工业生物技术・

蒙氏假单胞菌 ZMU-T06 氧化脱氢芳构化合成 2-取代 喹啉类化合物

杨敏¹, 邹岚¹, 冉会敏¹, 秦磊^{2*}

2 遵义医科大学第三附属医院(遵义市第一人民医院),贵州 遵义 563000
 2 遵义医科大学 药学院 贵州省生物催化与手性药物合成重点实验室,贵州 遵义 563000

杨敏, 邹岚, 冉会敏, 秦磊. 蒙氏假单胞菌 ZMU-T06 氧化脱氢芳构化合成 2-取代喹啉类化合物[J]. 生物工程学报, 2025, 41(1): 288-295.

YANG Min, ZOU Lan, RAN Huimin, QIN Lei. *Pseudomonas monteilii* ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization[J]. Chinese Journal of Biotechnology, 2025, 41(1): 288-295.

摘 要: 2-取代喹啉是合成天然产物和药物的重要组成部分。与经典方法相比, 2-取代-1,2,3,4-四 氢喹啉的脱氢芳构化由于其高原子经济性和可持续性,近年来已成为获得 2-取代喹啉的一种有效 而直接的方法。然而,现有的化学方法需要使用过渡金属催化剂且反应条件苛刻,相比之下生物 催化具有高效、高选择性以及反应条件温和等优点,已经成为有机合成领域的重要方法。本研究 通过生物酶挖掘获得一株产单胺氧化酶的蒙氏假单胞菌(Pseudomonas monteilii) ZMU-T06,能够催 化 2-取代-1,2,3,4-四氢喹啉类化合物脱氢芳构化合成 2-取代喹啉类化合物(8 个底物,产率为 45.7%-48.4%),并推测了其可能的催化机理,为绿色合成 2-取代喹啉类化合物提供新的方法。 关键词:单胺氧化酶; 脱氢芳构化; 2-取代喹啉; 催化机理

资助项目:贵州省教育厅青年科技人才成长基金(KY-2018-226); 遵义医科大学硕士启动基金(F-888)

This work was supported by the Youth Science and Technology Talent Growth Project of Guizhou Department of Education (KY-2018-226) and the Master's Fund of Zunyi Medical University (F-888).

*Corresponding author. E-mail: lqin@zmu.edu.cn

Received: 2024-04-29; Accepted: 2024-06-06; Published online: 2024-06-07

Pseudomonas monteilii ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization

YANG Min¹, ZOU Lan¹, RAN Huimin¹, QIN Lei^{2*}

1 The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, Guizhou, China

2 Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China

Abstract: 2-substituted quinolines are the building blocks for the synthesis of natural products and pharmaceuticals. In comparison with classical methods, dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines has emerged in recent years as an efficient and straightforward method to synthesize quinolines due to its high atom economy and sustainability. However, existing chemical methods need transition metal catalysts and harsh reaction conditions. Biocatalysis with high efficiency, high selectivity, and mild reaction conditions has become an important method of organic synthesis. We mined a strain *Pseudomonas monteilii* ZMU-T06 capable of producing monoamine oxidase for the dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines to synthesize 2-substituted quinolines (8 substrates, yields of 45.7%–48.4%) and then hypothesized the catalytic mechanism, providing a new method for green synthesis of 2-substituted quinolines.

