鸡腿菇子实体多糖分离纯化工艺及结构研究*

姚毓婧 1,2 杨仁智 2 张劲 2** 潘迎捷3

(南京农业大学生命科学学院 南京 210095)(上海市农业科学院食用菌研究所 上海 201106) (上海水产大学食品科学学院 上海 200090)

摘要 以多糖得率为指标 用正交试验对鸡腿菇子实体多糖的提取纯化工艺进行优化。用离子色谱和凝胶渗透色 谱对粗多糖进行分离纯化 利用化学和光谱学方法对均一多糖 CC30w-1 进行结构分析。结果表明鸡腿菇子实体多 糖最佳提取工艺为 提取次数为 3 次 提取时间为 1.5h 提取温度为 95°C 料液比为 1:12 最佳脱蛋白条件 :样品-氯 仿+正丁醇为3:1(V/V),氯仿-正丁醇为3:1(V/V),反应时间为20min,脱蛋白次数为7;结构分析的结果表明: CC30w-1 分子量为 1.94×10⁴ Da 糖组成为 Fuc: Gal = 1:4.02 岩藻糖以端基方式连接 ,半乳糖主要以 1.6-和 1.2.6-两种方式连接 3 个主要的连接方式的摩尔比为 1.15:2.88:1 注要由(1.6) $_{-\alpha}$ -D-Gal $_{p}$ 糖残基构成主链 ,在 0-2 位被 α-Fucp 糖残基取代的 5 个单糖残基组成的结构重复单元。

关键词 鸡腿菇 正交试验 分离纯化 结构分析

文章编号 1)253-2654(2007)06-1071-06 中图分类号:093 文献标识码:A

Optimum Isolation and Structural Analysis of Polysaccharide from the Fruiting Bodies of Coprinus comatus *

YAO Yu-Jing^{1 2} YANG Ren-Zhi² ZHANG Jing-Song^{2 * *} PAN Ying-Jie³

(Department of Microbiology , Life Science College , Nanjing Agricultural University , Nanjing 210095) (Edible Fungi Institute , Shanghai Academy of Agriculture Sciences , Shanghai 201106) (College of Food Science, Shanghai Fisheries University, Shanghai 200090)

Abstract Optimum technique of isolation and purification of Coprinus comatus polysaccharides was investigated by orthogonal tests. DEAE-Sepharose F. F. and gel-filtration chromatography were used to separate and purify the Coprinus comatus polysaccharides, and get the homogeneous polysaccharide CC30w-1. The structure of CC30w-1 was studied with chemical and spectral methods. The results showed that the optimum conditions for the isolation was as follows: times of extraction 3, time 1.5h, temperature 95°C, material to water ratio 1:12. The optimum deproteinization condition is that crude polysaccharide solute in the mixed solvent of chloroform and n-butanol (3:1) whose volume 3 times that of the former, the reaction time and times of purification were 20 minutes and 7 times, respectively. CC30w-1 molecular weight was estimated to be 1.94 × 10⁴ by HPLC. HPAEC showed CC30w-1 was composed of fucose and galactose in molar ratios of 1:4.02. Methylation analysis and NMR data showed that it possess a pentasaccharide repeating unit have a backbone of (1-6)-linked galactose residues, and is substituted at 2-position by fucose residue. Key words: Coprinus comatus, Orthogonal tests, Isolation and purification, Structural analysis

鸡腿菇(Coprinus comatus(Mueller.ex Fr.)S.F. Gray) 学名毛头鬼伞,隶属于真菌门(Eumycota),担 子菌纲(Basidiomycetes), 伞菌目(Agaricales), 鬼伞科 (Coprinaceae) 鬼伞属(Copruinus [12]。鸡腿菇是药 食两用菌 子实体肉质细嫩 鲜美可口 性平 有益脾 胃 具有清心安神、通肠利便、治疗痔疮等功效[3]。

经常食用有助消化、增加食欲43。常食用它可利于 老年人的保健 幼儿的生长 ,孕妇体内胎儿的正常发 育5]。现代研究表明,鸡腿菇中丰富的营养成份具 有降血糖、降血脂、提高免疫活性、抗肿瘤及抑菌等 一系列生物活性[6]。而鸡腿菇多糖亦被证实具有提 高免疫力、抗肿瘤等生物活性[7-10]。 与香菇、灵芝等

