖为碳源时 合成琥珀酸的代谢网络主要包括糖酵解(EMP)、磷酸 戊糖(PP)、部分 TCA(TCA 氧化支路和还原支路)、 C₃、C₄、维持消耗以及生物量的合成途径;构建代 谢网络时作了以下假设和简化:(1)EMP 途径和丙酮 酸氧化是产生 NADH 的主要途径;PP 途径是产生 NADPH 的主要途径。由于琥珀酸发酵是在厌氧条件 下进行,因此假定产生的 NADH 全部用于代谢产物 的合成;NADPH 则全部用于微生物自身的生物量合 成,均没有被彻底氧化。(2)细胞的组成参考文献数 据^[10]。(3)没有支路的代谢反应合并为一个反应。 (4)在代谢过程中,一般会有部分碳源用于细胞的 维持、产能、CO₂放出以及分泌其它一些未知的代 谢产物等,造成碳源的不平衡现象,该部分流量 (*r*_{LEA})可以通过碳平衡计算得出(*r*_{LEA}=6*r*₁-3*r*₁₂-*r*₇-2*r*₈-3*r*₉-2*r*₁₀),在进行代谢流计算时将其并入生物量中。 (5)尽管存在 *A. succinogenes* 代谢途径中可能存在 部分的 TCA 循环:

OAA+AcCoA CIT α-KG

但是根据McKinlay等人^[11]的研究,基于该途径 的流量很微弱,因此笔者构建的代谢网络数据计算 时忽略了这部分反应。根据以上假设,琥珀酸发酵 代谢网络简化为 20 个代谢反应(*r*₁~*r*₂₀),如图 2 所 示。此外,*A. succinogenes* 菌株在基本培养基上不能 生长,在全合成培养基上生长非常微弱,所以本文 使用了加有有机氮源的培养基进行发酵,而在代谢 流量计算时我们忽略了复合氮源对生物量代谢流量 的贡献。

1.2.4 代谢流量的计算[12]

MFA 是根据代谢途径中各反应的计量关系以 及实验的某些底物、产物的流量及细胞组成等确定 整个代谢的流量分布。比如,某代谢网络中经由 *n* 个中间代谢途径物进行 *k* 个胞内代谢反应,其质量 平衡式如下:

$$\frac{dX_{met}}{dt} = r_{met} - \mu X_{met} \tag{1}$$

在式 1 中, *Xmet* 是途径中间代谢物(或胞内代 谢物)的浓度向量, *rmet* 是一个包含在 *n* 个反应中的 中间代谢物形成的净速率向量。对于大多数中间代 谢物来说,都具有很高的周转速度,因此可以假定 途径代谢物处于拟稳态状态。这意味着没有中间代 谢物的积累。如果再忽略由于菌体生长对代谢物 库的稀释作用(μ*Xmet*),于是可以得到更简单的平 衡式:

 $0 = r_{met} = G \times r = G_m \times r_m + G_c \times r_c$ (2)

在式 2 中, $G \ge n \times k$ 阶的代谢反应总行列矩阵, r是 $k \times 1$ 阶的反应速度的向量。针对琥珀酸放线杆菌 的代谢网络, n 表示中间代谢物的个数(n=15)。通过 矩阵的分割将G转化为两个矩阵 G_c 和 G_m 。 G_c 中包 含的是与待测反应流量(c)有关的系数, G_m 中则包含 与已知流量(m)相关的系数。而 k则表示反应速度的

图 1 A. succinogenes CGMCC1593 (A) and SF-9 (B) 搅拌罐分批发酵图 Fig. 1 The time courses of the batch fermentation of A. succinogenes CGMCC1593 (A) and SF-9 (B) Cells were grown anaerobically in stirred bioreactors with an initial glucose concentration of 50 g/L, Symbols are OD₆₆₀ (●), glucose (○), succinic acid (▲), acetic acid (●), formic acid (□), and lactic acid(Δ)

图 2 A. succinogenes CGMCC1593 和 SF-9 不同发酵时期代谢流量比较(CGMCC1593 8 h, 20 h/SF-9 8 h, 20 h) Fig. 2 Comparison of the metabolic flux distributions between A. succinogenes CGMCC1593 and SF-9 in the batch fermentation (CGMCC1593 8 h, 20 h / SF-9 8 h, 20 h)