Keywords: monoamine oxidase; dehydroaromatization; 2-substituted quinolines; catalytic mechanism

2-取代喹啉代表了一类特殊的结构单元, 广泛存在于天然生物碱和合成药物中^[1-3]。含有 喹啉骨架的化合物(图 1)表现出多种生物活性, 具有抗疟疾、抗抑郁和抗肿瘤的作用^[4-7]。许多 传统的方法致力于构建喹啉骨架^[8-9]。例如,经 典的化学方法包括 Skraup、Doebner-Miller、 Knorr 和 Friedländer 反应^[10]。然而,它们中的 大多数都存在固有的缺点,如消耗高酸性溶液 和生成大量副产物^[11]。近年来,研究人员逐渐关 注 1,2,3,4-四氢喹啉(1,2,3,4-tetrahydroquinolines, THQ)的脱氢芳构化,因为它具有高原子经济性^[12]、 可持续性和避免多步操作程序等优点^[13],其脱 氢芳构化常涉及过量氧化剂、有机催化、金属 催化、光催化和电催化^[14],这些催化过程需要 苛刻的条件、强氧化剂或过渡金属^[15-19]。因此, 开发一种有效且环境友好的 2-取代四氢喹啉脱 氢芳构化方法十分必要。

图 1 含有喹啉骨架的生物活性化合物

Figure 1 Biologically active compounds containing quinoline scaffolds.

用于合成 2-取代喹啉的生物催化氧化脱氢 芳构化方法的研究较少。研究者利用来自恶臭 假单胞菌 KT2440 的单胺氧化酶(PpMAO)催化 四氢喹啉脱氢芳构化生成喹啉类化合物,其催化 的底物类型主要是苯环上有取代基的 THQ^[20]。 N-杂环的生物催化氧化脱氢芳构化构建 2-取代 喹啉已被应用于合成芳香族 N-杂环,如吡咯、 吡啶和吲哚^[21-23]。在上述研究基础上,本研究 希望能够开发一种生物催化剂介导 2-取代四氢 喹啉的氧化脱氢的有效方法。与化学氧化剂相 比,分子氧用作氢受体不仅可以避免使用有毒 试剂,还可以促进产物的分离和纯化,从而为 2-取代 THQ 的氧化脱氢芳构化提供了一种更环 保的方法。

本研究从课题组前期构建的菌库中筛选获 得一株能够催化 2-取代四氢喹啉脱氢芳构化合 成 2-取代喹啉的菌株蒙氏假单胞菌(Pseudomonas monteilii) ZMU-T06 (图 2)。通过优化催化条件, 使其催化 2-取代四氢喹啉生成 2-取代喹啉,并 推测了其可能的催化机理。

图 2 Pseudomonas monteilii ZMU-T06 催化 2-取代四氢喹啉脱氢芳构化

Figure 2 Biocatalytic oxidative dehydroaromatization of 2-substituted THQ using *Pseudomonas monteilii* ZMU-T06.

1 材料与方法

1.1 仪器与试剂

仪器:核磁共振仪[安捷伦科技(中国)有限 公司],正相高效液相色谱(岛津公司),手性分 析柱[大赛璐药物手性技术(上海)有限公司], 上海智城恒温培养振荡器(上海智城分析仪器 制造有限公司), 生物洁净安全台(苏州安泰空 气技术有限公司), 冷冻高速离心机(贝克曼库 尔特有限公司), 自动酶标仪(上海锦锚工业科技 有限公司), 生化培养箱(东京理化器械株式会 社), 电子分析天平(上海辰之州实业有限公司), pH 计(梅特勒托利多公司), 磁力搅拌器(苏州 赛恩斯仪器有限公司), 旋转蒸发仪(东京理化 器械株式会社), 真空泵(爱发科公司)。

试剂: 2-甲基四氢喹啉(compound 1a, 99%)、 2-乙基四氢喹啉(compound 1b, 99%)、2-丙基 四氢喹啉(compound 1c, 99%)、2-正丁基四氢 喹啉(compound 1d, 99%)、2-异丙基四氢喹啉 (compound 1e, 99%)、2-异丁基四氢喹啉(compound 1f, 99%)、2-烯丙基四氢喹啉(compound 1g, 99%) 和 2-环丙基四氢喹啉(compound 1h, 99%, TCI) 均购自东京化成工业株式会社(Tokyo Chemical Industry, TCI)。其余试剂均为市售分析纯。