^{*}上海市农委重点攻关项目(No. 沪农科攻字 2003-3-3)

^{* *} 通讯作者 Tel 1021-62208660-3211 ,E-mail ;syjal6@saas. sh. cn 收稿日期:2006-12-20.修回日期 2007-06-11

其它真菌相比,鸡腿菇多糖的研究还比较少。本文对鸡腿菇多糖的提取、除蛋白工艺进行优化,并借助现代分析手段对得到的均一多糖结构进行初步探讨,旨在更好地开发和利用鸡腿菇这一珍贵的真菌资源。

1 材料与方法

1.1 材料

鸡腿菇干燥子实体切片,购于上海农业科学院食用菌所百信食药用菌科贸有限公司。

1.2 试剂

单糖标准品为 Sigma 产品;三氟乙酸(CF₃COOH,TFA)硼氢化钠(NaBH₄)购自 Merck 公司 50% NaOH 为 Dionex 公司产品;其余试剂均为国产分析纯试剂。

1.3 设备

ICS2500 离子色谱仪(Dionex 公司), ÄKTAexplorer层析系统(GE公司),电热恒温水浴锅(上海益恒试验仪器有限公司),气质联用仪(Thermo Finnigan TRACEMS),色谱柱:DB-5 MS 石英毛细管柱 30 m × 0.25 mm × 0.25 μm 核磁共振仪(Varian INOVA 500).

1.4 实验方法

- 1.4.1 QS 鸡腿菇多糖提取、纯化工艺流程:鸡腿菇干品→沸水浴浸提→过滤→滤液醇沉→离心得粗多糖→复溶→脱蛋白→粗多糖→DEAE-Sepharose 阴离子柱层析→Sephacryl 凝胶柱层析→CC30w-1
- 1.4.2 粗多糖提取、除蛋白条件优化:多糖提取工艺中 影响因素很多 在本实验室常用单因素实验基础上 选定提取温度、时间、次数、料液比等因素 ,采用 $L_{s}(3^4)$ 正交设计进行优化,因素水平设计见表 1。每一处理用鸡腿菇子实体 100 g。

表 1 热水浸提正交试验因素水平

	因素					
水平	提取次数 A	时间 B (h)	温度 C (℃)	料液比 D (V/V)		
1	1	1.5	60	1:8		
2	2	2	80	1:10		
3	3	2.5	95	1:12		

表 2 粗多糖除蛋白正交实验因素水平表

		表		
水平	A 样品-氯仿 + 正丁醇(V/V)	B 氯仿-正丁醇 (<i>V/V</i>)	C 萃取时间(h)	D 萃取次数
1	3:1	5:1	10	3
2	4:1	3:1	20	5
3	5:1	2:1	30	7