总个数(k=20),它是待测的反应流量 c 个数(c=13)与 起始/终端物质速率的个数之和。k 个总反应速度中 有 m(m=7)个是可测的,即葡萄糖的消耗速度 r_1 、甲 酸的生成速率 r_7 、乙酸生成速率 r_8 、乳酸生成速率 r_9 、乙醇生成速率 r_{10} 、琥珀酸生成速率 r_{12} 和生物量的生成速率 r_{20} ,对应的可测速率向量为 $r_m(3)$:

$$r_m = [r_1, r_7, r_8, r_9, r_{10}, r_{12}, r_{20}]^T$$
 (3)
c 是其他 13 个未知的反应速率流量,对应的未知

速率向量为 r_c (5-4):

$$r_c = [r_2, r_3, r_4, r_5, r_6, r_{11}, r_{13}, r_{14}, r_{15}, r_{16}, r_{17}, r_{18}, r_{19}]^1$$
 (4)
G, G_m, G_c矩阵如下所示:

对于式 2, 其自由度为: F = k - n。如果 m = F, 则 G_c 为一方阵,则代谢网络是一个确定系统,可以利 用式 5 和可测速度变量对不可测速度向量 r_m 进行惟 一求解计算。

$$r_c = -G_c^{-1} \times G_m \times r_m \tag{5}$$

而在琥珀酸代谢网络中,一共有 m(7)个代谢流量是 可以测量的,即 m > F。所以 G_c 为一个 15×13 的矩 阵,该系统为超定系统,不能根据式 5 直接求解。在 这里,笔者通过最小二乘法进行方程求解计算。即 通过利用求系数矩阵 G_c 的 Moore-Penrose 广义拟矩 阵(G_c)[#],可以得到 r_c 的一个简单解^[13]。

$$(G_c)^{\#} = (G_c^T \times G_c)^{-1} \times G_c^T$$
(6)

$$r_c = -(G_c)^{\#} \times G_m \times r_m \tag{7}$$

r 12

0

0

r 20

-0.0016

-0.0055

-0.0547

-0.0028

0

-0.0115

-0.00371

0 -0.073

0

0

0

0

0 -0.7957

	$\int r_1$	r_2	r 3	r 4	r 5	r 6	r_7	r_8	r 9	r 10	r 11	r 12	r 13	r 14	r 15	r 16	r 17	r 18	r 19	r 20 -	
	1	-1	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	-0.0016	
	0	1	$^{-1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	-0.0055	G6P
	0	0	2	-1	0	0	0	0	0	0	0	0	0	0	0	1	-1	1	0	-0.0547	F6P
	0	0	0	1	-1	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	-0.0028	GA3P
	0	0	0	0	1	-1	-1	0	-1	0	0	0	0	0	0	0	0	0	0	0	PEP
	0	0	0	0	0	1	0	-1	0	-1	0	0	0	0	0	0	0	0	0	-0.0115	PYR
G=	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	0	0	0	0	0	-0.00371	AcCoA
	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	-1	0	0	0	0	0	OAA
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0 (0	0	-0.073	Ru5P
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-1	0	-1	0	0	R5P
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Y	-1	0	0	0	X5P
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0	0	Sed7P
	0	0	0	1	0	2	0	0	-1	-2	0	-2	0	0	0	0	0	0	1	0	E4P
	0	0	0	0	0	0	0	0	0	-1	0	0	2	0	0	0	0	0	-1	0	NADH
	\-1	0	-1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	-0.7957	NADPH

									(N.				
	r_2	r 3	r 4	r 5	r 6	r 11	r 13	r 14	r 15	r 16	r 17	r 18	r 19 ~
	(-1	0	0	0	0	0	-1	0	0	0	0	0	0
	1	-1	0	0	0	0	0	0	0	0	1	1	0
	0	2	-1	0	0	0	0	0	0	1	-1	1	0
	0	0	1	-1	0	-1	0	0	0	0	0	0	0
	0	0	0	1	-1	0	0	0	0	0	0	0	0
~	0	0	0	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0
$G_c =$	0	0	0	0	0	0	1	-1	-1	0	0	0	0
	0	0	0	0	0	0	0	0	1	-1	0	0	0
	0	0	0	0	0	0	0	1	0	-1	0	-1	0
	0	0	0	0	0	0	0	0	0	1	-1	0	0
	0	0	0	0	0	0	0	0	0	0	1	-1	0
	0	0	1	0	2	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	2	0	0	0	0	0	-1
	$\searrow 0$	-1	1	1	0	0	0	0	0	0	0	0	0 -