1.2 菌株培养方法

菌株的活化:将保存于-80 ℃的原始甘油 菌接种于含 5 mL LB 培养基的试管中,将试 管在 30 ℃、250 r/min 条件下恒温摇床培养 8 h,培养后的 LB 培养菌液用接种环划线涂布 于LB固体培养基平板中,并置于30 ℃恒温培养 箱中培养过夜,观察菌株生长情况,当 LB 固体 培养基平板中可观察到单菌落长出即可挑取单 菌落进行二次活化,如此反复活化 2-3 次。最后 将目标菌株的平板置于4 ℃冰箱中储存备用。

一级富集培养:将 *P. monteilii* 系列菌株接 种于含 10 mL LB 培养基的试管中,将试管在 温度为 30 ℃、转速为 250 r/min 条件下摇床培 养 8 h。

发酵富集培养:将一级富集培养后的种子 菌液在450 nm下测其*OD*值,并计算出加入发 酵培养的种子液体积,使发酵培养液的起始 *OD*450 值为 0.1;最后将含接种的发酵培养液的

291

锥形瓶于温度 30 ℃、转速 250 r/min 条件下摇 床培养 18 h。

1.3 生物转化步骤

用 LB 培养基作为空白对照,测得各发酵 菌液 OD450值;将发酵菌液移入 50 mL 离心管, 8 000 r/min、4 ℃离心 3 min; 倒掉上清液, 并 根据 OD450 值与细胞浓度关系加入计算所得相 应的 Na₂HPO₄-KH₂PO₄缓冲溶液,重悬菌体并 混匀, 配制所需的菌液细胞浓度; 用移液管量 取细菌悬浮液 5 mL 干 25 mL 反应瓶中,并加入 相应浓度的底物(rac)-1a, 在转速为 250 r/min、 温度为 30 ℃条件下进行生物转化 24 h。生物转 化 24 h 后,加入等体积乙酸乙酯(5 mL)充分萃 取,取有机层1mL于EP管中,加入无水Na₂SO₄ 进行干燥、离心,移取干燥后的有机层 300 µL, 并加入300 µL HPLC 级异丙醇进行正相 HPLC 分析。根据正相液相色谱图的底物及产物的峰 面积,计算产率。核磁共振¹H NMR、¹³C NMR 鉴定产物结构式,使用 CDCl₃ 作为溶剂,四甲基 硅烷(tetramethylsilane, TMS)作为内标物质。

1.4 底物和产物的分析

底物和产物通过文献报道的 HPLC 方法进行分析(表 1, 流速: 0.8 mL/min; 波长: 254 nm; 手性柱: Chiralpak OJ-H, 4.6 mm×250 mm)^[24],因产物 2-取代喹啉类化合物均是已知化合物,本研究中只对化合物 2a 进行了核磁共振表征。

Analyzia anditiona of an

表1 化合物的分析条件

Tabla 1

rable i Analysis conditions of compounds				
Compounds	Hexane/i-PrOH	$t_{\rm minor}$ (min)	$t_{\rm major}~({\rm min})$	
1a	90/10	13.0	14.3	
1b	95/5	15.3	17.8	
1c	95/5	12.7	16.0	
1d	95/5	11.0	12.9	
1e	95/5	10.0	10.3	
1f	95/5	9.7	13.3	
1g	95/5	11.9	13.3	