1.4.3 检测:多糖总量的测定:采用苯酚 – 硫酸 法¹²] 以葡萄糖为标准品。

蛋白含量的测定:采用 BCA 蛋白试剂盒(Merck公司)。

- **1.4.4** 纯度及分子量测定^[12] :3 mg CC30w-1 溶于 1.4 mL 缓冲液配成溶液 ,上样体积 10 μ L ,TSK PWXL 4000-3000 串 联 柱 , 脱 气 缓 冲 液 洗 脱 , 流 速 0.5 mL/min ,Waters2414 示差检测仪自动检测。以 Dextran T 系列标准分子量 ,对保留时间做出标准曲线 ,然后根据待测多糖的保留时间 ,计算出样品的分子量。
- 1.4.5 紫外光谱测定 2mg CC30w-1 溶于 3mL 水中, 在 200nm~400nm 进行全扫描。
- 1.4.6 单糖组成分析 12 , 13] 取 2 mg CC30w-1 放入薄壁长试管中,加入 2 mol/L 三氟乙酸 (TFA) 4 mL,在 110 ℃下水解 2h,定容至 100 mL,稀释 100 信后上样测定。色谱条件:分离柱采用 Dionex 公司 CarboPac PA20 预处理柱、CarboPac PA20 检测柱;脉冲安培检测器工作参数:E1 为 100 mV 400 ms;E2 为 $^{-2000}$ mV, 20 ms;E3 为 600 mV, 10 ms;E4 为 $^{-100}$ mV, 70 ms。流动相:分别采用浓度为 $^{2.5}$ mmol/L 的 NaOH 作淋洗液;淋洗方法采用单一浓度淋洗。流速 $^{10.45}$ mL/min;上样量 25 μL 温度 30 ℃。 1.4.7 红外光谱分析 12 取 1 mg $^{-2}$ mg 多糖样品,用溴化钾压片后进行 18 分析。完全甲基化后的多糖样品再检测甲基化是否完全时 取样 1 mg 后采用石蜡油制片进行 18 分析。
- **1.4.8** 甲基化分析 ^{14,15]} :多糖 2 mg 经 P_2O_5 充分干燥 按照 Kalyan 和 Paul 的方法 ^{16]}进行完全甲基化。甲基化样品经 IR 检测无羟基吸收后 ,完全甲基化后经三氟乙酸水解 ,硼氢化钠还原 ,醋酐乙酰化后 ,溶解于氯仿 ,进行 GC-MS 分析。GC-MS 的分析条件为 柱温 80°C 初温 ,保持 1 min ,以 5°C /min 至 200°C ,

氦气作载气。进样口温度 250% ,分流比 1:50。柱流速为 1mL/min。EI(70eV) ,倍增器电压 350V ,灯丝电流 $250~\mu$ A ,接口温度 200% ,离子源温度 250% ,质量数扫描范围 42amu ~ 462amu ,扫描速率 2.5~scan/Sec。

1.4.9 核磁共振分析:样品溶于 D₂O 于 Varian INOVA 5000 核磁仪测定 D₂O 为内标。

2 结果

2.1 鸡腿菇多糖提取条件的优化 鸡腿菇多糖提取正交试验结果见表 3。

表 3 热水浸提正交实验结果

	1	X 3 1447	N文 近	又 六 心:		
序号	A	В	С	D	粗提物得率	多糖 (%)
1	1	1	1	1	33.69	10.17
2	1	2	2	2	36.9	11.9
3	1	3	3	3	39.64	13.51
4	2	1	2	3	39.36	13.42
5	2	2	3	1	39.76	15.26
6	2	3	1	2	42.57	12.91
7	3	1	3	2	45.14	16.25
8	3	2	1	3	44.98	14.42
9	3	3	2	1	43.09	13.18
K1	35.58	39.84	37.5	38.61		
K2	41.59	41.58	38.5	41.06		
К3	43.85	39.6	45.02	41.35		
k1	11.86	13.28	12.5	12.87		
k2	13.86	13.86	12.83	13.69		
k3	14.62	13.2	15.01	13.78		

表 3 表明:(1)从极差 R 值的大小,可得出各因素作用主次顺序是:A(提取次数)> ((温度)> D (料液比)> B(时间)。(2)最佳因素水平是 $A_3B_2C_3D_3$,即提取次数为 3 次,时间为 1.5h,温度为95℃,溶剂体积为 12 倍时提取效果最为理想。

2.2 鸡腿菇粗多糖除蛋白条件的优化

鸡腿菇粗多糖除蛋白最佳工艺条件试验结果见表 4。

由表 4 得出 (1) 各组因素作用的主次顺序为: 氯仿与正丁醇的体积比 > 反应时间 = 除蛋白次数 > 样品与氯仿-正丁醇的体积比。(2) 最佳工艺为 $A_1B_2C_2D_3$ 即样品-氯仿正丁醇的体积比为 3:1 ,氯仿 -正丁醇的体积比为 3:1 反应时间为 20 min 除蛋白次数为 7 次。

