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Abstract Metabolome has become an important part of Systems Biology and a large set of data has already gained by applying
the methods of metabolome. How to deal with the data and how to combine data of metabolome with data of other omics are
problems that can not be ignored. An Enzyme Amount Multiple Factor was imported into the enzyme kinetic equation. When the
enzyme amount in the system changed in silico model it means to alter the Enzyme Amount Multiple Factor. In order to
observe ethanol concentration response to enzyme amount changes in S. cerevisiae glycolysis pathway model ~enzyme amount was
separately set at high and low level the corresponding Enzyme Amount Multiple Factor value was 10 and 0.1 relatively. Based
on the result of simulation twelve enzymes in pathway were separated into two classes class | and class [l by cluster analysis.
The four enzymes belonging to class I ADH HK PFK and PDC all catalyze irreversible reactions. The six out of eight
enzymes belonging to class[[  ALD GAPDH GlcTrans IpPEP PGI and TIM catalyze reversible reactions. The other two
enzymes belonging to class[[ IpGlyc and PK catalyze irreversible reactions. Based on this method data of metabolome and

proteomics are easily integrated to accomplish relatively overall analysis of system properties.

Key words metabolomics Saccharomyces cerevisiae  glycolysis pathway Enzyme Amount Multiple Factor ethanol in silico

simulation cluster analysis
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1
Table 1 A list of enzymes and compounds abbreviations in
S. cerevisiae glycolysis pathway model
Abbreviation Name
Enzyme
v | r;‘.\.\l / GlcTrans  Glucose transport reaction
Eii:l_ ?L ( \‘:,.:r : T HK Hextose kinase
_ ,[i S __: éj\—%‘_ - T PGI Phosphoglucose isomerase
= i T g l{‘,fr"{:: o T ez ) PFK Phosphofructokinase-1
= 53 ..\\‘"\. T ALD Aldolase
" ¥ TIM Triose phosphate isomerase
s
= GAPDH Glyceraldehyde 3-phosphate dehydrogenase
1

Fig.1 Reconstructed S. cerevisiae glycolysis pathway model

[EtOHX]/(mmol/L)
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{/min
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2
Fig.2  Ethanol accumulation curve in original
S. cerevisiae glycolysis pathway model

Simulation time was 100min.

12 0.1
10 E, 0.1
10
2
12
0.1 ADH HK PDC  PFK
80% ALD
0.26%
12
10 IpGlye
16.82% ALD IpPEP PDC PFK PGI PK  TIM
0.5%

lumped Phospho-glycerate kinase reaction Phospho-glycerate

IpPEP mutase reaction Enolase reaction

PDC Pyruvate decarboxylase

ADH alcohol dehydrogenase

IpClye lumped glycerol :.’a—phosphate dehydrogenase reaction glycerol
phosphatase reaction

Metabolite

GleX extracellular glucose

Gle intracellular glucose

GoP glucose-6-phosphate

Fop fructose-6-phosphate

FBP fructose-1 6-bisphosphate

DHAP dihydroxyacetone phosphate

GAP glyceraldehyde-3-phosphate

BPG glycerate-1 3-diphosphate

PEP phosphoenolpyruvate

Pyr pyruvate

ACA intracellular acetic acid

ACAX extracellular acetic acid

EtOH intracellular ethanol

EtOHX extracellular ethanol

Glye intracellular glycerol

GlyeX extracellular glycerol

2.3 12

12
12
ADH HK PDC  PFK GAPDH
GlcTrans PGI TIM IpPEP ALD IpGlye  PK
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2
Table 2 The response of ethanol production to enzymes amount changes in S. cerevisiae glycolysis pathway
E X:
rme amount g ALD HK  GAPDH GlcTrans IpGlye  IpPEP PDC PFK PCI PK TIM
multiple factor
0.1 -85.02% —-0.26% —85.61% —17.86% -45.80% 2.59% —-1.18% —88.78% —81.94% —-3.86% -44.04% -25.95%

10 9.57% 0% 2.57% 1.83% 1.16% -16.82% 0.10% 0% 0.20% -0.24% -0.44% 0.49%

When Enzyme Amount Multiple Factor of 12 enzymes in yeast glycolysis pathway were separately set to 0.1 and 10 the change of end product ethanol extracellular
concentration were calculated and were shown in percentage.
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roc— | 2 PK
P ADH HK PFK
ALD
lpPEP?
PGI
GAPDH
TIM} PK
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GleTrans—
PK —]
0 s 10 15 20 25 30 35 40
Linkage distance
3 12
4
Fig.3 Single linkage Euclidean distance tree of
12 enzymes in S. cerevisiae glycolysis pathway model
3 “ ”
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