2 结果与分析

生物酶的催化活性受底物浓度的影响, 高的底物浓度对生物酶具有毒副作用,因此 将模板底物 2-甲基四氢喹啉(1a)的浓度设定为 2 mmol/L。此外, 菌株在自身的生长代谢过程 中会因代谢产物的积累,导致整个生长微环境 发生变化,不利于生物酶的催化活性,因此选 择 50 mmol/L、pH 7.0 的 KH2PO4 和 Na2HPO4 磷 酸盐缓冲溶液(phosphate buffered saline, PBS) 作为反应介质来调节催化体系的 pH。以此为催 化反应体系进行菌库中菌株的筛选,采用高效 液相色谱(HPLC)进行反应结果检测,其筛选结 果见图 3 和表 2。对筛选结果进行分析,发现 6 株菌株(P. monteilii ZMU-T01、P. monteilii ZMU-T06, P. monteilii ZMU-T07, P. monteilii ZMU-T11, P. monteilii ZMU-T13, P. monteilii ZMU-T16)对模板底物具有较好的生物催化活 性,其中 P. monteilii ZMU-T06 转化 2-甲基四 氢喹啉具有最高产率,因此选择 P. monteilii ZMU-T06 菌株作为生物催化剂进行生物转化 条件的优化。其优化结果见表 3。

由于蛋白质表面离子化侧链的存在,蛋白 质带净电荷,反应体系的 pH 值会影响蛋白质 表面电荷的分布以及其空间结构的变化,蛋白 质分之间的相互作用也受到反应体系 pH 的调 控,所以反应体系的 pH 值在生物催化中是影 响催化效果的关键因素之一。因此,配制不同 pH 的 PBS 缓冲溶液去考察对催化反应的影

图 3 生物催化剂筛选的模板反应

Figure 3 Template reaction for biocatalyst screening.

Strains ^a	Yield of	e.e. value of	Strains	Yield of	e.e. value of
	2a (%) ^b	(R)-1a (%)		2a (%)	(R)-1a (%)
P. monteilii ZMU-T01	30.2	43.3	P. monteilii ZMU-T11	32.7	48.6
P. monteilii ZMU-T02	14.3	16.7	P. monteilii ZMU-T12	13.6	16.0
P. monteilii ZMU-T03	12.0	14.0	P. monteilii ZMU-T13	35.2	55.2
P. monteilii ZMU-T04	24.1	31.5	P. monteilii ZMU-T14	13.1	15.4
P. monteilii ZMU-T05	15.4	18.0	P. monteilii ZMU-T15	7.5	9.0
P. monteilii ZMU-T06	37.2	59.4	P. monteilii ZMU-T16	33.9	51.3
P. monteilii ZMU-T07	32.8	49.0	P. monteilii ZMU-T17	28.6	40.1
P. monteilii ZMU-T08	15.5	18.6	P. monteilii ZMU-T18	25.2	33.8
P. monteilii ZMU-T09	26.4	36.0	P. monteilii ZMU-T19	17.6	21.5
P. monteilii ZMU-T10	12.3	14.0	P. monteilii ZMU-T20	0.0	0.0

表 2	催化 2-甲基四氢喹啉脱氢芳构化生物催化剂的筛选

 Table 2
 Screening for biocatalysts to catalyze dehydroaromatization of 2-methyltetrahydroquinoline

^{*a*}: Unless otherwise noted, mixtures of (*rac*)-**1a** (5.0 mmol/L), cell suspension (10.0 g dcw/L), Na₂HPO₄-KH₂PO₄ buffer (50 mmol/L, pH=7.0) in 5.0 mL reaction system were shaken at 250 r/min at 30 °C for 24 h. ^{*b*}: The yield of **2a**: $Y=A_{2a}/A_{t2a}\times100\%$, A_{2a} represents the peak area of generated **2a**, A_{t2a} represents the peak area of the theoretically generated **2a**, all peak areas were determined by HPLC analysis.