在本章代谢流量的计算中,均以 100 mmol/gDCW/h 的葡萄糖为计算基准,所有代谢流量 *r* 的 单位均为 mmol/gDCW/h;矩阵计算软件采用 Excel 2003。

2 结果与讨论

2.1 氟乙酸抗性突变株的筛选

野生型菌株 A. succinogenes CGMCC1593 发酵 产生的杂酸量较高,为了降低乙酸等杂酸的积累, 提高琥珀酸产量,对原始菌株进行诱变育种选育氟 乙酸抗性突变株。

0 0 0 0 0

0

0

0

0 0 0

0

0 0

-1

0

0 0

0 0

0 0

-1 0

0 0

0 0 0 0 0

0 0

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad -1$

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 -1 -2 -2

0

 $G_m =$

通过 NTG 诱变,在 50~100 mmol/L 的氟乙酸平 板上有少量菌落能够生长,但生长均较缓慢,培养 5~7 d 后,大多数抗性菌落直径在 0.2~2 mm 之间。 挑取较大的单菌落于含有 50~100 mmol/L 的氟乙酸 平板上反复划线纯化,最终筛选出一株乙酸产量明 显较原始菌株降低的氟乙酸抗性突变菌株 SF-9。 以 50 g/L 的葡萄糖为初始底物浓度, 在厌氧瓶 中 37 ℃厌氧培养 48 h(100% CO₂), 原始株和突变株 的发酵产酸情况如表 1 所示。

从表 1 中可以看出,在 A. succinogenes CGMCC1593 厌氧发酵产物中,琥珀酸产量较低, 琥珀酸/乙酸(W/W)约为 3.3:1,乳酸和甲酸产量也较 高。而 SF-9 菌株的琥珀酸产量(35.2 g/L)比原始菌株 提高了 21.8%,琥珀酸/乙酸为 8:1,未检测出乳酸的 生成,琥珀酸产率也从 67%提高到 83%。与原始菌 株相比,原来流向乙酸、甲酸和乳酸的部分碳源改 为分布到琥珀酸,每 100 mol 的葡萄糖所产生的琥 珀酸从 102 mol 增加到了 129 mol,且生物量也较原 始菌株有所提高。

表 1 氟乙酸抗性突变株发酵产酸情况 ^a Table 1 The fermentation results of mutant resistant to monofluoroacetate

	Mol pr	Succinic					
Strains	Biomass ^b	Succinic Acetic L acic ^c acid		Lactic acid	Formic acid	acid yield/%	
CGMCC 1593	36 (2.2) ^d	102 (28.9)	60 (8.7)	7 (1.6)	51 (3.7)	67	
SF-9	45 (2.7)	129 (35.2)	31 (4.5)	0	32 (2.2)	83	

^a Cells were grown in anaerobic bottles, and each value is the mean of three parallel replicates.

 b Carbon compound incorporated into the cells was calculated using the cell composition formula $CH_{2}O_{0.5}N_{0.2}$ (24.967 g/mol)^[10].

^c Carbon compound in succinic acid was calculated as 3 mol carbon/mol product because of CO_2 fixation during succinic acid formation^[8].

^d The concentrations of products(g/L) were shown in the parentheses

2.2 搅拌罐分批发酵

在 5 L 发酵罐中对 A. succinogenes CGMCC1593 菌株和 SF-9 突变株分批发酵进行研究,实验结果如 图 1 所示。在发酵罐厌氧培养条件下,厌氧瓶实验 结果得到了较好的重现。培养 4~8 h 时,原始株与突 变株的生长均达到指数生长期,其中 A. succinogenes CGMCC1593 发酵 40 h 产酸的情况为:琥珀酸 28.2 g/L,乙酸 8.5 g/L,乳酸 1.7 g/L,甲酸 3.8 g/L; 琥珀酸产率 66%。而 SF-9 突变株的延迟期较 A. succinogenes1593 明显缩短,发酵 32 h 时产生 34.8 g/L 琥珀酸,3.9 g/L乙酸,1.8 g/L甲酸;与原始菌 株比较, 琥珀酸产量提高了 23.4%,琥珀酸/乙酸比率提高到了 9:1,副产物乙酸和甲酸产量降低了 50%左右。