表 4 粗多糖除蛋白正交实验结果

序号	A	В	С	D	粗多糖蛋白质含量(%)
1	1	1	1	1	0.44
2	1	2	2	2	0.25
3	1	3	3	3	0.27
4	2	1	2	3	0.32
5	2	2	3	1	0.33
6	2	3	1	2	0.39
7	3	1	3	2	0.39
8	3	2	1	3	0.29
9	3	3	2	1	0.32
K1	0.96	1.15	1.12	1.09	
K2	1.04	0.87	0.89	1.03	
К3	1.00	0.98	0.99	0.88	
k1	0.32	0.38	0.37	0.36	
k2	0.35	0.29	0.30	0.34	
k3	0.33	0.33	0.33	0.29	
R	0.03	0.09	0.07	0.07	

2.3 纯度鉴定

粗多糖经 DEAE-阴离子交换层析和凝胶层析后得到均一多糖 CC30w-1。CC30w-1 在凝胶层析和HPLC 图谱上均呈单一对称峰,表明其为均一组分(见图 1、图 2)。其紫外图谱扫描显示 200nm~400nm 无吸收峰,表明其不含蛋白质和核酸。根据在 HPLC 图谱中的保留时间,根据标准曲线计算其分子量为 1.94 × 10⁴ D。

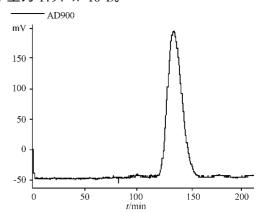


图 1 CC30w-1 的 Sephacryl S-300 层析色谱图

2.4 结构分析

2.4.1 糖组成分析:CC30w-1 完全酸水解后的样品 经过 HPAEC-PAD 分析后(见图 4),与标准单糖的离 ©子色谱图等地较,即知管影w-r主要由岩藻糖和 半乳糖组成 其摩尔比为 Fuc: Gal = 1:4.02。

2.4.2 红外光谱分析 红外光谱显示出 CC30w-1 在

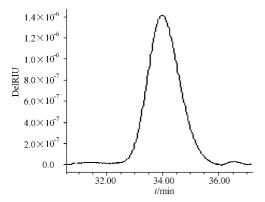


图 2 CC30w-1 的 HPLC 图谱

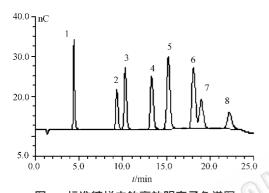


图 3 标准糖样中的高效阴离子色谱图 1 岩藻糖 2 鼠李糖 3 阿拉伯糖 4 半乳糖 5 葡萄糖 5 木糖 7 甘 露糖 8 果糖

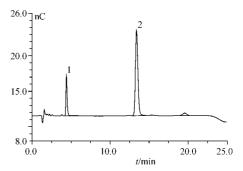
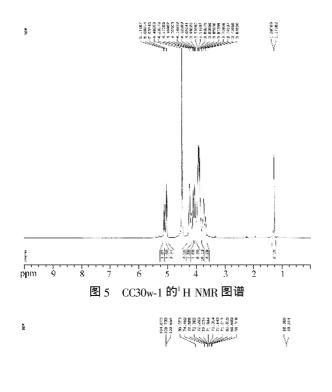


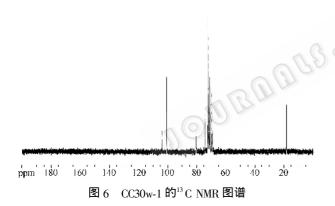
图 4 CC30w-1 的高效阴离子色谱图 1. 岩藻糖 2 半乳糖

2.4.3 甲基化分析:CC30w-1 的甲基化分析结果见表 5。

表 5 CC30w-1 的甲	基化分析
----------------	------

甲基化多糖	连接方式	摩尔比	主要的离子碎片峰
2 <i>3 A</i> -Me ₃ -Fuc	1-linked $\operatorname{Fuc} p$	1	43 ,72 ,89 ,101 ,115 ,117 ,131 ,161 ,175
2 3 A- Me ₃ -Gal	1 6- linked Galp	2.94	43 ,71 ,87 ,101 ,117 ,129 ,161 ,173 ,189 ,233
3 A-Me ₂ -Gal	1 2 6-linked Galp	1.2	43 71 87 99 ,129 ,159 ,173 ,189 ,233