表 3 生物催化的反应条件优化

Table 3 Optimization of reaction conditions for biocatalysis

pН ^a	Substrate concentration (mmol/L)	Cell density (g DCW/L)	Yield of 2a $(\%)^b$	<i>e.e.</i> value of (<i>R</i>)-1a (%)
5.0	2.0	30.0	37.2	59.0
6.0	2.0	30.0	37.3	59.2
7.0	2.0	30.0	37.4	59.3
8.0	2.0	30.0	41.5	71.0
9.0	2.0	30.0	39.2	64.5
8.0	4.0	30.0	45.1	82.2
8.0	6.0	30.0	46.1	85.0
8.0	8.0	30.0	44.3	79.5
8.0	10.0	30.0	44.5	80.2
8.0	10.0	50.0	47.6	91.0
8.0	10.0	70.0	45.2	82.5

^a: Unless otherwise noted, mixtures of (*rac*)-1a (different substrate concentration), cell density (different cell densities), Na₂HPO₄-KH₂PO₄ buffer (50 mmol/L with different pH) in 5.0 mL reaction system was shaken at 250 r/min at 30 °C for 24 h. ^b: The yield of 2a: Y= $A_{2a}/A_{t2a} \times 100\%$, A_{2a} represents the peak area of generated 2a, A_{t2a} represents the peak area of the theoretically generated 2a, all peak areas were determined by HPLC analysis. dcw: Dry cell weight.

响,其催化结果如表 3 所示。实验结果表明, 当 pH 值从 5.0 到 8.0 时,菌株对 2-甲基四氢喹 啉氧化脱氢的产率不断提高,当 pH 值为 9.0 时, 菌株的催化效率下降,最终筛选获得反应体系 的最优 pH 为 8.0。

为了以后适应工业化的生产,提高反应底 物的浓度具有一定的实际意义,但是不同的生 物催化剂对底物的耐受能力也有差异,获得高 耐受性的生物催化剂具有一定的难度,这也 是限制大多数生物催化反应进行工业化应用 的关键因素。在反应底物浓度优化的过程中 (表 3),发现生物催化剂的浓度为 30.0 g/L 细胞干 重(dry cell weight, dcw)时,催化 10.0 mmol/L 化 合物 2a 的产率为 47.6%。为了进一步提高化合

292

293

物 2a 的产率,将底物浓度设定为 10.0 mmol/L, 对生物催化剂的浓度进行了优化,结果表明, 随着生物催化剂浓度的增加,化合物 2a 的产 率有一定的提高,但是生物催化剂浓度达到 50.0 g DCW/L 后,继续增加其浓度,化合物 2a 的产率下降,可能的原因是生物催化剂的增加 导致反应过程中溶氧下降及传质效率下降导致 酶的催化效率降低。因此,将整细胞浓度设定 为 50.0 g DCW/L。

基于前期生物催化反应条件的优化,对 P. monteilii ZMU-T06 的催化底物谱进行了表 征,主要考察了 2-取代四氢喹啉类底物(**1b-1j**), 其催化结果见图 4 和表 4。当 R²取代基为甲基、 乙基和正丁基时,其获得产率为 47.6%-48.0%, 当 R²取代基为正丙基、异丙基、异丁基、烯丙 基和环丙基时,其获得产率达到 48.0%左右, 当 R¹取代基为甲基和甲氧基, R²取代基为甲基 时, P. monteilii ZMU-T06 对这两种底物没有催 化活性,推测原因是该类底物在 P. monteilii ZMU-T06 的活性口袋中无催化模式的结合。此 外,本研究还对四氢异喹啉进行了测试,但是没 有检测到活性。综上所述, P. monteilii ZMU-T06 催化 2-取代四氢喹啉类脱氢芳构化具有较好的 普适性。其中 2-甲基喹啉(2a)的表征为金黄色 液体,其核磁结果如表 5 所示。

图 4 *P. monteilii* ZMU-T06 催化底物谱的考察 Figure 4 Investigation of substrate scope catalyzed by *P. monteilii* ZMU-T06.

表 4 P. monteilii ZMU-T06 催化 2-取代四氢喹啉类底物谱的考察

Table 4 Substrate scope for biocatalytic oxidative dehydroaromatization of 2-substituted THQ using *P. monteilii* ZMU-T06

Entry ^a	(<i>rac</i>)-1	Yield of $2 (\%)^b$	<i>e.e.</i> value of (<i>R/S</i>)-1 (%)
1	$R^{1}=Me, R^{2}=H(1a)$	2a /47.6	(R)-1a/91.0
2	$R^{1}=Et, R^{2}=H(1b)$	2b /47.2	(<i>R</i>)-1b/89.4
3	$R^{1}=n-Pr, R^{2}=H(1c)$	2c /48.1	(<i>R</i>)-1c/92.7
4	$R^{1}=n-Bu, R^{2}=H(1d)$	2d /48.0	(<i>R</i>)-1d/92.0
5	$R^{1}=i-Pr, R^{2}=H(1e)$	2e /48.4	(S)-1e/93.8
6	$R^1 = i - Bu, R^2 = H(1f)$	2f /48.0	(S) -1f /92.0
7	R^1 =allyl, R^2 =H (1 g)	2g /47.4	(S)-1g/90.0
8	R^1 =cyclopropyl, R^2 =H (1h)	2h /45.7	(S)-1h/84.3

^a: Unless otherwise noted, mixtures of (*rac*)-1a (10.0 mmol/L), cell density (50.0 g dcw/L), Na₂HPO₄-KH₂PO₄ buffer (50 mmol/L, pH 8.0) in 5.0 mL reaction system were shaken at 250 r/min at 30 °C for 24 h. ^b: The yield of 2a: $Y=A_{2a}/A_{t2a}\times100\%$, A_{2a} represents the peak area of generated 2a, A_{t2a} represents the peak area of the theoretically generated 2a, all peak areas were determined by HPLC analysis.

表 5 2-甲基喹啉的表征数据

 Table 5
 Characterization data of 2-methyl-quinoline

¹ H NMR (400 MHz, CDCl ₃)	¹³ C NMR (100 MHz, CDCl ₃)	HRMS (ESI-TOF) m/z:
		calcd. for C ₁₀ H ₁₀ N
δ 8.01 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.1 Hz, 1H), 7.64-7.68	δ 25.4, 122.1, 125.8, 126.5, 127.6,	$[M+H]^+: 144.080 8;$
(m, 1H), 7.44-7.47 (m, 1H), 7.25 (d, J = 8.2 Hz, 1H), 2.73 (s, 3H)	128.6, 129.5, 136.3, 147.8, 159.0	found: 144.081 3.
	TT 1 1 1	EGLEOF EL

NMR: Nuclear magnetic resonance spectroscopy, HRMS: High-resolution mass spectrometry, ESI-TOF: Electrospray ionization time-of-flight mass spectrometry.

通过对 P. monteilii ZMU-T06 生物催化 2-甲基四氢喹啉的反应监测,发现在生物转化的 过程中,伴随着喹啉(2a)和(R)-1a 的生成,而没 有产生其他副产物。通过查阅文献[25],推测其 可能的催化机理为:(S)-1a 被氧化脱氢生成亚 胺,再进一步脱氢芳构化生成喹啉,反应机理 如图 5 所示。

图 5 生物催化 2-取代四氢喹啉氧化脱氢芳构化 的可能机理

Figure 5 Proposed mechanism of biocatalytic oxidative dehydroaromatization of 2-substituted THQ.

3 讨论与结论

为了建立高效合成 2-取代喹啉类化合物的 催化体系,本研究筛选了课题组的蒙氏假单胞 菌菌库,其中 P. monteilii ZMU-T06 表现出较优 的催化性能。从催化条件优化结果中,发现 P. monteilii ZMU-T06 在偏碱性(pH 8.0)的反应 体系表现出最佳的催化活性。为了提高催化底 物浓度进而增加催化剂的量,但是其催化产率 没有明显的提高,可能是野生型菌株的催化活 性低,后续可以利用分子生物学技术进行其基 因工程菌的构建和改造以提高催化活性。通过 对 P. monteilii ZMU-T06 催化底物谱的考察,发 现其催化的底物类型主要为 2-烷基四氢喹啉, 而对于四氢异喹啉无催化活性,后续可以构建和 改造其基因工程菌以扩展催化底物谱。