2.3 A. succinogenes CGMCC1593及SF-9分批发 酵时的代谢流量比较

分别考察了 A. succinogenes CGMCC1593 和

SF-9 在分批发酵时指数生长期(8 h)和中后期(20 h) 的代谢流量分布情况。在培养过程(图1)中、分别取 7、7.5、8、8.5、9、19、19.5、20、20.5 和 21 h 的 生物量、葡萄糖以及各有机酸数据、根据方程的拟 合求导就可以得到在8h和20h时各组分的浓度变 化速率(mmol/gDCW/h)、结果如表 2 所示。由表 2 可以看出, 无论是 A. succinogenes CGMCC1593 还 是 SF-9 菌株、合成细胞的速率均在发酵初期(8 h)为 最高,在此阶段较多的碳源用于合成菌体组分;而 在发酵中后期(如 20 h)消耗很少的碳源用于菌体的 合成,琥珀酸的产生速率均较高。根据表 2 中的数 据,以 100 mmol/gDCW/h 消耗葡萄糖的速率为计算 基准,可以计算得到 A. succinogenes CGMCC1593 及 SF-9 在分批发酵过程中的代谢流量分布(见图 2)。 模型中使用的缩略词含义见附录、胞内主要代谢反 应方程见参考文献[8,9]。

从上图可以看出,无论是 A. succinogenes CGMCC1593 还是 SF-9 菌株,合成细胞的流量均在 指数生长期(8 h)为最高,对葡萄糖的 mol 转化率分 别达到了 112%和 116%。这说明在此阶段较多的碳 源用于合成菌体组分;而在发酵中后期(如 20 h)则 消耗很少的碳源用于菌体的合成。琥珀酸对葡萄糖 的 mol 转化率在指数生长期分别达到 90%和 104%, 而在中后期两菌株的琥珀酸转化率则分别达到 110%和 141%;至于乙酸、甲酸等其它代谢产物的代 谢流量,均在指数生长期处于较高的值,而在发酵 中后期流量呈明显下降趋势。

从 A. succinogenes 的代谢网络中可以看出, PEP 是影响琥珀酸合成的关键节点, PYR 是影响乙酸等 杂酸生成比例的关键节点, 在该两个节点处的代谢 流量分布见表 3 所示。结果表明, 突变菌株琥珀酸 发酵性能有了很大提高的主要原因是其代谢途径中 关键节点处的流量分布发生较大变化的原因。在指 数生长期 (如 8 h), 原始株和突变株在 PEP 和 PYR 节点处的代谢流量分布变化不大。然而, 与原始株 相比, 发酵中后期(如 20 h)突变株在 PEP 节点处流 向丙酮酸(PYR)的流量(r5)从原始菌株的 35.3%降低 到了 13.9%, 流向草酰乙酸(OAA)的流量(r11)提高 了 21.4%, 使得琥珀酸的产量得到了明显的提高; 在 PYR 节点, 流向乳酸的流量则降低为 0, 而甲酸 流量则变化不大。

表 3 A. succinogenes CGMCC1593 和 SF-9 在 PEP 和 PYR 节点处的代谢流量分布 ^a

Table 3 Metabolic flux partitioning at PEP and PYR nodes in the fermentation of *A. succinogenes* CGMCC1593 and SF-9

Strains	Time /h	Flux at P $(r_4 = $	EP node 100)	Flux at PYR node $(r_5=100)$			
	/11	r_5	r_{11}	r_6	r_7	r_9	
CCMCC1502	8	36.9	63.1	4.5	84.3	11.2	
CGMCC1593	20	35.3	64.7	9.9	83.3	6.8	
SE O	8	35.4	64.6	9.2	90.8	0	
SF-9	20	13.9	86 1	21.3	78 7	0	

^aCells were grown anaerobically in the batch fermentation of stirred bioreactors

在由大量代谢节点所构成的代谢网络中,主要存在以下 3 种节点:柔性节点、刚性节点和弱刚性节点。对于流经刚性节点的代谢流,仅仅改变该节点下游的反应的酶水平或活性,是不可能对代谢流进行顺利导向的。由以上结果可以看出,在琥珀酸放线杆菌的代谢网络中,PEP 和 PYR 节点均不是刚性节点,而是柔性或弱刚性节点。在本实验中,通过氟乙酸抗性诱变,成功地筛选出了流向乙酸、甲酸和乳酸等杂酸的流量相对减少,而流向琥珀酸流量明显增强的突变菌株 SF-9。

此外,作者还分析了代谢网络中 NADH 的供应 情况,结果如表 4 所示。

在琥珀酸发酵代谢网络中,每生成 1 mol 琥珀 酸需要 2 mol NADH,而生成乙酸和甲酸则不需要 消耗还原力。因此,对于突变菌株 SF-9 来说,为了 积累了更多的琥珀酸,就必须需要更多的还原力。 从表4可以看出,突变株SF-9在代谢过程中积累了 更多的 NADH,因而能够满足生成更多琥珀酸所必 须的还原力;在 GA3P→PEP 途径(r₄)中生成的 NADH在总还原力所占的比例较原始菌株明显降低, 即有更多的还原力来自于磷酸戊糖(PP)途径。

表 4 A. succinogenes CGMCC1593 和 SF-9 发酵时 NADH 产生途径的流量分配 ^a

Table 4 Flux distribution of NADH generation pathway with different strains

Strains	Time /h	Total NADH flux (mmol/gDCW/h)	Total NADH flux ^b =100			
			r_4	$2r_6$	r_{19}	
CGMCC1593	8	188.0	84.3	3.4	12.3	
	20	225.3	76.5	5.1	18.4	
SF-9	8	208.0	78.2	5.1	16.7	
	20	266.6	61.2	4.3	34.5	

^aCells were grown anaerobically in the batch fermentation of stirred bioreactors.

^bTotal NADH flux= $r_4 + 2r_6 + r_{19}$

3 结论

Chin J Biotech

通过 NTG 诱变, 在 50~100 mmol/L 的氟乙酸筛 选平板上选出一株乙酸产量明显较原始菌株降低的 氟乙酸抗性突变菌株 SF-9。MFA 分析结果表明, A. succinogenes 在分批发酵前期以合成细胞为主, 流 向琥珀酸的流量较低; 而在稳定期琥珀酸的代谢流 量较高。至于流向乙酸、甲酸等其它代谢产物的代 谢流量, 均在指数生长期处于较高的值, 而在稳定 期流量呈明显下降趋势。在 A. succinogenes 的代谢

	附录:	缩略语	表	
Appendix:	Abbre	viations	and	Symbols

AC (e)	extracellular acetate	NAD	nicotinamide adenine dinucleotide
AcCoA	acetylCoA	NADH	nicotinamide adenine dinucleotide, reduced
ADP	adenosine-5'-diphosphate	NADP	nicotinamide adenine dinucleotide phosphate
ATP	adenosine-5-triphosphate	NADPH	nicotinamide adenine dinucleotide phosphate, reduced
CoA	coenzyme A	OAA	oxaloacetate
E4P	erythrose 4-phosphate	PEP	phosphoenolpyruvate
ETOH (e)	extracellular ethanol	PYR	pyruvate
F6P	fructose 6-phosphate	R5P	ribose 5-phosphate
FOR (e)	extracellular formate	Ru5P	ribulose 5-phosphate
G6P	glucose 6-phosphate	Sed7P	sedoheptulose 7-phosphate
GA3P	glyceraldehyde 3-phosphate	SUC (e)	extracellular succinate
GLC	glucose	X5P	xylulose 5-phosphate
α-KG	α-ketoglutarate	BM	biomass
LA (e)	extracellular lactate	LEA	life maintaince, energy and amino acids, etc

网络中, PEP 是影响琥珀酸合成的关键节点, PYR 是 影响乙酸等杂酸生成比例的关键节点, 并且这两个 节点均非刚性节点。通过氟乙酸抗性诱变, 成功地筛 选出了流向乙酸、甲酸和乳酸等杂酸的流量相对减少, 而流向琥珀酸的流量明显增强的突变菌株 SF-9。本论 文研究对于深入研究 A. succinogenes 的代谢途径, 优 化琥珀酸发酵策略具有一定的应用价值。

REFERENCES

- Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. *Appl Microbiol Biotechnol*, 1999, **51**: 545–552.
- [2] Wang QZ, Zhao XM. The Research Progress of Succinic Acid Fermentation Strains. *Chin J Biotech*, 2007, 23 (4): 570–576.

王庆昭,赵学明.琥珀酸发酵菌种研究进展.生物工程 学报.2007.23 (4): 570-576.

- [3] Bailey JE. Toward a science of metabolic engineering. Science, 1991, 252: 1668–1674.
- [4] Bonarius HPJ, Timmerarends B. Metabolic flux distributions in *Corynebacterium glutamicum* during growth and lysine overproduction. *Biotechnol Bioeng*, 1996, **50**: 299–305.
- [5] Zhu TP, Liu YY, Jiao RS. The selection of fluoroacetate-resistant mutant from *E. coli* mmr204 and its influence on the expression of heterologous GL27ACA acylase. *Acta Microbiologica Sinica*, 2000, 40 (1): 100–104.
 朱彤波,杨蕴刘, 焦瑞身. 大肠杆菌抗氟乙酸株的选育和应用. 微生物学报, 2000, 40 (1): 100–104.
- [6] Sun ZH, Zheng P, Liu YP, et al. The methods and microorganisms for the production of succinic acid by

microbial fermentation. Chinese Patent, CN1814747, 2006-8-9.

孙志浩,郑璞,刘宇鹏,等.中国专利, CN1814747, 2006-8-9.

- [7] Liu YP, Zheng P, Sun ZH. Determination of succinic acid and other metabolites from fermentation broth by ionexclusion liquid chromatography. *Food and Fermentation Industries*, 2006, **32** (12): 119–123.
 刘宇鹏,郑璞,孙志浩.采用离子排斥色谱法分析发酵 液中的琥珀酸等代谢产物. 食品与发酵工业, 2006, **32**(12): 119–123.
- [8] Van der Werf MJ, Guettler MV, Jain MK, et al. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp.130Z. Arch Microbiol, 1997, 167: 332–342.
- [9] Sridhar J, Eiteman MA. Metabolic flux analysis of Clostridium thermosuccinogenes. Appl Biochem Biotechnol, 2001, 94: 51-69.
- [10] Samuelov NS, Lamed R, Lowe S, et al. Influence of CO₂-HCO₃ levels and pH on growth, succinate production, and enzyme activities of *Anaerobiospirillum succiniciproducens*. Appl Environ Microbiol, 1991, **57**: 3013–3019.
- [11] Mckinlay JB, Zeikus GJ. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in *Escherichia coli. Appl Environ Microbiol*, 2005, **70**: 3467–3474.
- [12] Zhao XM, Bai DM, et al. Metabolic Engineering: Principles and Methodologies. Chemical Industry Press, 2003.
 赵学明, 白冬梅, 等译. 代谢工程: 原理与方法. 北京: 化学工业出版社, 2003.
- [13] Ou SD. Calculation of moore-penrose generalized Invers Matrix. Journal of Yulin Teachers College (Natural science), 2001, 22 (3): 11-14.
 区诗德. Moore-Penrose 广义拟矩阵的计算. 玉林师范 学院学报(自然科学版), 2001, 22 (3): 11-14.

ରଣ୍ଟ ୬୦ ରଣ୍ଟ ୬୦

科学出版社科学出版中心生命科学分社新书推介

中国水产养殖学

刘焕亮 黄樟翰 主编

978-7-03-019703-0 ¥178.00 2008年1月3日出版

本书是我国水产养殖学科领域中的第一部涵盖淡水养殖与海水养殖,动物养殖与植物栽培 并举,理论与实践紧密结合的综合性著作,具有明显的特色。

全书共分 10 章,运用综合比较的撰写方式,全面系统地论述了新中国成立以来,特别是 20 世纪 80 年代以后,水产养殖业的发展、成就和经验,水产品营养价值,养殖水域生态环境,水产 动物育种,水产动物营养与饲料,鱼类、虾蟹类、贝类和其他经济动物(腔肠动物、棘皮动物、 两栖动物、爬行动物)的养殖,藻类养殖,以及水产养殖病害防治。

本书由长期从事水产养殖研究和水产高等教育的近 30 名专家撰写而成, 其中 8 名是水产动物与藻类养殖及其病害防治的知名教授。全书是各位作者多年研究成果的总结, 较完整地反映 了水产养殖科学研究与养殖生产关键技术的新成果和新技术。

本书可供水产养殖科技人员,水产养殖学专业师生以及水产养殖企、事业单位人员和水产行政管理人员等参考,也 可作为水产学科研究生教材和水产养殖学科对外学术交流的材料。

> 欢迎各界人士邮购科学出版社各类图书(免邮费) 邮购地址:北京东黄城根北街16号 科学出版社 科学出版中心 生命科学分社 邮编:100717 联系人:阮芯 联系电话:010-64034622(带传真) 更多精彩图书请登陆网站 http://www.lifescience.com.cn,欢迎致电索要书目

中国水产养殖学