由表 5 可知 Gla 为 1 6、1 2 6 两种连接方式 ,其中 1 ,6-linked Galp 为主要键型 ,可能构成主链; CC30w-1 分枝点主要位于半乳糖上 3 个主要糖残基的摩尔比为 1:2.94:1.2 ,甲基化的结果与单糖组成比例基本一致 ,说明 CC30w-1 可能是由 5 个单糖残基构成重复单元结构。


2.4.4 核磁共振分析:由 1 H NMR 谱(图 5)可知 CC30w-1 有 5 个异头氢信号,与甲基化分析结果一致,分别在 δ 5.12、 δ 5.08、 δ 5.02(3 个 H)处出现。5 个异头氢信号出现在低场 均是半乳糖构型,且是单峰(3 J_{1.2} < 3Hz)表明这些糖是 α -构型 $^{[18]}$ 。

在¹³C NMR 谱中(图 6)在 8 100.7 ~ 104.07 处也

3 讨论

鸡腿菇子实体多糖提取的最佳工艺为:提取次 数为验验。提取时间为账金融提取温度为.95°C...溶剂。

体积为 12 倍。其中各因素的影响顺序为 A(提取次数)> ((温度) > I(溶剂体积)> I(时间)。

鸡腿菇子实体粗多糖脱蛋白纯化最佳条件:样品-氯仿正丁醇的体积比为3:1,氯仿-正丁醇的体积比为3:1,反应时间为20 min 除蛋白次数为7 次。4 个因素对脱蛋白的影响顺序为 B(氯仿与正丁醇体积比)> C(反应时间)= D(反应次数)> A(样品与氯仿-正丁醇体积比)。

鸡腿菇均一多糖 CC30w-1 的单糖组成为岩藻糖和半乳糖 糖苷键的连接方式为 1 位连接的 Fuc、1 6 位连接的 Gal 和 1 2 6 位连接的 Gal ,且三者摩尔比为 1:2.94:1.2 ,其中主链为 1 6 位连接的 Gal ,分枝点位于半乳糖的 C-2 上 5 个单糖残基构成的重复单元是主要结构 ,平均每 4 个己糖有一个分枝糖基。

通过近 20 年科学工作者对各类真菌多糖的组成和结构的研究 ,发现真菌多糖主要包括以下几种 21 22 1 1 1 2 23 1 1 1 2 23 23 1 1 1 2 23 $^$

据笔者所知 除了凡军民^[23]等曾报道在鸡腿菇菌丝体中获得岩藻半乳聚糖外 ,一些真菌的异半乳聚糖也有报道 ,例如 Ganoderma applanatum^[24]中的岩藻 半 乳 聚 糖 , Fomitopsis fraxionea^[25]、 Flammulina $velutipes^{[26]}$ 、 Polyporus $pinicola^{[27]}$ 、 P . fomentarius 和 P . $igniarius^{[28]}$ 中的甘露岩藻半乳聚糖 ,以及 Laetiporus $sulphureus^{[29]}$ 中的岩藻甘露半乳聚糖等 ,这些结构主要由(1,6) α -D-Galp 糖残基构成主链 ,在 0-2 位被 α -L-Fucp 或 3-O- α -D-Manp- α -L-Fucp 糖残基取代。

多糖的化学结构是其生物活性的基础,王昭 副³⁰]等报道小刺猴头菌子实体水溶性多糖 HP Ⅰ 可 明显增加病体小鼠胃液中的游离酸度和胃蛋白酶活 性 降低血清中胃泌素的含量 抑制胃体及胃窦粘膜 的萎缩变薄,使胃部粘膜炎症减轻。其中 HP T 以 1 6 连接的 Gal 为主 ,侧链含有 Fuc 和 Glc 残基 ;马 秀俐 31]等报道西洋参多糖 PPO T-1~4 均能较好的 刺激小鼠脾淋巴细胞转化、协同亚剂量 ConA 诱生 白介素-2(IL-2)。4个均一多糖为含有糖醛酸的杂 多糖 ,而它们的中性糖主链是基本以 1.6 连接的 Gal 为主。CC30w-1与前面所提到达两种均一多糖主链 结构类似 然而多糖的活性受结构的影响甚多 如高 级结构、侧链的有无、长短及连接位置、分枝密度及 糖苷键的结合 即使结构相似的两种多糖也可能具 有不同的生物活性,其生理活性及详细结构还有待 进一步研究证明。