综上所述,本研究通过对实验室菌库进行 筛选获得了高效催化 2-取代四氢喹啉类化合 物氧化脱氢芳构化的生物催化剂 *P. monteilii* ZMU-T06;对其催化条件进行了优化和底物谱 进行了考察,以 45.7%-48.4%的产率获得一系 列 2-取代喹啉类化合物,并推测了其可能的催 化机理。本研究为高效合成 2-取代喹啉类化合 物提供了新的绿色合成方法。

REFERENCES

- [1] LI R, JIANG SX, ZHENG HL, LEI HW, HUANG Z, CHEN SP, DENG GJ. Iron-catalyzed indolo[2,3-c] quinoline synthesis from nitroarenes and benzylic alcohols/aldehydes promoted by elemental sulfur[J]. Green Synthesis and Catalysis, 2022, 3(1): 95-101.
- [2] MATADA BS, PATTANASHETTAR R, YERNALE NG. A comprehensive review on the biological interest of quinoline and its derivatives[J]. Bioorganic & Medicinal Chemistry, 2021, 32: 115973.
- [3] HOY SM. Pitavastatin: a review in hypercholesterolemia[J]. American Journal of Cardiovascular Drugs, 2017, 17(2): 157-168.
- [4] LIU J, ZHAO ZH, QIU NS, ZHOU Q, WANG GW, JIANG HP, PIAO Y, ZHOU ZX, TANG JB, SHEN YQ. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy[J]. Nature Communications, 2021, 12: 2425.
- [5] HU YQ, GAO C, ZHANG S, XU L, XU Z, FENG LS, WU X, ZHAO F. Quinoline hybrids and their antiplasmodial and antimalarial activities[J]. European Journal of Medicinal Chemistry, 2017, 139: 22-47.
- [6] PAL SK, BERGEROT PG, FIGLIN RA. Tivozanib: current status and future directions in the treatment of solid tumors[J]. Expert Opinion on Investigational Drugs, 2012, 21(12): 1851-1859.
- [7] WATSON JM, DAWSON LA. Characterization of the potent 5-HT(1A/B) receptor antagonist and serotonin reuptake inhibitor SB-649915: preclinical evidence for hastened onset of antidepressant/anxiolytic efficacy[J]. CNS Drug Reviews, 2007, 13(2): 206-223.
- [8] PANG SF, LIU FF, ZHANG YJ, DONG ZW, SU Q, WANG WF, LI ZH, ZHOU F, WANG YB. Construction of functional superhydrophobic biochars as hydrogen transfer catalysts for dehydrogenation of N-heterocycles[J]. ACS Sustainable Chemistry &

Engineering, 2021, 9(27): 9062-9077.

- [9] KAUR R, KUMAR K. Synthetic and medicinal perspective of quinolines as antiviral agents[J]. European Journal of Medicinal Chemistry, 2021, 215: 113220.
- [10] NAINWAL LM, TASNEEM S, AKHTAR W, VERMA G, KHAN MF, PARVEZ S, SHAQUIQUZZAMAN M, AKHTER M, ALAM MM. Green recipes to quinoline: a review[J]. European Journal of Medicinal Chemistry, 2019, 164: 121-170.
- [11] KALEESWARAN D, MURUGAVEL R. Picric acid sensing and CO₂ capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer[J]. Journal of Chemical Sciences, 2018, 130(1): 1.
- [12] HATI S, HOLZGRABE U, SEN S. Oxidative dehydrogenation of C-C and C-N bonds: a convenient approach to access diverse (dihydro)heteroaromatic compounds[J]. Beilstein Journal of Organic Chemistry, 2017, 13: 1670-1692.
- [13] YANG RC, YUE SS, TAN W, XIE YF, CAI H. DMSO/t-BuONa/O₂-mediated aerobic dehydrogenation of saturated N-heterocycles[J]. The Journal of Organic Chemistry, 2020, 85(11): 7501-7509.
- [14] WEI LF, WEI Y, ZHANG JL, XU L. Visible-lightmediated organoboron-catalysed metal-free dehydrogenation of N-heterocycles using molecular oxygen[J]. Green Chemistry, 2021, 23(12): 4446-4450.
- [15] BALAYEVA NO, MAMIYEV Z, DILLERT R, ZHENG N, BAHNEMANN DW. Rh/TiO₂-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination[J]. ACS Catalysis, 2020, 10(10): 5542-5553.
- [16] ZHANG Z, LIU WG, ZHANG YY, BAI JW, LIU J. Bioinspired atomic manganese site accelerates oxo-dehydrogenation of N-heterocycles over a conjugated tri-s-triazine framework[J]. ACS Catalysis, 2021, 11(1): 313-322.
- [17] BALAYEVA NO, ZHENG N, DILLERT R, BAHNEMANN DW. Visible-light-mediated photocatalytic aerobic dehydrogenation of N-heterocycles by surface-grafted TiO₂ and 4-amino-TEMPO[J]. ACS

Catalysis, 2019, 9(12): 10694-10704.

[18] LIAO CJ, LI X, YAO KY, YUAN ZL, CHI Q, ZHANG ZH. Efficient oxidative dehydrogenation of N-heterocycles over nitrogen-doped carbon-supported cobalt nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 13646-13654. 295

- [19] WU Y, YI H, LEI AW. Electrochemical acceptorless dehydrogenation of N-heterocycles utilizing TEMPO as organo-electrocatalyst[J]. ACS Catalysis, 2018, 8(2): 1192-1196.
- [20] JIN HH, JU SY, YU HR, YANG LR, ZHENG WL, WU JP. An efficient biocatalytic oxidative dehydroaromatization approach for the construction of quinolines enabled by monoamine oxidase with molecular oxygen[J]. Green Chemistry, 2023, 25(13): 5296-5303.
- [21] ZHAO F, MASCI D, FERLA S, VARRICCHIO C, BRANCALE A, COLONNA S, BLACK GW, TURNER NJ, CASTAGNOLO D. Monoamine oxidase (MAO-N) biocatalyzed synthesis of indoles from indolines prepared via photocatalytic cyclization/arylative dearomatization[J]. ACS Catalysis, 2020, 10(11): 6414-6421.
- [22] TOSCANI A, RISI C, BLACK GW, BROWN NL, SHAABAN A, TURNER NJ, CASTAGNOLO D. Monoamine oxidase (MAO-N) whole cell biocatalyzed aromatization of 1,2,5,6-tetrahydropyridines into pyridines[J]. ACS Catalysis, 2018, 8(9): 8781-8787.
- [23] SCALACCI N, BLACK GW, MATTEDI G, BROWN NL, TURNER NJ, CASTAGNOLO D. Unveiling the biocatalytic aromatizing activity of monoamine oxidases MAO-N and 6-HDNO: development of chemoenzymatic cascades for the synthesis of pyrroles[J]. ACS Catalysis, 2017, 7(2): 1295-1300.
- [24] CHO CS, REN WX. A recyclable palladium-catalyzed modified Friedländer quinoline synthesis[J]. Journal of Organometallic Chemistry, 2007, 692(19): 4182-4186.
- [25] LI GY, REN J, YAO PY, DUAN YT, ZHANG HL, WU QQ, FENG JH, LAU P, ZHU DM. Deracemization of 2-methyl-1,2,3,4-tetrahydroquinoline using mutant cyclohexylamine oxidase obtained by iterative saturation mutagenesis[J]. ACS Catalysis, 2014, 4(3): 903-908.