参考文献

- [1]邵立平. 真菌分类学,北京:中国林业出版社,1984,pp.272~ 280.
- [2] 黄年来. 自修食用菌学. 南京:南京大学出版社,1987,pp.660 ~662.
- [3] 王灿琴,何铁光.食用菌,2004 64.
- [4] 贾 蕊,刘风兰.食品科技,2006,11:155.
- [5]杨宁波,张建民.特种经济动植物,2000 531.
- [6]刘艳芳,张劲松.食用菌学报,2003,10(2)50.
- [7]李师鹏,苏蕾.现代商贸工业,2000,24(4):44~45.
- © 8p 1 套 厘 鹏 微 安 利 厘 穷 涨 紅 梅 送 中 厘 食 用 菌 t t 2001 i c 200 r 4 i) s 36 m 38. c n

- [9]崔 旻,张好建,安利国.世界华人消化杂志,2002,10(3): 287~290.
- [10]邢国福,王海霞,韩春超,等. 食品科学,2003,24(6):149~ 141.
- [11] Staub AM. Methods in Carbohydrate Chem , 1956 , 28 350 ~ 356.
- [12]张惟杰. 多糖复合物生化研究技术(第二版). 杭州:浙江大学出版社,1999,pp.11,112~120,59~64,193~198.
- [13] 张培敏,朱 岩,凌艳艳. 浙江大学学报,2004,31(4)431~434.
- [14] Chrostopher JB, Gary DM. Analysis of Carbohydrate by GLC and MS. Boca Raton, Florida CRC Press, 1989, pp. 157 ~ 211.
- [15] Chaplin MF. Carbohydrate Analysis : A practical Approach , 2nd Oxford IRL Press , Oxford , 1994 ,pp. 91.
- [16] Kalyan RA , Paul BT. Analytical biochemistry , 1992 , $\pmb{203}$:101 ~ 108 .
- [17]方积年. 国外医学(药学分册),1981,4222~228.
- [18] Harding LP , Marshall VM , Hernandez Y , et al. Carbohydrate Research , 2005 , 340 :1107 ~ 1111.
- [19] Agrawal PK. Phytochemistry, 1992, 31 3307 ~ 3330.
- [20] Bushmarinov IS , Ovchinnikova OG , Kocharova NA , et~al . Carbohydrate Research 2004 , ${\bf 339}$:1557 \sim 1560 .

- [21]曾凯宏,明 建.食品科技,2001,4,65~67.
- [22] 肖盛元,郭顺星.天然产物的研究与开发,2000,**12(**2):81~86.
- [23] Junmin Fan , Jingsong Zhang , Qingjiu Tang , et al. Carbohydrate Research , 2006 , 341 1130 ~ 1134.
- [24] Usui T , Iwasaki Y , Mizuno T. Carbohydrate Research , 1981 , 92 :103 ~ 104
- [25] Cho S M , Koshino H , Yu S H , et al . Carbohydrate Research , 1998 , $37:13\sim18$.
- [26] Mukumoto T , Yamaguchi H. Carbohydrate Research , 1977 , 59 614 ~ 621.
- [27] Fraser R N , Karácsonyi S , Lindberg B . Acta Chemica Scandinavica , 1967 , 21 :1783 ~ 1789 .
- [28] Björndal H , Lindberg B. Carbohydrate Research , 1969 , 10 $.79 \sim 85$.
- [29] Alquini G, Carbonero E R, Rosado F R, et al. Fems Microbiology Letters, 2004, 230, 47 ~ 52.
- [30] 王昭晶,梁忠言,罗巅辉.高等学校化学学报,2004,**25**(8): 1474~1476.
- [31]马秀俐,赵德超,孙永秀.中草药,2000 31(3):165~167.
- © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn